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G. De Gregorio,1,2 F. Knapp,3 N. Lo Iudice,1,2 and P. Vesely4
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An equations of motion phonon method is extended to odd nuclei. It generates an orthonormal basis out of an
odd particle coupled to n-phonon core states (n = 0,1,2, . . . ), built of Tamm-Dancoff phonons, and formulates
the eigenvalue problem in such a multiphonon particle-core space. 17O is chosen as testing ground. An intrinsic
chiral Hamiltonian is adopted in a large configuration space to perform a calculation using a Hartree-Fock (HF)
basis in a space encompassing up to two and, under simplifying assumptions, three phonons. The impact of the
different phonon components on spectrum, moments, transitions, and dipole cross section is discussed.

DOI: 10.1103/PhysRevC.94.061301

The excitations of the core are known to modify the
single-particle states. The basic mechanism is illustrated
within the particle-vibration coupling (PVC) model [1,2] in
which a particle is coupled to the collective excitations of the
core, commonly described in the random-phase approximation
(RPA).

More refined PVC calculations were performed in re-
cent years, mostly within the framework of energy density
functionals deduced from Skyrme forces [3–9] or relativistic
meson-nucleon Lagrangians [10–13] or from the theory of
finite Fermi systems [14]. It was claimed, however, that the
contribution of the core vibrations is largely incorporated into
the functional [15].

Other approaches used the Gogny interaction [9] or empha-
sized the role of the Pauli principle within the quasiparticle-
phonon context [16] or the importance of the RPA ground-state
correlations [17].

Calculations focused mainly on the impact of three-body
forces on bulk properties and energy levels were carried out
within the no-core shell model [18,19], self-consistent Green’s
function theory [20], and coupled-cluster theory [21–25].

We proposed for even-even nuclei an equations of motion
phonon method (EMPM), in the particle-hole (p-h) [26–28]
and quasiparticle [29] schemes, which derives a set of equa-
tions generating an orthonormal basis of multiphonon states,
built of phonons obtained in the Tamm-Dancoff approximation
(TDA), and formulates the eigenvalue problem in such a basis.
The method was adopted to study the spectroscopic properties
of neutron-rich nuclei with special attention to the dipole
response [29–32].

Here, we derive analogous equations for odd nuclei which
yield an orthonormal basis out of states composed of an odd
particle coupled to n phonons (n = 1,2, . . . n . . . ), describing
the excitations of a doubly magic core and, then, adopt such
a basis to solve the full eigenvalue problem. The formalism
has the same accuracy of the shell model. On the other hand,
it lends naturally to an approximate treatment in virtue of
the particle-phonon structure of the basis. It is possible, for
instance, to truncate the phonon space while keeping the
effects of p-h configurations of very high energy, since these

are incorporated into the phonons included in the truncated
space. An analogous formalism holds also for hole-phonon
and quasiparticle-phonon schemes.

For way of illustration, we apply the method to 17O and
perform a calculation in a HF basis using an optimized
chiral nucleon-nucleon potential at next-to-next leading order
(NNLOopt), which minimizes the contribution of the three-
body term [33]. This potential gives too much attraction
in heavy nuclei and forced us to add a phenomenological
repulsive density-dependent term to reproduce the peak of the
giant dipole resonance in 208Pb [32]. Here, this phenomeno-
logical term is unnecessary since NNLOopt reproduces well
the experimental binding energies of light nuclei and oxygen
isotopes. We will therefore use only the NNLOopt potential.

The complex shell structure of the low-lying states in
17O was pointed out in the pioneering work of Brown and
Green [34] and investigated further within a weak-coupling
model [35,36].

More recently, the low-lying spectra of A = 17 nuclei
were studied within the coupled cluster theory using a chiral
potential at next-to-next-to-next leading order (N3LO) [22].
The electric dipole strength distribution was determined by
a shell-model calculation using the empirical WB10 interac-
tion [37] in a restricted space.

The method. We adopt the formalism of second quantization
and denote by a

†
r = a

†
xr jrmr

and br = (−)jr+mr axr jr−mr
the

creation and annihilation operators, respectively.
In even nuclei, we determined an orthonormal basis of n-

phonon states of the form

|βn〉 =
∑

λαn−1

C
βn

λαn−1
|(λ × αn−1)βn〉

=
∑

λαn−1

C
βn

λαn−1
{O†

λ × |αn−1〉}βn, (1)

where |αn−1〉 are assumed to be known and

O
†
λ =

∑

ph

cλ
ph(a†

p × bh)λ (2)

is a TDA operator of energy Eλ.
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The key for achieving this goal was provided by the
equations of motion

〈β‖[H,O
†
λ]‖α〉 = (Eβ − Eα)Xβ

λα, (3)

having omitted the subscript n for simplicity. Here H is a
two-body Hamiltonian and

X
(β)
λα = 〈β‖O†

λ‖α〉 =
∑

λ′α′
Dβ(λαλ′α′)Cβ

λ′α′ , (4)

where use has been made of Eq. (1). D is the overlap or metric
matrix

Dβ(αλα′λ′) = 〈(λ × α)β |(λ′ × α′)β〉, (5)

which reintroduces the exchange terms among different
phonons and therefore restores the Pauli principle.

After expanding the commutator and expressing the ampli-
tudes X in terms of the C coefficients, we obtained

∑

λ′α′
(AD)β(λαλ′α′)Cβ

λ′α′ = Eβ

∑

λ′α′
Dβ(λαλ′α′)Cβ

λ′α′ , (6)

where

A(β)
λαλ′α′ = (Eλ + Eα)δλλ′δαα′ + V (β)

λαλ′α′ . (7)

V (β)
λαλ′α′ is a phonon-phonon potential, whose expression can

be found, for instance, in Ref. [32]. This is a generalized
eigenvalue equation in the overcomplete basis |(λ × α)β〉.
Following a procedure [26,27] based on the Cholesky decom-
position method, we selected a basis of linearly independent
states |(λ × α)β〉 spanning the physical subspace of the correct
dimensions Nn < Nr and construct a Nn × Nn nonsingular
matrix Dn. By left multiplication in the Nn-dimensional
subspace, we got

[D−1
n H]

C = [D−1
n (AD)

]
C = EC. (8)

This equation determines only the coefficients C
β
λα of the Nn-

dimensional physical subspace, thereby yielding a basis of
orthonormal correlated n-phonon states of the form (1).

For the odd systems we intend to construct an orthonormal
basis of states |νn〉 of spin v having the structure

|νn〉 =
∑

pαn

Cνn
pαn

|(p × αn)v〉 =
∑

pαn

Cνn
pαn

(a†
p × |αn〉)v, (9)

where a
†
p creates a particle of energy εp, and |αn〉, of energy

Eαn
, are orthonormal n-phonon (n = 1,2, . . . ) core states of

the form (1).
In close analogy with the even nuclei, we start with

〈αn‖[bp,H ]p‖νn〉 = (
Eν − Eαn

)
X(νn)

pαn
, (10)

where

X(νn)
pαn

= 〈αn‖bp‖νn〉. (11)

After expanding the commutator, we obtain
∑

p′α′

{(
εp + E(n)

α − Eνn

)
δp p′δ

(n)
αα′ + V (νn)

pαp′α′
}
X

(νn)
p′α′ = 0. (12)

The particle-phonon interaction is

V (νn)
pαp′α′ =

∑

σ

[σ ]1/2W (ασvp′; α′p)Fσ
pαp′α′ (n), (13)

where [σ ] = 2Jσ + 1, W is the Racah coefficient, and

Fσ
pαp′α′ (n) =

∑

tq

F σ
p p′tqρ

(n)
α′α([t × q]σ ). (14)

The sum runs over particles (tq = p1p2) and holes (tq = h1h2),
ρ

(n)
αα′ ([t × q]σ ) = 〈n,α‖(a†

t × bq)σ‖n,α′〉 is the density matrix,
and

Fσ
rsqt =

∑




[
](−)r+t−σ−
W (rsqt ; σ
)V 

rqst (15)

is the Pandya transformed of the two-body potential V .
Equation (12) is not an eigenvalue equation yet. We have

to insert in X the expression (9) of |νn〉, obtaining
∑

p1γ p′α′

{(
εp + E(n)

α − Eνn

)
δp p1

δ(n)
αγ + V (νn)

pαp1γ

}D(νn)
p1γ p′α′C

νn

p′α′ = 0,

(16)

where

D(νn)
p1γ p′α′ = 〈(p1 × γ )v|(p′ × α′)v〉

= δp1p′δγα′ − (−)p′−v+α′ ∑

σ

[σ ]1/2

×W (p1p′γα′; σv)ρ(n)
γα′ ([p1 × p′]σ ) (17)

is the overlap matrix which reintroduces, through the density
matrix ρ, the exchange terms among the odd particle and the
n-phonon states, thereby restoring the Pauli principle.

Equation (16) represents an eigenvalue equation in the
overcomplete basis |(p × αn)v〉 within the n-phonon particle-
core subspace. Following the same procedure adopted for the
even nuclei, we extract a basis of linearly independent states
|(p × αn)v〉 and obtain a nonsingular eigenvalue equation. Its
iterative solution, starting from n = 1, yields the particle-core
states |νn〉 (9) of energies Eνn

for n = 1,2, . . . , which, together
with the single-particle states |ν0〉, form an orthonormal basis.

We are now ready to formulate the eigenvalue problem in
the full space spanned by {|ν0〉,|ν1〉, . . . ,|νn〉 . . . }

∑

νn′

{(
Eνn

− Eν

)
δνnνn′ + V (v)

νnνn′
}C(ν)

νn′ = 0. (18)

Here

V (v)
νnνn′ = [v]−1/2

∑

pαnp′αn′

C(νn)
pαn

V (v)
pαnp′αn′ X

(νn′ )
p′αn′ (19)

are nonvanishing for n′ = n + 1 and n′ = n + 2 and

V (v)
pαnp′αn′ = δp p′ 〈αn|H |αn′ 〉 + δn′(n+1)

∑

λ

[λ]1/2W

× (αn′λvp; αnp′)Fλ
p p′ 〈αn′ ‖O†

λ‖αn〉, (20)

where

Fλ
p p′ =

∑

p1h1

Fλ
p p′p1h1

cλ
p1h1

. (21)
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Equation (18) yields all the eigenvalues allowed by the
space dimensions. The eigenfunctions have the structure

|�ν〉 =
∑

νn

Cν
νn

|νn〉 =
∑

pαn

Cν
pαn

|(p × αn)v〉, (22)

where Cν
pαn

= ∑
νn
Cν

νn
Cνn

pαn
, having made use of Eq. (9).

A numerical application. A Hamiltonian composed of an
intrinsic kinetic term Tint and the NNLOopt potential [33] was
employed to generate the HF basis in a space encompassing all
harmonic oscillator (HO) shells up to Nmax = 15. A subset of
these states, spanning a space of dimensions corresponding to
twelve major shells up to N = 11, was used to determine the
TDA phonon basis. The center of mass spurious admixtures
were eliminated by a Gramm-Schmidt orthogonalization of
the 1− p-h configurations to the spurious state ∝ �RCM |0〉 [39].

The multiphonon basis included all |(p × α1)v〉, the |(p ×
α2)v〉 of two-phonon energies Eα2 � 35 MeV, and the |(p ×
α3)v〉 of energies εp + Eα3 � 55 MeV.

The inclusion of three phonons has required several
shortcuts. We ignored the interaction V (v)

pα3p′α′
3

[Eq. (13)]

and put D(v)
pα3p′α′

3
� δp p′δα3α

′
3

in Eq. (16), thereby neglecting
the exchange terms. Under these approximations, the three-
phonon eigenstates are simply |ν3〉 ∼ |(p × α3)v〉 and the
couplings (19) become

V (v)
νnν3

=
∑

pαn

C(νn)
pαn

V (v)
pαnp′α3

. (23)

We further determined the core states |α3〉 in the diagonal
approximation by putting V (α3)

λα2λ′α′
2
= 0 in Eq. (7). The lack

of antisymmetrization between the particle and |α3〉 may
yield some redundant particle-core three-phonon states and
overestimate their couplings to the other n-phonon compo-
nents. The other approximations affect the redistribution of
the three-phonon levels lying at very high energy.

The one-phonon coupling brings several low-lying HF
levels, especially those of positive parity, fairly close to the
single-particle experimental levels (Fig. 1). The calculation,
however, is far from reproducing the rich low-lying spectrum.
In fact, the particle-core one-phonon states fall at energies that
are too high (�11 MeV).

The low-energy levels are unaffected by the two phonons.
These components, in fact, couple weakly to the low-lying one-
phonon states just as in 16O [27,28]. Their inclusion contributes
to enhancing further the level density in the high-energy sector
of the spectrum. The two phonons can admix only with the one-
phonon components of comparable energies. This is possible
only in the high-energy sector of the spectrum.

The three phonons have a much stronger impact and push
few states of negative parity into the low-energy sector. Their
number is modest, though. Moreover, the positive-parity one-
phonon states remain at high energies. The net result is that
the level density increases greatly with the number of phonons
at high energy but remains too low at low energy.

The importance of three phonons was established already
in 16O [27,28] and can be understood by observing that the
one-phonon to three-phonon coupling is intimately correlated
with the zero-phonon to two-phonon coupling through the

FIG. 1. Theoretical vs experimental [38] spectra of 17O. Nph

indicates the maximum phonon number. The dashed levels have
unknown spin or parity or both.

formula

〈α3|V |α1〉 =
∑

α2

〈α3|(α1 × α2)α1〉〈α2|V |0〉. (24)

One should therefore expect that such a coupling is strong
since the one connecting the HF vacuum to two phonons is
very strong. An analogous formula shows that the two phonons
couple strongly to four phonons.

The different behavior of states of different parities may
be traced back to the HO constituents of the HF states. The
HF p-h configurations are built of p-h HO states, whose
energies are (2n + 1)�ω and (2n + 2)�ω (n = 0,1,2, . . . ) for
negative and positive parities, respectively. Correspondingly,
the negative-parity phonons have in general lower energies
than the corresponding ones of positive parity. Moreover,
several three-phonon states are composed entirely of negative
phonons and, therefore, have lower energies as well. Two
negative-parity phonons are the constituents of the lowest
positive-parity two-phonon states. These states, however,
would be pushed down in energy by four phonons, which
are not included here. They, therefore, do not intrude into the
low-energy sector of our level scheme.

For the transition amplitudes of a multipole operator M(λ)
we used the truncated formula

〈ψν ′ ‖M(λ)‖ψν〉 = Mνν ′
00 (λ) + Mνν ′

01 (λ) + Mνν ′
10 (λ),

(25)

valid if initial and/or final states have dominant single-particle
character. The first term gives the particle-particle transitions

Mνν ′
00 =

∑

p p′
Cν

pCν ′
p′ 〈p′‖M(λ)‖p〉. (26)
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TABLE I. Ground-state electric quadrupole (Q) and magnetic
moments (μ), and B(E2; 5/2+

1 → 1/2+
1 ). The experimental data are

taken from Ref. [38].

Q(e fm2) B(E2 ↑)(e2 fm4) μ(μN )

HF 0 0 −1.91
EMPM −0.841 0.17 −1.83
Exp. −2.578 2.18(16) −1.89

The second gives the particle-phonon transition

Mνν ′
01 (λ) =

∑

px

Cν
p〈(xλ)‖M(λ)‖0〉P (ν ′)

p(xλ), (27)

where

P
(ν ′)
p(xλ) =

∑

ν ′
1

Cν ′
ν ′

1
X

ν ′
1

p(xλ) (28)

is the weight incorporating the joint contributions of the
one-phonon components |ν ′

1〉 of the final states |�ν ′ 〉 and of
the particle-phonon configurations of multipolarity λ |[p ×
(xλ)]ν

′
1〉 present in |ν ′

1〉. The third term gives the phonon-
particle amplitude related to the second term by Mνν ′

10 (λ) =
(−)v−v′Mν ′ν

01 (λ).
The calculation underestimates the absolute value of the

ground-state quadrupole moment by a factor three and the
strength of the transition to 1/2+

1 by an order of magnitude
(Table I).

Let us try to understand why the theoretical quantities
assume so small values. Since the odd particle is a neutron
(en = 0), the contribution to the moment and transition
strength comes entirely from the termsM01(E2) [Eq. (27)] and
M10(E2) coupling the single-particle components of 5/2+

1 and
1/2+

1 to the λ = 2+ particle-phonon pieces of 1/2+
1 and 5/2+

1 ,
respectively. Now 5/2+

1 and 1/2+
1 have a prominent single-

particle character. The one-phonon components account for
∼5% of |�5/2+

1
〉 and ∼6% of |�1/2+

1
〉, respectively.

Much smaller are the weights W of the multipole compo-
nents |(p × λ)v〉 entering the total wave functions |�ν〉. They
are calculated using the formula

Wν
λ = 1

[v]1/2

∑

xpν1

∣∣Cν
ν1

∣∣2
C

ν1
p(xλ)X

ν1
p(xλ), (29)

which follows from expanding 〈�ν | in the normalization
condition

〈�ν |�ν〉 =
∑

αn

Wν
αn

= 1. (30)

The weights of the quadrupole components |[5/2+
i × (x2+)]v〉

amount only to ∼0.2% for |�5/21〉 and to ∼0.7% for |�1/21〉,
while |[1/2+

i × (x2+)]5/2〉 account for ∼0.3% of |�5/21〉.
These small amplitudes indicate that single-particle and

one-phonon components are not sufficiently admixed by the
phonon coupling. We will propose later a possible recipe for
strengthening such a coupling.

The quenching of the magnetic moment originates from the
spin-flip partners present in the HF p-h configurations of the
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FIG. 2. Theoretical vs experimental [40] E1 cross sections (a)
and the contributions from the different transitions (b). A Lorentzian
of width � = 2 MeV was used.

phonons. Though small, it tends to deteriorate the agreement
with the experimental value.

The dipole cross section gets damped by the two-phonon
coupling and shifted slightly downward in energy. The three
phonons cause more substantial damping and push the strength
down toward the experimental region. The strong impact of
the three phonons can be explained by observing that the
contribution to the B(E1) strengths, yielding the cross section,
comes mainly from the amplitudes M01(E1) [Eq. (27)] of
the transitions to the one-phonon components of the states
�ν ′ (ν ′ = 3/2−

i ,5/2−
i ,7/2−

i ). As already pointed out, these
components couple strongly to three phonons and are weakly
affected by two phonons.

The energy of the resonance peak, however, is still ∼2 MeV
above and its height is too high. Figure 2(b) shows that peak
and shape of the total cross section depend critically on the
way energies and strengths of the groups of transitions to 3/2−,
5/2−, and 7/2− relate to each others. The contribution of the
transitions to 3/2− and 5/2− is concentrated just above the
experimental peak, while the one coming from 7/2− is more
spread and especially dominant in the low-energy sector.

A massive contribution to the main peak comes from
the strengths of a huge number of weak and very weak
transitions lying mostly at high energies (�21 MeV). The
states involved have a multiphonon character with two-phonon
components comparable in amplitude or larger than the
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one-phonon pieces. The contribution at lower energies comes
from appreciably strong transitions involving states of dom-
inant one-phonon character. The one-phonon components, in
fact, account for 80% to 90% of the total wave functions �ν ′

(ν ′ = 3/2−
i ,5/2−

i ,7/2−
i ). They incorporate dipole configura-

tions |[5/2+
i × (x1−)]νi 〉, the only ones excited by the dipole

operator, whose weights [Eq. (29)] range from W ∼ 5% to
W ∼ 15%.

The integrated cross section up to ∼40 MeV accounts for
∼91% of the Thomas-Reiche-Kuhn sum rule, about twice the
fraction (∼50%) exhausted by the data. An appreciable share
goes to the pygmy resonance, ∼5.6% versus the measured
∼3.5% for E � 16.5 MeV. Its shape is not reproduced, though.

This large cross section is to be ascribed to the concentration
of too much strength at high energy, responsible for the
position and height of the main peak, and to the strong
transitions at lower energies with consequent overestimation
of the cross section below the main peak. Apparently, it would
be necessary to reduce the amplitudes of the one-phonon
components or, at least, their dipole configurations not only
in the states at low energies, of one-phonon character, but also
in those at high energies of multiphonon nature.

The analysis of theoretical spectra, transitions, and dipole
cross section versus the corresponding experimental quantities
indicates that the admixtures among different phonon compo-
nents are too weak. The phonon composition of the states
shows indeed that the one-phonon components have weights
that are too small in the states of dominant single-particle
character, lying generally at low energies, and amplitudes that
are too large in the multiphonon particle-core states.

This insufficient admixing might be traced back to HF.
As Fig. 1 shows, its levels or groups of levels above the
Fermi surface are too far apart, especially as the energy
increases, a common feature of HF spectra derived from
nucleon-nucleon interactions [39,41,42]. The phonon coupling
fills only partially these gaps.

It is therefore desirable to investigate if it is possible to
obtain a smoother HF level scheme by a refinement of the

NNLOopt potential or by adopting other versions of chiral
potential like the NNLOsat [43], which includes the three-body
contribution and improves the description of binding energies
and nuclear radii as well [44]. A more compact single-particle
spectrum would yield more closely packed TDA phonons and
would couple them more effectively to HF and the other n-
phonon states.

Acting on HF only is not sufficient. Most low-lying
positive parity states in 16O have dominant 2p-2h and/or 4p-4h
configurations [34,45] and, correspondingly, many states in
17O are mainly 3p-2h) and/or 5p-4h [34]. Thus, for a realistic
description of positive-parity spectra it is mandatory to include
at least four phonons. As pointed out already, these would
push the two phonons down in energy, thereby favoring their
mixing with low-lying one-phonon components. Including
four phonons is a difficult task which can be accomplished
only by resorting to approximations analogous to the ones
made for three phonons.

In conclusion, the present formalism makes feasible large-
scale, parameter-free calculations, especially under some
approximations, starting from bare nucleon-nucleon forces.
Due to their particle-phonon structure, the eigenfunctions
incorporate configurations of increasing complexity up to
arbitrarily high energy and allow a selective analysis of the
impact of the different n-phonon states of each multipolarity
on all observables. They offer thereby a unified and transparent
description of the spectroscopic properties at low and high
energy and reliable recipes for curing the deviations from
experiments.
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062501 (2013).

061301-5

https://doi.org/10.1016/0370-1573(85)90100-0
https://doi.org/10.1016/0370-1573(85)90100-0
https://doi.org/10.1016/0370-1573(85)90100-0
https://doi.org/10.1016/0370-1573(85)90100-0
https://doi.org/10.1103/PhysRevC.79.054303
https://doi.org/10.1103/PhysRevC.79.054303
https://doi.org/10.1103/PhysRevC.79.054303
https://doi.org/10.1103/PhysRevC.79.054303
https://doi.org/10.1103/PhysRevC.82.064307
https://doi.org/10.1103/PhysRevC.82.064307
https://doi.org/10.1103/PhysRevC.82.064307
https://doi.org/10.1103/PhysRevC.82.064307
https://doi.org/10.1088/0954-3899/37/6/064013
https://doi.org/10.1088/0954-3899/37/6/064013
https://doi.org/10.1088/0954-3899/37/6/064013
https://doi.org/10.1088/0954-3899/37/6/064013
https://doi.org/10.1103/PhysRevC.86.034318
https://doi.org/10.1103/PhysRevC.86.034318
https://doi.org/10.1103/PhysRevC.86.034318
https://doi.org/10.1103/PhysRevC.86.034318
https://doi.org/10.1103/PhysRevC.89.044314
https://doi.org/10.1103/PhysRevC.89.044314
https://doi.org/10.1103/PhysRevC.89.044314
https://doi.org/10.1103/PhysRevC.89.044314
https://doi.org/10.1088/0954-3899/42/8/085109
https://doi.org/10.1088/0954-3899/42/8/085109
https://doi.org/10.1088/0954-3899/42/8/085109
https://doi.org/10.1088/0954-3899/42/8/085109
https://doi.org/10.1103/PhysRevC.92.024314
https://doi.org/10.1103/PhysRevC.92.024314
https://doi.org/10.1103/PhysRevC.92.024314
https://doi.org/10.1103/PhysRevC.92.024314
https://doi.org/10.1103/PhysRevC.73.044328
https://doi.org/10.1103/PhysRevC.73.044328
https://doi.org/10.1103/PhysRevC.73.044328
https://doi.org/10.1103/PhysRevC.73.044328
https://doi.org/10.1103/PhysRevC.84.014305
https://doi.org/10.1103/PhysRevC.84.014305
https://doi.org/10.1103/PhysRevC.84.014305
https://doi.org/10.1103/PhysRevC.84.014305
https://doi.org/10.1103/PhysRevC.85.021303
https://doi.org/10.1103/PhysRevC.85.021303
https://doi.org/10.1103/PhysRevC.85.021303
https://doi.org/10.1103/PhysRevC.85.021303
https://doi.org/10.1103/PhysRevC.92.044317
https://doi.org/10.1103/PhysRevC.92.044317
https://doi.org/10.1103/PhysRevC.92.044317
https://doi.org/10.1103/PhysRevC.92.044317
https://doi.org/10.1103/PhysRevC.89.034304
https://doi.org/10.1103/PhysRevC.89.034304
https://doi.org/10.1103/PhysRevC.89.034304
https://doi.org/10.1103/PhysRevC.89.034304
https://doi.org/10.1103/PhysRevLett.113.252501
https://doi.org/10.1103/PhysRevLett.113.252501
https://doi.org/10.1103/PhysRevLett.113.252501
https://doi.org/10.1103/PhysRevLett.113.252501
https://doi.org/10.1103/PhysRevC.78.024310
https://doi.org/10.1103/PhysRevC.78.024310
https://doi.org/10.1103/PhysRevC.78.024310
https://doi.org/10.1103/PhysRevC.78.024310
https://doi.org/10.1103/PhysRevC.87.044316
https://doi.org/10.1103/PhysRevC.87.044316
https://doi.org/10.1103/PhysRevC.87.044316
https://doi.org/10.1103/PhysRevC.87.044316
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1140/epja/i2013-13039-2
https://doi.org/10.1140/epja/i2013-13039-2
https://doi.org/10.1140/epja/i2013-13039-2
https://doi.org/10.1140/epja/i2013-13039-2
https://doi.org/10.1103/PhysRevLett.111.062501
https://doi.org/10.1103/PhysRevLett.111.062501
https://doi.org/10.1103/PhysRevLett.111.062501
https://doi.org/10.1103/PhysRevLett.111.062501


RAPID COMMUNICATIONS

G. DE GREGORIO, F. KNAPP, N. LO IUDICE, AND P. VESELY PHYSICAL REVIEW C 94, 061301(R) (2016)

[21] J. R. Gour, P. Piecuch, M. Hjorth-Jensen, M. Wloch, and D. J.
Dean, Phys. Rev. C 74, 024310 (2006).

[22] G. Hagen, T. Papenbrock, and M. Hjorth-Jensen, Phys. Rev.
Lett. 104, 182501 (2010).

[23] G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, and T.
Papenbrock, Phys. Rev. Lett. 108, 242501 (2012).

[24] G. R. Jansen, J. Engel, G. Hagen, P. Navratil, and A. Signoracci,
Phys. Rev. Lett. 113, 142502 (2014).

[25] G. Hagen, T. Papenbrock, M. Hjorth-Jensen, and D. J. Dean,
Rep. Prog. Phys. 77, 096302 (2014).

[26] F. Andreozzi, F. Knapp, N. Lo Iudice, A. Porrino, and J. Kvasil,
Phys. Rev. C 75, 044312 (2007).

[27] F. Andreozzi, F. Knapp, N. Lo Iudice, A. Porrino, and J. Kvasil,
Phys. Rev. C 78, 054308 (2008).

[28] D. Bianco, F. Knapp, N. Lo Iudice, F. Andreozzi, and A. Porrino,
Phys. Rev. C 85, 014313 (2012).

[29] G. De Gregorio, F. Knapp, N. Lo Iudice, and P. Vesely, Phys.
Rev. C 93, 044314 (2016).

[30] D. Bianco, F. Knapp, N. Lo Iudice, F. Andreozzi, A. Porrino,
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