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Background: A characteristic observable of nuclear collective motion is the relative B(E2) values from the γ

band to the ground band in even-even deformed nuclei. The Alaga rules provide an idealized set of benchmarks for
these observables. However, deviations from the Alaga rules are universally observed and have been traditionally
and successfully interpreted in terms of parameterized γ -band–ground-band bandmixing. An alternate approach,
partial dynamical symmetries, has no bandmixing whatsoever and is parameter free, yet mimics closely the
effects of bandmixing, due solely to the effects of finite valence nucleon number.
Purpose: To investigate the relation between these two seemingly contradictory approaches to understand how
they can produce such similar results.
Method: To derive approximate relations between the two formalisms.
Results: A consistent relationship is found linking bandmixing to finite valence nucleon number effects on
interband γ to ground-band B(E2) values.
Conclusions: Two disparate approaches to one of the iconic characteristics of deformed nuclei are shown to
be intimately related. Moreover, a systematic difference in their predictions also emerges naturally from the
derivation. The qualitative linkage of valence nucleon number and the separation of vibrational and rotational
degrees of freedom has long been assumed but never before explicitly demonstrated through complementary
models.
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Despite the complexity of nucleonic motion in atomic
nuclei, these many-body strongly interacting systems display
remarkable regularities. Many of these can be understood in
terms of idealized models, and many more can be interpreted
in terms of simple perturbations to these models. It is the
purpose of this Rapid Communication to investigate the
relation between two seemingly dissimilar models, based on
different premises, that yet produce very similar predictions
for some of the most iconic observables in collective nuclei.

Some of the most characteristic observables in deformed
even-even nuclei, used as benchmarks of structure for over
60 years, are the B(E2) values from the K = 2 γ vibrational
band to the ground band. This intrinsic mode is usually the
lowest lying collective one and hence, if we do not understand
its properties, we can hardly claim to have in hand an adequate
understanding of deformed nuclei.

Relative interband γ to ground-band B(E2) values can be
very simply modeled and are widely known experimentally.
In the limit of zero rotation-vibration interaction, that is, if the
wave functions can be written as a product of an intrinsic wave
function (independent of spin), and a rotational DJMK factor
specifying the rotational character of the state, these B(E2)
values follow the so-called Alaga rules [1]. The Alaga rules do

not depend on the intrinsic structure of the states involved
but only depend on the spins involved in the transitions
and on the K values of the intrinsic excitations. They are
calculated simply from squares of appropriate Clebsch-Gordan
coefficients. They are given in the third column of Table I. For
example, the Alaga rules for the relative B(E2) values from
the 2+ state of the γ band to the 0+, 2+, and 4+ levels of the
ground band are in the relation 70, 100, and 5, respectively.

It is one of the triumphs of the collective model of deformed
nuclei that these utterly simple, parameter-free predictions
work as well as they do, as seen in the comparisons of
columns 2 (experimental results) and 3 (Alaga rules) in
Table I. Nevertheless, hardly unexpectedly, there are also clear
empirical deviations from the Alaga rules. It turns out that these
deviations behave in characteristic and systematic ways in all
deformed nuclei. In particular, the deviations grow with spin,
transitions that decrease the spin (e.g., 2+ → 0+) are always
lower than the Alaga rules, and transitions that increase the
spin (e.g., 2+ → 4+) are always larger than the Alaga rules.

For over half a century, these deviations from the Alaga
rules have been interpreted in terms of rotation-vibration
interactions, that is, in terms of bandmixing [2–6], between
the states of the γ band and the ground band. In most cases,
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TABLE I. Relative B(E2) values for the decay of the γ band
to the ground band in 168Er. For each initial level, one transition
is normalized to 100 and its error is included in those for the
other transitions. These data are compared to the Alaga rules, to
a bandmixing calculation [2–6] with mixing parameter Zγ = 0.035,
and to the parameter-free PDS predictions. The latter are taken from
Ref. [7–9]. The quantity Zγ is related to the spin-independent part of
the mixing amplitude [2–6].

J π
i → J π

f
168Er ALAGA Zγ = 0.035 PDS

2+
γ → 0+ 56.2(11) 70 56.9 64.3

2+
γ → 2+ 100 100 100 100

2+
γ → 4+ 7.3(4) 5 7.6 6.3

3+
γ → 2+ 100 100 100 100

3+
γ → 4+ 62.6(14) 40 62.9 49.3

4+
γ → 2+ 19.3(4) 34 20.2 28.1

4+
γ → 4+ 100 100 100 100

4+
γ → 6+ 13.1(12) 8.64 16.0 12.5

5+
γ → 4+ 100 100 100 100

5+
γ → 6+ 123(14) 57.1 117 79.6

6+
γ → 4+ 11.2(10) 26.9 11.0 20.3

6+
γ → 6+ 100 100 100 100

6+
γ → 8+ 37.6(72) 10.6 23.6 18.0

the data for a given nucleus can be reproduced in terms of a
single mixing parameter which varies smoothly with N and Z.

Recently, another interpretation, in terms of an approach
called partial dynamical symmetry (PDS) [7], which has no
mixing whatsoever between these bands, has also been shown
to account [7–10] for a sizable fraction (but, notably, not all)
of the deviations from the Alaga rules in a parameter-free
way. The PDS predictions of deviations of these B(E2) ratios
from the Alaga rules arise solely from the effects of finite
valence nucleon number. Given this situation, it would seem
imperative to investigate how such dissimilar models can
produce such similar predictions and to elucidate the relation
between bandmixing and valence nucleon number.

It is the purpose of this Rapid Communication to do this
by deriving a simple quantitative relation between these two
models. These same derivations will also account for the
observed characteristic differences between the two models
as well.

In the bandmixing formalism [2–6] deviations from the
Alaga rules for E2 transitions from the K = 2 γ band to
the ground band (K = 0) are calculated using K-projection
raising and lowering operators, leading to simple expressions
for these corrections, in terms of a parameter, Zγ , directly
related to the mixing amplitude. Note that, like the Alaga
rules, the correction factors are completely independent of the
intrinsic structure of the ground and excited modes, depending
only on the K values involved and on J , where J is the spin of
the states that mix. These expressions are shown in Table II,
and show the same characteristic features as seen in the data,
namely, that the corrections to the Alaga rule increase with
spin, and that (for positive Zγ ), transitions that decrease the
spin are reduced by the mixing and that transitions that increase
the spin are increased.

TABLE II. Expressions used to calculate bandmixing correction
factors for the γ to ground-band E2 matrix elements. The corrections
to the B(E2) vales are the squares of these expressions. Table based
on Refs. [2–6].

Ji Jf Correction factor
γ → g

Jf − 2 Jf 1 + (2Jf + 1)Zγ

Jf − 1 Jf 1 + (Jf + 2)Zγ

Jf Jf 1 + 2Zγ

Jf + 1 Jf 1 − (Jf − 1)Zγ

Jf + 2 Jf 1 − (2Jf + 1)Zγ

Table I includes the results of a bandmixing calculation
using a value of Zγ = 0.035, chosen to fit the data. The
bandmixing calculation reproduces the data extraordinarily
well, except for the 6+ to 8+ transition but, in that case,
the experimental error is rather large and the deviation of the
bandmixing calculation from the data is only about 2σ .

Despite the evident success of this approach, there is,
however, another model, mentioned above, called partial
dynamical symmetry [7], that produces similar results for
deformed nuclei with a seemingly different physical mech-
anism. The concept of a PDS is related to that of dynamical
symmetries (DS) of the interacting boson model (IBM) [11]. In
a PDS, some of the states retain the pure symmetry of the parent
DS while others are mixed with other representations. There
are several PDSs, depending on the parent DS of the IBM. The
relevant case for deformed nuclei is a PDS based on the SU(3)
limit, applicable to an axially symmetric deformed rotor. In
this PDS, the ground and K = 2 γ bands retain absolutely
pure SU(3) symmetry while most other states have broken
symmetry. This allows one to remove the degeneracy of the
first excited K = 0 band and the K = 2 (γ ) band, which is
seldom if ever seen experimentally, while yet retaining SU(3)
wave functions for the ground and γ bands. This PDS has
the remarkable property that γ -band to ground-band relative
B(E2) values are parameter free, that is, fixed by the model.
The predictions therefore form a stringent test of the model.

Recently, the first extensive test of this SU(3)-based PDS
was carried out in a study of 47 deformed and transitional rare
earth nuclei [9]. A subsequent study looked at the actinides and
A ∼ 100 region with similar conclusions [10]. A consistent
pattern was found for deformed nuclei, namely that, even
though the ground and γ bands were pure SU(3), the PDS also
gives deviations from the Alaga rules, that these deviations
are in the direction of the data, and that they therefore mimic
the characteristic trends in the dependence on spin and spin
change as the bandmixing formalism. Interestingly, though,
the PDS results systematically account only for about half of
the experimental deviations from the Alaga rules. The PDS
results for 168Er are included in Table I where these features
are seen. Similar results are found for other well-deformed
nuclei where sufficient data are available. The success of the
parameter-free PDS predictions is quite impressive and raises
the question of how such disparate theoretical approaches as
the PDS and bandmixing can obtain such similar results.
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As noted above, the PDS predictions deviate from the Alaga
rules solely due to the explicit inclusion of finite valence
nucleon number effects, being larger for smaller numbers of
valence nucleons. This dependence is intriguing as it reflects a
well-known observed property of actual nuclei: The separation
of rotational and vibrational degrees of freedom is sensitive
to the number of shell-model configurations that can be
mixed by residual interactions in the shell model and that
number increases combinatorially with the number of valence
nucleons. Therefore, one expects the interband B(E2) values
to approach the Alaga rules near midshell and deviate from
them more as the number of valence nucleons decreases. The
fact that the PDS automatically embodies such a dependence
suggests that there could, in fact, be not only a relation between
the PDS and bandmixing results for a given nucleus, but
that the PDS inherently reflects the empirical variation of the
strength of the rotation-vibration interaction across an entire
region.

In the rest of this Rapid Communication we will show an
approximate derivation of the relation between these models.
The derivation is aided by the physics of the correction

factors. In the bandmixing approach the admixed transition
amplitudes correspond to large intraband matrix elements and
therefore the mixing amplitudes (Zγ values) themselves are
quite small. In the PDS approach, for boson numbers typical
of deformed nuclei (typically �11), the finite boson number
effects are also small. Thus, in both cases, we can make
simplifying expansions of the expressions for the correction
factors and drop small terms. Though the derivation is therefore
utterly simple it has not been recognized analytically before.

Above, we gave the expressions for the B(E2) values from
the γ band to the ground band in the bandmixing formalism.
Now we display the corresponding expressions for the PDS,
highlighting the dependence on valence nucleon number. Since
the ground and γ bands have pure SU(3) character in the PDS,
we can use the SU(3) formulas derived by Van Isacker [12]
using the E2 operator T (E2) = αQSU (3) + θ [(s†d) + (d†s)]2

for the γ - to ground-band B(E2) values. The term in α vanishes
for SU(3) wave functions and so the T (E2) values are given by
the term in θ . These are given below for the examples of J to
J and (J + 2) transitions where J is the spin of the initial γ
band level:

B(E2 : γ,J → g,J ) = θ2 2

3
N

3(J − 1)(J + 2)

2(2J − 1)(2J + 3)

2(N − 1)(2N − J − 2)(2N − J )(2N + J − 1)(2N + J + 1)

N (2N − 3)(2N − 1)[8(N − 1)2 − J (J + 1)]
(1)

B(E2 : γ,J → g,J + 2) = θ2 2

3
N

(J − 1)J

4(2J + 1)(2J + 3)

2(N − 1)(2N − J − 2)(2N + J − 1)(2N + J + 1)(2N + J + 3)

N (2N − 3)(2N − 1)[8(N − 1)2 − J (J + 1)]
, (2)

where N is the boson number equal to half the number of
valence protons and neutrons each counted to the nearest
closed shell. Strictly speaking, these formulas give the B(E2)
values in the Vergados basis while the predictions of the PDS
require the Elliott basis. The Elliott-Vergados transformation
adds unneeded complexity for our purposes here since the
differences are very small and are well within the approxima-
tions used in the derivations below. The exact Elliott results
were used in all the numerical values shown in this paper.
Equations (1) and (2) look complicated but actually have a
simple structure. Aside from an overall normalization constant,
θ2 2

3N (which cancels out in B(E2) ratios), there are two
factors. The first, depending only on the spins of the levels, is
simply the Alaga rule itself, while the extensive second factor
contains the dependence on boson number, N . The question
is to see why such seemingly different expressions as those in
Table II for the bandmixing formalism and those in Eqs. (1)
and (2) give such similar trends and why the PDS results only
account for about half the deviations of the data from the Alaga
rules as the bandmixing approach with fitted choice of Zγ .

To this end, we derive approximate correction factors, CF,
for ratios of γ band to ground band B(E2) values in both the
bandmixing (BM) and PDS formalisms. To be specific let us
consider, as an example, the ratio B(E2 : 2+

γ → 4+
gr )/B(E2 :

2+
γ → 2+

gr ). For the case of bandmixing, we get from
Table II:

CFBM(2+
γ → 4+

gr/2+
γ → 2+

gr ) =
(

1 + 9Zγ

1 + 2Zγ

)2

. (3)

Since Zγ is small (∼0.04), we can drop quadratic terms in
Zγ in squaring the correction factor, giving

CFBM ∼ (1 + 18Zγ )/(1 + 4Zγ ) ∼ (1 + 18Zγ )(1 − 4Zγ ),

where, in the second step, we have expanded the denominator
and kept only the first term. Again multiplying out and
dropping quadratic terms in Zγ gives

CFBM ∼ 1 + 14Zγ . (4)

Now consider the PDS expressions. As noted, the normal-
ization factors cancel out in the B(E2) ratios and the first
factors after the normalization just give the ratio of Alaga
rules. The correction factors are therefore given solely by the
last factors that depend on the boson number, N . First note that
the denominators in these factors are identical for transitions
from even spin members of the γ and hence cancel out in the
ratio. (Likewise, they are equal for transitions starting from
odd spin states.) Also, many of the factors in the numerators
are identical. Taking the same ratio as above then gives

CFPDS = 2N + 5

2N − 2
. (5)

Dividing numerator and denominator by 2N , and expanding
the denominator and dropping terms in (1/2N)2, gives

CFPDS = 1 + 5/2N

1 − 2/2N
∼ 1 + 7

2N
. (6)
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FIG. 1. Zγ values as a function of half the number of valence
nucleons extracted for rare-earth transitional and deformed nuclei.
Figure taken from Ref. [13].

This certainly resembles the form of Eq. (4). In fact, we
note, interestingly, that the coefficient of Zγ is twice that of
1/2N .

Empirically, the strength of the bandmixing varies across
the deformed region, minimizing near midshell where the
number of valence nucleons is largest, giving the largest
configuration spaces, the most collectivity, and the best
separation of intrinsic and rotational degrees of freedom. This
is seen in Fig. 1, taken from Ref. [13], which also discusses
the relation to valence nucleon number.

In addition to noting the generally parabolic behavior of Zγ

across the region, we see in fact that the approximation Zγ ∼
1/2N describes the trend for well-deformed nuclei quite well.
So we can make the ansatz that Zγ ∼ 1/2N . Making that
substitution in Eq. (6) gives

CFPDS ∼ 1 + 7Zγ . (7)

This is identical to Eq. (4) except for the factor of two
difference in the correction term. Exactly similar results
occur for other ratios, such as 4+ → 2+/ 4+ → 4+ and
6+ → 4+/ 6+ → 6+, with the same factor of two relation
in the coefficients of the correction terms. These results are
summarized in Table III. These results can be written in the
general form given in Table IV, which, again, shows the
similarity of the two models and the factor of 2 difference
in the correction terms.

Equations (4) and (7), and analogous ones for other ratios,
to within the accuracies of the expansions involved, show that
indeed the model of γ -band–ground-band mixing and the PDS
model produce corrections to the relative B(E2) values of
the Alaga rules that are very similar. They are identical in
form and have coefficients of the correction terms differing
by a factor of two, when the empirical relation Z = 1/2N
is made. Moreover, the PDS predictions of relative B(E2)
values across a deformed region reflect the empirical behavior
of the deviations from the Alaga rules with proton and neutron
number. This accounts for the similar behavior of these two

TABLE III. Comparison of bandmixing and PDS corrections to
the Alaga rules for ratios of γ to ground-band B(E2) values (see
text).

B(E2) ratio Bandmixing PDS
(Ji − Jf )/(Ji − J ′

f )

2+ → 0+/2+ → 2+ 1 − 6Zγ 1 − 3Zγ

2+ → 4+/2+ → 2+ 1 + 14Zγ 1 + 7Zγ

3+ → 4+/3+ → 2+ 1 + 14Zγ 1 + 7Zγ

4+ → 2+/4+ → 4+ 1 − 14Zγ 1 − 7Zγ

4+ → 6+/4+ → 4+ 1 + 22Zγ 1 + 11Zγ

5+ → 6+/5+ → 4+ 1 + 22Zγ 1 + 11Zγ

6+ → 4+/6+ → 6+ 1 − 22Zγ 1 − 11Zγ

6+ → 8+/6+ → 6+ 1 + 30Zγ 1 + 15Zγ

models seen for 168Er in Table I, for the other nuclei discussed
in Refs. [9] and [10], and for the fact that the PDS only goes
about halfway from the Alaga rules to the data.

In addition, since N is a simple property of the shell model
and the number of nucleons whereas Zγ has to be extracted
from the measured transition intensities for each nucleus, the
relation Zγ ∼1/2N suggests that one can estimate the amount
of bandmixing in other nuclei even without branching ratio
data. It will be interesting to see if this idea works on other
mass regions. To the extent that it does work, it renders the
bandmixing approach approximately parameter free.

It is useful to understand the accuracy of the approximate
results we have obtained since the expansions made depend on
J , on Zγ , and on 1/2N . Looking at the spin dependence of the
factors multiplying Zγ in Table II and the factors involving
boson number in Eqs. (1)–(2) (as well as the numerical
coefficients in Table III), it is clear that the approximations are
better for low spin and higher boson numbers. The quality of
the approximations is seen in Fig. 2, which compares the PDS
formulas with exact calculations. For the first few levels of the
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FIG. 2. PDS calculations for B(E2) ratios from the 2+ and 6+

states of the γ band to the ground band calculated with the exact PDS
formulas and with the approximations derived in this paper.
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TABLE IV. Generalized relations for the PDS corrections to the γ - to ground-band B(E2) ratios corresponding to the specific ratios in
Table III.

B(E2) ratio Bandmixing PDS

J -even (J → J + 2)/(J → J ) 1 + 2(2J + 3)Zγ 1 + (2J + 3)Zγ

J -even (J → J − 2)/(J → J ) 1 − 2(2J − 1)Zγ 1 − (2J − 1)Zγ

J -odd (J → J + 1)/(J → J − 1) 1 + 2(2J + 1)Zγ 1 + (2J + 1)Zγ

γ band and for boson numbers appropriate for well-deformed
nuclei near midshell (N > 12) they are quite good. For higher
spin levels (e.g., J = 6) and lower boson numbers they start
to break down.

To summarize, we have shown a quantitative relation
linking the behavior of two seemingly very dissimilar models
of collective behavior in deformed nuclei—a rotational model
with rotation-vibration interactions and a model of pure
rotational bands whose predictions depend only on the number
of valence nucleons. We have seen that both models predict
deviations of iconic observables, namely γ to ground band
relative B(E2) values, from the Alaga rules and also why
the predictions of these models also differ from each other in
a characteristic way. The results provide a quantitative link
(long assumed in a qualitative way) between valence nucleon
number (size of shell model configuration space) and the

separation of rotational and intrinsic degrees of freedom. They
thus also offer a way to estimate bandmixing in nuclei where
branching ratios from the γ to ground band are not known.
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