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Cumulants of multiplicity distributions in most-central heavy-ion collisions
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I investigate the volume corrections on cumulants of total charge distributions and net proton distributions.
The required volume information is generated by an optical Glauber model. I find that the corrected statistical
expectations of multiplicity distributions mimic the negative binomial distributions at noncentral collisions, and
they tend to approach the Poisson ones at most-central collisions due to the “boundary effects,” which suppress
the volume corrections. However, net proton distributions and reference multiplicity distributions are sensitive
to the external volume fluctuations at most-central collisions, which imply that one has to consider the details of
volume distributions in event-by-event multiplicity fluctuation studies.
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I. INTRODUCTION

In search of critical end points (CEPs) in a quantum
chromodynamics (QCD) phase diagram [1–6], event-by-event
multiplicity fluctuations [3–6] have been regarded as a very
useful tool in relativistic heavy-ion experiments [7–11].
Besides the fluctuation data and theoretical studies on critical
fluctuations [12–15], it is clear that a sufficient understanding
of noncritical statistical fluctuations is also important [16–26].
As one of the noncritical corrections, the volume corrections on
the cumulants of multiplicity distributions have been discussed
in previous studies [27–31]. Especially in Ref. [29], Skokov
and his collaborators have derived a general formalism for the
corrected cumulants. However, quantitative estimations of the
volume corrections on data are obscure in previous statistical
studies.

The effect of volume corrections on multiplicity distribu-
tions are caused by two things: (i) the distributions of volume
in heavy-ion collisions (HICs) and (ii) the multiplicity fluc-
tuations of reference particles used for centrality definitions.
To quantitatively estimate this effect in theoretical studies,
therefore, the multiplicity fluctuations of fluctuation measures
and reference particles, as well as the volume distributions,
need to be investigated.

In this work, I continue my studies from Ref. [32]. In
Ref. [32], I derived a general formalism for the multiplicity
distributions measured in experiments. With the corrected
expression, I calculated the volume corrections under the
Poisson approximations. I found that the statistical expecta-
tions of multiplicity distributions mimic the negative binomial
distributions (NBDs) in noncentral collisions. I also offered
some reasonable explanations for the experimental data of
(net) charge distributions. This work indicated the importance
of volume corrections in heavy-ion experiments.

In this work, I extend the study to the most-central
collisions, i.e., the top few centrality percentages. Different
from the platformlike distributions in noncentral collisions,
the volume distributions in most-central collisions need more
phenomenological considerations. This is due to the nontrivial
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features of volume distributions in most-central collisions,
which are reflected in the rapid decreasing of the probability
distributions of the reference multiplicity when the corre-
sponding reference multiplicity is above an appropriate value.
Such tail distributions are caused by the finite size and energy
of the colliding nuclei, the fluctuating positions of the nucleons
in the colliding nuclei, etc. In this work, I use an optical Glauber
model to give more realistic descriptions of this information
in relativistic heavy-ion collisions.

Meanwhile, the multiplicity distributions measured in
most-central heavy-ion experiments also reveal some nontriv-
ial features. Different from the large deviations in noncentral
collisions, the scale variances of charged hadron distributions
are close to the trivial Poisson expectations in most-central
collisions [8,33,34]. Moreover, the cumulant products of net
proton distributions showed obvious nonmonotonic behavior
at 0%–5% centrality percentage [9], which was regarded as
one of the most striking observables in searching for the CEP.
The 0%–5% centrality percentage is the transition range of
the volume distributions, and I show in this work that the
volume distributions in this centrality range are very sensitive
to the parameters of the phenomenological model. To study the
corresponding volume corrections, therefore, more realistic
investigations of the volume distributions are required. This,
as far as I know, has not been addressed in previous statistical
fluctuation studies.

The paper is organized as follows. In Sec. II, I give the
main formalism used in this work. The analytical properties of
charge fluctuations have also been discussed with a toy volume
distribution. In Sec. III I show some numerical results on the
cumulants of total charge fluctuations and discuss the effect
of Gaussian-type external volume fluctuations on net proton
distributions. I give a summary in the final section.

II. THE MODEL

In this section, I first review the main formalism of volume
corrections given in Ref. [32] by using another expression,
and then I employ an optical Glauber model to describe
the required volume distributions in cumulant calculations.
Finally, some analytical solutions are discussed by using a toy
volume distribution.
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A. Volume corrections

To bridge the gaps between experimental measurements and
theoretical calculations, I have derived a general expression
in a statistical model [32] for recent data on multiplicity
distributions at the BNL Relativistic Heavy Ion Collider
(RHIC) [7–11,34,35]. The conditional probability distribution
for the distribution of multiplicity q in a given reference
multiplicity bin k reads

PB|A(q|k) =
∫

d�F (�)PB(q; �)PA(k; �)

PA(k)
, (1)

with PA(k) being the distribution of reference multiplicity,

PA(k) =
∫

d�F (�)PA(k; �). (2)

Here q represents the multiplicity of moment-analysis particles
in subevent B, and k represents the multiplicity of particles for
the centrality definition in subevent A. The latter k is also called
the reference multiplicity. PA(k; �) and PB(q; �) stand for the
corresponding multiplicity distributions in a specific statistical
ensemble with a set of principal thermodynamic variables �. I
have assumed that subevent A and subevent B are independent
of each other in each event (thermal system).

If one only considers the distribution of the system volume
V , Eqs. (1) and (2) can be written as

PB|A(q|k) = 1

PA(k)

∫
dV F (V )PA(k; V )PB(q; V ),

PA(k) =
∫

dV F (V )PA(k; V ). (3)

In experiments, total charged hadrons are usually chosen as
reference particles for centrality definitions [7–11,34,35]. As
shown in Ref. [32], the multiplicity fluctuations of total charges
can be described by the Poisson distributions in a fixed volume.
Therefore PA(k; V ) can be described by a Poisson distribution,
and then the volume V [volume distribution F (V )] can be
substituted by the Poisson parameters λ [f (λ)]. Consequently,

PB|A(q|k) = N (k)
∫

dλf (λ)
λke−λ

k!
PB(q; λ),

(4)

PA(k) =
∫

dλf (λ)
λke−λ

k!
,

where N (k) = 1/PA(k) is normalization factor.
Similar to Ref. [29], the first four cumulants of PB|A(q|k)

can be written as

c1

〈λ〉 = κ1,

c2

〈λ〉 = κ2 + κ2
1 v2,

(5)
c3

〈λ〉 = κ3 + 3κ2κ1v2 + κ3
1 v3,

c4

〈λ〉 = κ4 + (
4κ3κ1 + 3κ2

2

)
v2 + 6κ2κ

2
1 v3 + κ4

1 v4.

Here κ1, κ2, κ3, and κ4 are the first four reduced cumulants of
PB(q; λ):

κ1 =
∑

qPB (q; λ)

λ
≡ q̄

λ
,

κ2 =
∑

(�q)2PB(q; λ)

λ
,

(6)

κ3 =
∑

(�q)3PB(q; λ)

λ
,

κ4 =
∑

(�q)4PB(q; λ) − 3(
∑

(�q)2PB(q; λ))2

λ
,

with �q ≡ q − q̄, and

v2 = 〈(�λ)2〉
〈λ〉 , v3 = 〈(�λ)3〉

〈λ〉 ,

(7)

v4 = 〈(�λ)4〉 − 3〈(�λ)2〉2

〈λ〉 ,

with �λ = λ − 〈λ〉, 〈(...)〉 ≡ N (k)
∫

dλf (λ) λke−λ

k! (...), and

〈λm〉 = N (k)
∫

dλf (λ)
λke−λ

k!
λm = (k + m)!

k!

PA(k + m)

PA(k)
.

(8)

For the charge fluctuations in this work, I assume PB(q; λ)
is a Poisson distribution with parameter μ = q̄ = bλ. The
reduced cumulants read

κ1 = κ2 = κ3 = κ4 = b. (9)

For the net conserved charge fluctuations, I assume PB(q; λ)
is a Skellam distribution with parameters μ+ = b+λ for the
positive conserved charges and μ− = b−λ for the negative
conserved charges. The reduced cumulants read

κ1 = κ3 = b+ − b− ≡ �b; κ2 = κ4 = b+ + b− ≡ b±.

(10)

The values of b, b+, and b− are related to the multiplicity ratios
of different particle species with different acceptance cuts,
which can be described by the statistical model if the kinematic
cuts on particles of interest can be well simulated. For example,
in the net proton case, there is a simple relation between b−
and b+ in the classical statistical model with a grand canonical
ensemble, b−/b+ = exp (−2μB/T ), where μB and T are the
baryon chemical potential and the temperature.

In noncentral heavy-ion collisions, one has PA(k +
m)/PA(k) � 1 for small m and

〈λ〉 = k + 1, v2 = 1, v3 = 2, v4 = 6. (11)

Then the first four cumulants of the total charge distributions
can be written as

c1

k + 1
= b ≡ M/(k + 1),

c2

k + 1
= b + b2,

c3

k + 1
= b + 3b2 + 2b3, (12)

c4

k + 1
= b + 7b2 + 12b3 + 6b4.
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And the first four cumulants of the net conserved charge
distributions can be written as

cN
1

k + 1
= �b ≡ M+

k + 1
− M−

k + 1
,

cN
2

k + 1
= b± + �b2,

(13)
cN

3

k + 1
= �b + 3b±�b + 2�b3,

cN
4

k + 1
= b± + 4�b2 + 3b2

± + 12b±�b2 + 6�b4.

Equations (12) and (13) are the appropriate solutions obtained
in Ref. [32] in noncentral collisions. To obtain the exact
values of cumulants in a given reference multiplicity bin k0,
one only needs the information of the mean multiplicity of
moment analysis particles, similar to the Poisson and Skellam
expectations. For the (net) charge distributions reported by
the STAR Collaboration, the volume corrections are important
because the reduced cumulants b (b+,b−) are of the order of
O(1). Therefore the volume corrections play a crucial role in
describing the negative binomial multiplicity distributions of
(net) charges [32].

Some remarks are in order here. In the above discussions,
I have assumed that b, b+, and b− are independent of
centrality (volume). This is because, in typical statistical
models, the Poisson parameters μ (μ+,μ−) and λ are both
proportional to volume. However, this assumption can be
contaminated by various effects, such as (i) the unplatform
distribution of multiplicity as a function of pseudorapidity
and (ii) the uncertainties from experiment inefficiencies, etc.
To reduce the uncertainties from centrality-dependent b (b+,
b−), therefore, I suggest the following centrality definition
approach. First, each event is divided into two subevents with
different (pseudo)rapidity cuts: ymin < y < ymax and −ymax <
y < −ymin. Here a rapidity gap, 2ymin, is employed to reduce
the autocorrelation effect1 of these two subevents in each event.
These kinematic cuts will significantly reduce the uncertainties
from source (i) in symmetric nuclear collisions. Second, one of
the subevents is randomly chosen for centrality definition, and
the other one is used for moment analysis in each event. This
approach will largely suppress the contributions from source
(ii). Finally, with the role reversal of these two subevents,
all the events can be used to calculate the corresponding
cumulants twice. In this sense this approach redoubles the
statistics, and it is extremely useful due to the statistic-hungry
properties of the cumulant calculations. Note that this approach
cannot reduce the nonlinear contributions from fluctuations of
intensive variables, e.g., μB and T .

1In this work, the autocorrelation means the correlation of subevents
A and B in one event. It can be generated by collective flow,
hadronization, jet, resonance decays, etc. This is different from
the one discussed in the present work, i.e., the correlation from
event-by-event analysis.

B. Volume distributions

As mentioned above, the volume distributions have been
substituted by f (λ), the distributions of Poisson parameters λ.
The reason that PA(k + m)/PA(k) � 1 is used in Ref. [32] in
noncentral collisions is that the volume distributions are plat-
formlike distributions in the corresponding centrality range.
To give the cumulant calculations in most-central collisions,
however, the details of f (λ) need to be investigated.

In this work an optical Glauber model [36–40] is used to
simulate the distribution of f (λ) (see the Appendix for the
details):

f (λ) = R

∫
P (n; ζ )[1 − P0(ζ )]2πζdζ, (14)

where R is a normalization factor and ζ is the impact
parameter. The correlation function can be written as [37]

P (λ; ζ ) = 1√
2πaλ

exp

[
− [λ − hn(ζ )]2

2aλ

]
, (15)

which stands for Gaussian-type volume fluctuation.2 The
parameter a is the strength of fluctuation. In the absence
of fluctuation a = 0, the Gaussian distribution becomes a δ
function. Here

n(ζ ) =
[

(1 − x)

2
npart(ζ ) + xncoll(ζ )

]/
n(0), (16)

with npart(ζ ) being the number of participant nucleons and
ncoll(ζ ) being the number of binary nucleon-nucleon collisions.
The fitting parameter h is determined by the size and the energy
of the colliding nuclei. The fraction parameter is chosen as
x = 0.12 in this work. P0(ζ ) is the probability of no interaction
among the nuclei [37]:

P0(ζ ) =
[

1 − ncoll(ζ )

NANB

]NANB

, (17)

with the mass numbers of the collisional nuclei NA and NB .

C. Analytical solutions

Before presenting the numerical results of cumulant cal-
culations in the next section, I now discuss some analytical
properties of the multiplicity distributions by using a toy
volume distribution.

Assume that the distribution f (λ) is a platform distribution
in the range λ ∈ [0,h], i.e.,

f (λ) =
{

1/h, λ � h,
0, λ > h,

(18)

2The external volume fluctuation is very different from the so-called
“volume fluctuation” in Ref. [29]. The so-called volume fluctuation is
actually the volume correction discussed in the previous subsection.
While the external volume fluctuation is the fluctuating term of the
Glauber volume distribution. In hydrodynamics, it can be generated
by fluctuating initial conditions, fluctuating freeze-out hypersurfaces,
etc. The volume corrections still exist in the absence of external
volume fluctuations.

054903-3



HAO-JIE XU PHYSICAL REVIEW C 94, 054903 (2016)

where h corresponds to the upper boundary of the system
volume.

From the above assumptions and the Poisson approximation
of PB(q; μ) with parameter μ = bλ, Eq. (4) can be rewritten
as

PB|A(q|k) = bq

q!

∫ h

0 dλλk+qe−(1+b)λ∫ h

0 dλλke−λ

= 1

q!

(
b

1 + b

)q(
1 − b

1 + b

)k+1

× γ [k + q + 1,h(1 + b)]

γ (k + 1,h)
, (19)

where γ (s,x) is the lower incomplete γ function.3

At noncentral collisions, k + q � h,

PB|A(q|k) � NBD(q; r,p) ≡ (r + q − 1)!

(r − 1)!q!
pq(1 − p)r ,

(20)
which mimics a standard negative binomial distribution with
parameters r = k + 1 and p = b/(1 + b). These results are
consistent with the approximate solutions given in Ref. [32]
[see also Eq. (12) in this work].

At most-central collisions, k 	 h,

PB|A(q|k) � e−bh(bh)q

q!

k + 1

k + q + 1
, (21)

where I have used

γ (s,x) = xs(s − 1)!e−x

∞∑
m=0

xm

(s + m)!
(22)

and the leading-order approximation
∞∑

m=0

xm

(s + m)!
� 1

s!
(23)

when x/s � 1. For the distribution with q � k,

PB|A(q|k) ∼ e−bh(bh)q

q!
, (24)

which mimics a Poisson distribution with parameter μ̃ = bh.
Therefore, as the reference multiplicity k increases, the dis-

tribution M(k) will be saturated at high reference-multiplicity
range because the parameter μ̃ is independent of k. More-
over, the variances will change the value from the NBD
expectations to the Poisson predictions. These features have
been also observed in experiments [8,33,34], which indicate
that the volume corrections are weak in most-central heavy-
ion collisions. The suppression of volume corrections in
most-central collisions has been found in previous work
[29] but with so-called symmetric volume fluctuations. The
different contributions of volume corrections on cumulants
of multiplicity distributions in noncentral and most-central
collisions are due to the tail distributions of the volume at its
upper boundary and I call this the “boundary effect” in this
work.

3The author thanks T. S. Biro for a discussion of this point.

III. RESULTS AND DISCUSSIONS

In this section I present the results of the corrected cumu-
lants of total charge distributions and net proton distributions.4

The free parameters in the model are the multiplicity ratios
b (b+ and b−), the Glauber parameters h and a, and some
other parameters in the optical Glauber model. To determine
these values at a given collision energy, the information
of reference multiplicity distribution PA(k) and the mean
multiplicity distributions of the fluctuation measures M (k)
are required. Unfortunately, both of them are not available in
current experiments. Instead of realistic baseline predictions,
the main purpose of this work is to investigate the sensitivity
of higher-order cumulants of multiplicity fluctuations on the
collision geometry in most-central collisions. Therefore, as
the first attempt, the fitting parameter of the optical Glauber
model in this work is set to h = 400 and the strength parameter
of external Gaussian fluctuation is set to a = 0.01 as the
default choice unless stated explicitly. For the net proton
distribution, the Poisson parameter for proton distribution is set
to μ+ = b+λ = 0.04λ, and the one for antiproton distribution
is set to μ− = b−λ = 0.01λ.

Figure 1(a) shows the distribution of the Poisson parameter
f (λ) and the corresponding distribution of the reference
multiplicity PA(k) [see also the black-solid curve in Fig. 2(a)].
The contributions of event-by-event Poisson fluctuations on
PA(k) are obvious in a high reference multiplicity range, i.e.,
most-central collisions.

A. Total charges

In the total charges case, one has b = 1 if the centralities
are also defined by the multiplicity of total charges with the
recommended centrality definition approach. The numerical
results for cumulants of total charge distributions are shown
in Figs. 1(b) and 1(c). The corresponding bands represent the
NBD expectations carried out by Eq. (20).

The numerical results can be well described by the NBD
expectations in a wide centrality range, which is consistent
with my previous conclusions [32]. At most-central collisions,
due to the boundary effects, the mean values of total charge
distributions tend to saturate in the high reference multiplicity
range. Meanwhile, the variances of total charge distributions
tend to approach their mean value, which make the distri-
butions mimic the Poisson distributions at the second-order
moment level.

To further investigate this transition, Fig. 1(d) shows
the scale variance of total charge fluctuations ω = σ 2/M .
It is quite clear that, from peripheral to central collisions,
the scale variances of total charge fluctuations vary from
being NBD expectations (ω = 1 + M/(k + 1) � 2) to Poisson
expectations (ω = 1). The deviations of scale variances from
the Poisson expectations in a high reference multiplicity
range (ultracentral collisions) are due to the external Gaussian
fluctuation on collision geometry [see Eq. (14)].

4The relations between the net proton distributions and their
corresponding net conserved charge distributions, i.e., net baryon
distributions, are discussed in Refs. [41,42].
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FIG. 1. (a) Probability distribution of the Poisson parameter λ (black dashed line) and the reference multiplicity (red solid line). (b) Mean
value (M) and variance (σ 2) of total charge distributions. (c) Skewness (S) and kurtosis (κ) of total charge fluctuations. (d) The scale variance
(ω = σ 2/M) of total charge distributions. The notation P̄A(k) in panel (a) stands for PA(k) in the text. The bands in panels (b), (c), and (d)
represent the corresponding NBD expectations from Eq. (20).
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FIG. 2. (a) Distributions of reference multiplicity and cumulant products, (b) ω = c2/c1, (c) Sσ = c3/c2, and (d) κσ 2 = c4/c2 of net proton
distributions with various strengths of Gaussian-type external volume fluctuations: a = 0.01 (black solid lines), a = 0.10 (blue dashed lines),
and a = 0.50 (red dotted lines).
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It is interesting to find that the centrality dependence
of skewness and kurtosis have nonmonotonic behavior in a
high reference multiplicity range, and the minimum values of
skewness and kurtosis can be negative. Although the volume
correction effects are suppressed by the boundary effects, the
nontrivial behavior of high-order cumulants of total charge
distributions imply that realistic descriptions of the volume
distributions (e.g., collision geometry, etc.) are important
in studying the transition of multiplicity distribution from
noncentral to most-central heavy-ion collisions.

B. Net protons

Now I focus on fluctuations of net protons. I calculate the
cumulant products ω ≡ c2/c1, Sσ ≡ c3/c2, and κσ 2 ≡ c4/c2

of net proton distribution as shown in Figs. 2(b), 2(c), and 2(d)
(black solid lines).

Except for the most-central collision range, the numerical
results are consistent with the approximate solutions given in
Ref [32], i.e.,

ω = β(1 − α) + 1 + α

1 − α
= 1.697, (25)

Sσ = 2β(1 − α) + β(1 − α2) + 1 − α

β(1 − α)2 + 1 + α
= 0.679, (26)

κσ 2 = 6β

(
γ − 2α

γ

)
+ 1 = 1.211, (27)

where α = M−/M+ = b−/b+, β = M+/(k + 1) = b+, and
γ = β(1 − α)2 + 1 + α. The approximate solutions of these
cumulant products are independent of the centralities. In
general, the cumulant products can been used to extract the
chemical freeze-out parameters from the hadron resonance
gas model [6,21]. However, I note that the effects of volume
corrections need to be taken into account for these extractions.

Although I cannot determine the sources and magnitudes
of the Gaussian-type external volume fluctuations, it is still
interesting to study the effect of such external fluctuations on
the measured cumulants. I therefore calculate the cumulant
products of net proton distributions with various strength
parameters: a = 0.01 (default), a = 0.10, and a = 0.50. Note
that for some specific calculations at given collision energies,
these parameters in the Glauber model could be constrained
by the data of PA(k) if it becomes available.

Figure 2(a) shows that the distribution of reference mul-
tiplicity has a wider tail for a larger strength parameter a.
The effect of different external volume fluctuations can be
distinguished only in the most-central collision range [see
Figs. 2(b)–2(d)]. This is because for the cumulants of net
proton distributions calculated from Eq. (5), the contribution
from the distribution of volume was related to the ratio of
PA(k + m)/PA(k) [see Eq. (8)]. The differences of this
ratio in different scenarios are obvious only in most-central
collisions [see Fig. 2(a)]. It is worth noting that the magnitude
of the external Gaussian-type fluctuation’s strength can be
reflected not only in the second-order cumulant (ω) of net
proton distribution but also in the more sensitive higher-order
ones, i.e, Sσ and κσ 2. The results imply that, besides the
non-Gaussian critical fluctuations suggested in Ref. [12], the

nonmonotonic behavior of higher-order cumulants beyond
variances in a high reference multiplicity range could be also
generated by volume corrections with different Gaussian-type
volume fluctuations.

In the future, I will consider several other effects in mul-
tiplicity fluctuation studies, e.g, quantum effects, resonance
decays, experimental acceptance, the correlation between
different moment-analysis particles, the correlation between
moment-analysis particles and reference particles, etc. As I
have discussed in Ref. [32], these corrections are especially
important in the study of net proton fluctuations. Therefore,
instead of an exploratory study given in this work, more
elaborate studies are needed to pin down the exact statistical
predictions of measured cumulants in heavy-ion collisions.

IV. CONCLUSIONS

I have extended my previous work of corrected cumulants of
(net conserved) charge distributions to most-central heavy-ion
collisions. The required volume distributions are simulated by
an optical Glauber model. Under the Poisson approximations,
I calculated the corrected cumulants of total charge (net
proton) distributions from a general formalism according to
the data. To reduce the uncertainties between experimental
measurements and theoretical calculations, as well as to
redouble the statistics, I also suggested a special approach
for centrality definition.

I found that the statistical expectations of multiplicity
distribution mimic the NBD in noncentral collisions, but tend
to approach the Poisson distribution in most-central collisions.
This transition is because of the boundary effects that were
caused by the upper boundary of the system volume in
HICs, which significantly suppress the volume corrections.
I have further investigated the effect of external Gaussian-type
volume fluctuations on the high-order cumulants of net proton
distributions.

The results indicate that the noncritical volume corrections
on high-order cumulants of multiplicity distributions become
weak in most-central collisions. However, the sensitivity of the
net proton distribution and reference multiplicity distributions
to the external volume fluctuations implies that the details
of volume distribution in relativistic heavy-ion collisions
need to be considered carefully in event-by-event multiplicity
fluctuation studies.
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APPENDIX: OPTICAL GLAUBER MODEL

The density distribution of the colliding nuclei in the
Glauber model [36–40] is given by Woods-Saxon profiles,

ρN (r) = ρ0

exp [(r − RN )/ξ ] + 1
, (A1)
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with the nuclear radius RN = (1.12N1/3 − 0.86N−1/3) fm, the
normal nuclear density ρ0 = 0.1699 fm−3, and the surface
diffuseness ξ = 0.54 fm. Here N is the mass number of
the nuclei. The nuclear thickness function is obtained from
the optical path-length through the nucleus along the beam
direction:

TN =
∫ +∞

−∞
dzρN (x,y,z). (A2)

The number density of binary collisions with impact
parameter ζ reads

nbc(x,y; ζ ) = σinTNA
(x + ζ/2,y)TNB

(x − ζ/2,y), (A3)

where σin is the total inelastic cross section. Then the total
number of binary collisions is

ncoll(ζ ) =
∫

dxdynbc(x,y; ζ ). (A4)

The number density of wounded collisions (participants)
with impact parameter ζ is

nwn(x,y; ζ ) =
⎡
⎣1 −

(
1 − σinTNB

(
x − ζ

2

)
NB

)NB

⎤
⎦

×TA

(
x + ζ

2
,y

)
+ (NA ↔ NB), (A5)

where NA = NB = 197 for Au + Au collisions. Then the total
number of wounded collisions (participants) is

npart(ζ ) =
∫

dxdynwn(x,y; ζ ). (A6)
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