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Drag-induced radiative energy loss from semihard heavy quarks
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The case of gluon bremsstrahlung off a heavy quark in extended nuclear matter is revisited within the higher
twist formalism. In particular, the in-medium modification of “semihard” heavy quarks is studied, where the
momentum of the heavy quark is larger but comparable to the mass of the heavy quark (p � M). In contrast
to all prior calculations, where the gluon emission spectrum is entirely controlled by the transverse momentum
diffusion parameter (q̂), both for light and heavy quarks, in this work, we demonstrate that the gluon emission
spectrum for a heavy quark (unlike that for light flavors) is also sensitive to ê, which so far has been used
to quantify the amount of light-cone drag experienced by a parton. This mass dependent effect, due to the
non-light-like momentum of a semihard heavy quark, leads to an additional energy loss term for heavy quarks,
while resulting in a negligible modification of light flavor (and high energy heavy flavor) energy loss. This result
can be used to estimate the value of this subleading nonperturbative jet transport parameter (ê) from heavy flavor
suppression in ultrarelativistic heavy-ion collisions.
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I. INTRODUCTION

The unprecedented center-of-mass energies available at the
Large Hadron Collider have opened new windows for the
exploration of extreme nuclear matter through high energy jets
[1–6]. While a large portion of the available data on leading
(and next-to-leading) particle suppression in the light flavor
sector has been theoretically described using factorized pQCD
based calculations of jet modification [7,8], heavy quarks have
remained somewhat of a challenge [9]. This is especially true in
the semihard sector, where the momentum of the heavy quark
is larger but comparable to its mass p � mQ. We distinguish
this region from that of slow heavy quarks, where p � mQ,
which appear to be thermalized with the bulk medium, and
fast heavy quarks, with p � mQ which engender energy loss
and suppression similar to light quarks.

The so called “heavy-quark puzzle” had already begun to
manifest itself in measurements of the suppression of high
transverse momentum (high-pT ) nonphotonic electrons at the
Relativistic Heavy-Ion Collider (RHIC). Measurements by
both the STAR [10] and PHENIX [11] detectors showed
a slightly higher suppression than expected, based on a
calculation that included both drag and radiative loss [8,12,13].
This trend has continued at the Large Hadron Collider
(LHC) where the ALICE experiment has measured D and
B meson suppression separately, and finds a larger than
expected suppression in the semihard regime of heavy-quark
momentum (we note that the case is not very clear for B-meson
suppression which has so far only been presented as pT

integrated points) [14,15].
A considerable amount of theoretical work, within pQCD

based formalisms (which we limit ourselves to), has been
devoted to understand this larger than expected suppression
of single electrons or heavy mesons arising from the fragmen-
tation of a heavy quark [9,16]. However, most of these may be
understood as falling in two categories: Calculations that have
extended the base formalism of radiated energy loss for light
flavors to include mass dependent terms, as well as a drag term
to include the prominent role played by drag in heavy flavor

energy loss [8,17–21]. Calculations that have ignored the role
of radiative loss and only focused on drag loss [22–24].

In all calculations above, radiative loss is stimulated by
transverse momentum diffusion experienced by the heavy
quark or radiated gluon, which, in some cases, is quantified
by the jet transport coefficient q̂ [25,26]. The drag loss is
quantified using the drag coefficient referred to as dE/dx
(energy loss per unit distance) or ê [27].

To the best of our knowledge, no calculation of heavy flavor
energy loss has explored the possibility that the drag coefficient
ê (or the longitudinal diffusion coefficient ê2) may lead to
an additional source of radiative loss, beyond that provided
by q̂. This possibility is immediately clear in the higher
twist framework, where the drag (and longitudinal diffusion)
coefficient ê (ê2) has the boost invariant definition as the loss of
light-cone momentum (fluctuation in light-cone momentum)
per unit light-cone length (assuming a parton moving in the
negative light-cone direction),

ê = d〈�p−〉
dL− , ê2 = d〈�p−2〉

dL− . (1)

While such transport coefficients lead to little change in the
off-shellness of a near on-shell massless quark [27,28], they
have a considerable impact on the off-shellness of a near on-
shell massive quark, as discussed in next section. We will
demonstrate that, such a term will only have an effect on the
radiative loss of a patron where the momentum p is comparable
to the mass M . Thus for light flavors, and for energetic heavy
quarks where, p � M , this term will have a minimal effect.
This was explicitly explored for photon radiation from a light
quark in Ref. [29]. We point out that such an effect is by no
means limited to the higher-twist scheme, but affects several
other formalisms that have considered the radiative loss from
a heavy quark in a quark gluon plasma [30–32].

In this paper, we will explore the modification to the
calculation of radiative loss, due to the presence of this ad-
ditional source within the higher twist formalism. To delineate
the importance of these terms, we will use power-counting
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techniques borrowed from soft collinear effective theory
(SCET) [33–36] to identify the regime where these mass
dependent terms will cause detectable effects on the gluon
bremsstrahlung spectrum. As a first attempt, we will consider
only the case of single scattering and single emission. Argu-
ments presented in subsequent sections will demonstrate this
to be the leading contribution, given the short formation time
of the radiated gluons. In this paper, the analytical expressions
for the ê (q̂ and ê2) induced gluon radiation spectrum will be
derived. Numerical calculations for the suppression of B and
D mesons, as well as the suppression and azimuthal anisotropy
of nonphotonic leptons from the decay of these mesons at LHC
and RHIC energies, and comparisons with experimental data
will be carried out in a subsequent effort.

The article is organized as follows: In Sec. II, we will setup
the basic formalism of deep inelastic scattering (DIS) on a
large nucleus, where the hard virtual photon strikes a heavy
quark, assumed to be produced in a rare high Q2 fluctuation
inside a proton. In Sec. III, we will carry out diagrammatic
studies on the induced gluon radiation off the heavy quark in
this system, within the higher twist formalism. We will present
and discuss final expressions for gluon bremsstrahlung from
such a heavy quark, containing both q̂, ê and ê2 in Sec. IV.
We offer concluding discussions and an outlook in Sec. V.
Involved expressions for a set of diagrams are contained in the
Appendix.

II. DEEP INELASTIC SCATTERING AND
THE SEMIHARD HEAVY QUARK

The setup is based on the deep-inelastic scattering of a
virtual photon off a heavy quark within a large nucleus with
mass number A. We will study the case where the hard virtual
photon scatters with the hard heavy quark converting it to slow
moving heavy quark (this is defined below). The propagation
of the heavy quark will be factorized from the hard scattering
vertex which produces the outgoing slow moving heavy quark.
The nucleus has a momentum P = pA, where p is the average
momentum of a nucleon in this nucleus. In the Breit frame, the
exchanged virtual photon possesses no transverse momentum,

q ≡ [q+,q−,q⊥] = [q+,q−,0]. (2)

The process under consideration is the following:

e(L1) + A(P ) → e(L2) + JQ(LQ) + X. (3)

In the above process, e(L1) and e(L2) represent the incoming
and outgoing electrons with momentum L1 and L2 respec-
tively. The factor A(P ) represents the incoming nucleus with
momentum P . The factor JQ(LQ) is the outgoing jet which
contains one heavy quark Q. Due to the absence of valence
heavy quarks within the nucleon, the photon will have to strike
a heavy quark from a QQ̄ fluctuation within the sea of partons.
Alternatively one may consider the case of a J/ψ or ϒ state
bound within a large nucleus, being struck by the hard virtual
photon. More detailed discussions on the production of heavy
quarks can be found in Ref. [37].

In this work, we will not discuss the production of the heavy
quark further. For the purposes of this calculation, this is now
contained within a parton distribution function. In essence, by

this mechanism a semihard heavy quark has been produced.
In what follows, we will focus on the power counting of the
momentum components and the modification of the final state.
Similar to Ref. [37], we will consider a quark mass M � �QCD

and a final outgoing quark momentum which is larger, but of
the order of the quark mass.

A. Production of a semihard heavy quark

At the outset we assume that quark-antiquark fluctuations
possess minimal momentum (they are almost at rest) in the
rest frame of the nucleus. Therefore momentum components
of the quark (or the anti-quark) scales as (p+

Q,p−
Q,pQ⊥) ∼

(M/
√

2,M/
√

2,0) in the rest frame of the nucleus. Now in a
frame where the nucleus is boosted by a large boost factor γ in
the “+” direction, momentum components of the heavy quark
will scale as

pQ = [p+
Q,p−

Q,pQ⊥] ≡
[
γ

M√
2
,

1

γ

M√
2
,0

]
. (4)

It is important to note that the boost factor γ carries no
extra information other than the fact that p+

Q is very large
compared to p−

Q and hence it is moving fast in the “+”
light-cone direction. We select events where the virtual photon
strikes this fast moving on-shell quark or antiquark and
converts it into a heavy on-shell fermion traveling in the “−”
light-cone direction. We further stipulate that this backward
propagating heavy fermion be semihard, i.e., the magnitude of
its three-momentum is of the order of its mass. This enforces
the momentum components of the virtual photon to be

q =
[
−γ

M√
2

+ M2

2q− ,q− − 1

γ

M√
2
,0

]
. (5)

This rather cumbersome form arises out of the need to produce
a semihard (or slow moving) heavy fermion, after a collision
with a hard (or fast moving) fermion. Yet another reason, is to
keep the heavy-quark mass as explicit in as many momentum
terms as possible. After scattering with this photon, the
outgoing quark propagates through the nucleus, with a larger
momentum in the “−” light-cone direction. The momentum
components of the final state quark are

pf = pQ + q =
[

M2

2q− ,q−,0

]
. (6)

where we assume q− � M . Given a large boost factor (γ ), one
can assume that γM � M ∼ q− � M/γ . Hence, we define
the hard scale Q as Q2 = −q2 
 γMq−/

√
2. We consider

M ∼ q− ∼ √
λQ where λ ∼ 1/γ for this “semihard” heavy

quark. The term “semihard” defines a quark whose momentum
is not an order of magnitude larger than its mass. It is also
important to articulate at this point that γ is not the boost factor
of the semihard quark (moving in “−” light-cone direction) but
it is that for the very fast moving initial hard quark (moving in
the “+” light-cone direction) before the scattering takes place.
Numerically the boost factor could be �100 (hence λ � 0.1).
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B. Power counting and the small λ parameter

In order to set up the power counting, in this study, we
have introduced the dimensionless small parameter λ. Power
corrections to hard process are generally suppressed by factors
of a hard scale, Q2 � �QCD. The introduction of the parameter
λ, to represent semihard scales as λQ and softer scales as
λ2Q, is a concept borrowed from soft collinear effective theory
(SCET) [38,39]. In what follows, we will retain leading and
next-to-leading terms in λ power counting, neglecting all terms
which scale with λ2 or a higher power of λ [40]. We have
chosen the scaling variable λ in such a way that perturbation
theory may be applied down to momentum transfer scales at
or above λ3/2Q ∼ �QCD. In our study,

λ0 �
√

λ � λ � λ
3
2 . (7)

Based on the power counting setup and the choice of in-
coming and outgoing quark momentum, we can outline several
important scales in the problem of a heavy quark propagating
through the nuclear medium, scattering off constituents in the
medium, and emitting real gluons. We remind the reader that
given the semihard momentum of the heavy quark, collinear
emission is suppressed due to the mass of the heavy quark,
i.e., the dead cone effect [41].

In the subsequent section, the calculation of the process of
single scattering and single emission from a heavy quark will
be carried out. Here we outline the power counting (in λ) of the
relevant momentum components that will arise in the calcula-
tion. The virtuality of the hard photon defines the hardest scale
in the problem, Q, similar to the case of light quark production
in DIS. The incoming or initial heavy quark has momentum
components pi(p

+
i ,p−

i ,pi⊥) ∼ (λ− 1
2 ,λ

3
2 ,0)Q, the outgoing

heavy quark has momentum components pf (p+
f ,p−

f ,pf ⊥) ∼
(
√

λ,
√

λ,0)Q. It is customary to mention that the above scales
signify only the order of magnitudes and not the actual value
of the momentum components. For outgoing heavy quark, the
z component of the momentum is pf,z = (p+

f − p−
f )/

√
2 ∼

O(
√

λ) − O(
√

λ) ∼ O(
√

λ) Also the mass of the semihard
heavy quark scales as M ∼ √

λQ. This choice of incoming
parton and photon momenta scales (not actual value) ensures
that the momentum of the final outgoing heavy quark is of the
order of its mass, as discussed in the previous subsection. In
what follows, we will demonstrate that the leading contribution
to gluon emission arises from the region where real emitted
gluons have momenta which scale as l ∼ (λ,λ,λ)Q. This
also ensures that both the z component of the momentum,
lz = (l+ − l−)/

√
2 ∼ O(λ) − O(λ) ∼ O(λ), as well as the

transverse momentum are ∼O(λ). The fraction of light-cone
momenta carried out by the gluon is y = l−/p− ∼ √

λ. Also
somewhat different from the case of light flavors is the
scaling of the virtual Glauber gluons: k ∼ (λ

3
2 ,λ

3
2 ,λ)Q with

k2 = 2k+k− − k2
⊥ 
 −k2

⊥. As we will demonstrate below,
these choices of momentum scales tend to enhance the gluon
emission rate.

There is another consequence of this choice of scales which
relates to how the single gluon emission kernel may be iterated.
Unlike the case for light flavors, the formation length of a gluon

)2()1(

(3)

pf

pf − l

l

k

pf − l + k pf pf − l + k

l

k

pf + k

pf pf

ll − k

k

FIG. 1. Gluon bremsstrahlung by heavy quark. External legs with
green blobs are on shell, while off-shell internal legs have either a
red blob or a blue blob. Lines with blue blobs are in-medium Glauber
gluons. Red and blue blobs with (without) an additional dark ring
indicate spacelike (timelike) off shell.

with momentum components l ∼ (λ,λ,λ)Q is

τQ = 2l−

l2
⊥

∼ 1

λQ
, (8)

which is rather short compared to the formation length of τq ∼
1/λ2Q for gluon radiation from near on-shell light flavors. This
indicates that there cannot be many scatterings per emission.
As a result, in what follows, we derive the single scattering
per gluon emission rate. This single gluon emission kernel,
induced by single scattering, will have to be iterated to obtain
the full energy loss of a semihard heavy quark.

Many readers may find the presence of factors of
√

λ
somewhat disconcerting. We could have simply replaced this
with a new λ. We refrain from defining a new dimensionless
parameter λ, so as to make contact with prior definitions of
λ used in the case of light quarks, where λQ represented
the transverse momentum of the radiated gluons from a hard
parton, or the transverse momentum from scattering of a gluon
in the medium. Thus, to continue to draw a parallel with
the prior results from light flavor energy loss, we require
λQ ∼ 1 GeV.

To get a physical feel of these scaling relations, one
may typically assume Q ∼ 100 GeV,

√
λQ ∼ 10 GeV,λQ ∼

1 GeV,λ
3
2 Q ∼ �QCD. We will retain terms that are O(

√
λ)

suppressed compared to the leading terms, but we ignore all
terms that are suppressed by O(λ) and higher. Thus, terms
with M2/Q2 ∼ λ will eventually be ignored.

C. Effects on off-shell internal legs

A schematic diagram for single gluon (of momentum l)
bremsstrahlung by an on-shell heavy quark (of momentum
pf ) is given in Fig. 1. Any external legs with a green blob
are on shell, while off-shell internal legs have either a red
blob or a blue blob. Lines with blue blobs are in-medium
Glauber gluons with momentum k. In order to see the effect
of non-negligible k− of the medium gluons one may want to
calculate the off-shellness or virtuality of the internal lines
(with a red blob). In terms of the variables defined in Eq. (18)
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virtualities of the the off-shell internal lines are as follows;

D1 = (pf − l)2 − M2 = 2P +q−(1 − y)

[
−xB + x0 − xL − xM

1 − y

]
, (9)

D2 = (pf + k)2 − M2 = 2P +q−(1 + yη)

[
−xB + x0 + x1 − xM

(1 + yη)
− xK

(1 + yη)

]
, (10)

D3 = (l − k)2 = 2P +q−y(1 − η)

[
−x1 − 1 − y

y(1 − η)
xD − η(1 − y)

(1 − η)
xL

]
. (11)

If one imposes the condition that the final outgoing quark is also on shell, i.e., (pf − l + k)2 − M2 = 0, one is left with

D1 = (pf − l)2 − M2 = − 1

y
[l2

⊥ + y2M2], (12)

D2 = (pf + k)2 − M2 = + 1

y

(
1 − y + k−

q−

)−1
[{(

1 + k−

q−

)
l⊥ − yk⊥

}2

+ y2M2

]
, (13)

D3 = (l − k)2 = −
(

1 − y + k−

q−

)−1
[

(l⊥ − k⊥)2 + y2M2

(
1 − k−

l−

)2
]
. (14)

In the above expressions k− appears either as k−/q− ∼
O(λ) or as k−/l− ∼ O(

√
λ). While the former can be

neglected, one needs to retain k−/l− as it is O(
√

λ). We also
notice that this term appears only in D3, i.e., in the three-gluon
vertex diagram and also attached with the mass term of D3. It
clearly shows that the leading mass effect due to non-negligible
k− appears for heavy quarks and not for light quarks. Hence the
transport coefficient associated with k− leads to little change
in the off-shellness of a near on-shell massless quark; it has
a considerable impact on the off-shellness of a near on-shell
massive quark, as mentioned in the Introduction.

III. INDUCED GLUON RADIATION
OFF THE HEAVY QUARK

In this section we will discuss some contributions to the
next-to-leading order correction to semi-inclusive DIS on a
large nucleus with a quark and gluon in the final state. By next-
to-leading order, we simply mean including one interaction
term in the amplitude and complex conjugate, which converts
a single quark to a quark and a gluon. The diagrams we will
consider will also contain two scatterings for the full cross
section, with both scatterings in the amplitude, both in the
complex conjugate, or one in amplitude and one in complex
conjugate. The double differential cross section for the semi-
inclusive process of an electron with incoming momentum L1

and outgoing momentum L2, undergoing DIS off a nucleus
(with momentum pA), leading to the production of a final
state heavy quark with transverse momentum lQ⊥ and a final
state gluon with transverse momentum l⊥ � �QCD, may be
expressed as

EL2dσ

d3L2d2lQ⊥d2l⊥dy
= α2

em

2πsQ4
Lμν

dWμν

d2lQ⊥d2l⊥dy
. (15)

In the equation above, s = (p + L1)2 is the total invariant mass
of the lepton nucleon system. In the single photon exchange
approximation, the leptonic part of the cross section is easily

expressed in terms of the leptonic tensor denoted as Lμν , given
as

Lμν = 1
2 Tr[/L1γμ /L2γν]. (16)

In what follows, the focus will lie entirely on the hadronic
tensor Wμν . We will carry out calculations of a set of
contributions to Wμν at next-to-leading order (NLO) as
described above, and next-to-leading twist (NLT), meaning
double scattering in the cross section.

Already, at NLO and NLT, there are several interfering
diagrams to consider. In this section, the calculation of one
of the diagrams that contributes to single scattering induced
single gluon emission will be carried out in some detail to fa-
miliarize the reader with the approximations carried out in this
article. Figure 2 represents the diagram that will be evaluated.
This diagram corresponds to the process where a semihard
heavy quark produced after DIS radiates a gluon followed by
a scattering in the medium, and finally exits the nucleus.

pi pi

q q

PP

lQ

k k

l

y0 y 0
y1 y 1

pf pf

FIG. 2. A representative single gluon emission diagram, where
gluon emission is induced by single scattering. This is a symmetric
diagram with scattering off the final produced quark. Three separate
cuts, denoted as central, left, and right are indicated by the dashed
lines.
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In this study, calculations will be carried out in axial
gauge, n · A = 0, with n ≡ (1,0,0⊥) and A− = 0. In A− = 0
gauge, the double scattering of a quark radiating a gluon
contains a total of nine central cut diagrams where the
cut line lies between the two scatterings. It also contains
seven left cut diagrams and seven right cut diagrams. In
this section, the central cut diagram of Fig. 2 will be analyzed in
detail.

In this section and what follows, only the real contribution
where the radiated gluon line has been cut will be considered.
The entire contribution from virtual diagrams, which contain
a quark gluon fluctuation either in the amplitude or complex
conjugate, could be obtained using unitary conservation
methods as outlined in Ref. [42].

This NLO-NLT contribution to the hadronic tensor may be
expressed as

Wμν = g4(−g
μν
⊥ )

∫
d4y ′

0d
4p′

i

(2π )4

d4y ′
1d

4k′

(2π )4

d4y1d
4k

(2π )4

d4y0d
4pi

(2π )4

d4l

(2π )4

d4lQ

(2π )4
eip′

i y
′
0eik′y ′

1e−iky1e−ipiy0

×Tr

[
1

2
γ − −i(p/f + M)

p2
f − M2 − iε

γα

−i(p/f − l/ + M)

(pf − l)2 − M2 − iε
l/qG

αβ
i(p/f − l/ + M)

(pf − l)2 − M2 + iε
γβ

i(p/f − l/ + M)

(pf − l)2 − M2 + iε

]

×2πδ(l2)2πδ
(
l2
Q − M2

)
(−iT a)(iT a)〈A|ψ̄(y ′

0)γ +A+(y ′
1)A+(y1)ψ(y0)|A〉. (17)

We have defined the following momentum fractions for
convenience:

y = l−

q− , η = k−

l−
, xB = Q2

2P +q−

x0 = p+
i

P + , x1 = k+

P + , χ = y2M2

l2
⊥

, ζ = 1 − y

1 − y + ηy
,

xL = l2
⊥

2P +q−y(1 − y)
, xD = k2

⊥ − 2l⊥k⊥
2P +q− ,

xK = k2
⊥

2P +q− , κ = 1

1 + (1 − y)2
, xM = M2

2P +q− .

(18)

In what follows, we will simplify both numerator and
denominator by retaining only leading terms in the λ power

counting highlighted above. This is followed by taking the
trace in the numerator and contour integrations to simplify the
denominator.

The factor Gαβ is the polarization tensor, and in A− = 0
gauge it has the form

Gαβ = −gαβ + nαlβ + nβlα

nl
. (19)

The structure of n ≡ (1,0,0⊥) implies n · l = l−. Within this
kinematic set up, in A− = 0 gauge, the leading component of
the gluon field is A+.

The spin sum in the numerator, containing the entire set of γ
matrices from the quark propagators, together with those from
the interaction with the gauge field, may be partially simplified
and expressed as

N c
11 = Tr

[
1

2
γ −

{
γ +q−γμ

nμ(l⊥)ν

l−
γ +(q− − l−) + γ α

⊥pf ⊥α
γ⊥μ(−g

μν
⊥ )γ +(q− − l−)

+γ +q−γ⊥μ(−g
μν
⊥ )γ α

⊥(pf ⊥ − l⊥)α

}
γ −γ +(q− − l− + k−)γ −

{
γ +(q− − l−)γρ

nρ(l⊥)ν
l−

γ +q−

+γ +(q− − l−)γ ρ
⊥(−g⊥)ρνγ

β
⊥pf ⊥β

+ γ
β
⊥ (pf ⊥ − l⊥)βγ

ρ
⊥(−g⊥)ρνγ

+q−
}]

+Tr

[
1

2
γ −{Mγ⊥μ(−g

μν
⊥ )γ +(q− − l−) + γ +q−γ⊥μ(−g

μν
⊥ )M}

×γ −γ +(q− − l− + k−)γ −{γ +(q− − l−)γ ρ
⊥(−g⊥)ρνM + Mγ

ρ
⊥(−g⊥)ρνγ

+q−}
]
. (20)

Note that terms containing γ −p+
f never contribute to the trace because there is always an adjacent factor of γ −, and γ −γ − =

γ +γ + = 0. One may evaluate the trace: using the relation γ +γ − = 2 − γ −γ +, Eq. (20) simplifies to

N c
11 = 2(2q−)3

y
(1 − y + yη)[P (y)l2

⊥ + y4M2]. (21)

Note that the mass independent portion contains the standard vacuum splitting function P (y) while the mass dependent part has
a separate dependence on the momentum fraction of the radiated gluon (y). In the soft emission kinematic limit where y � 1,
one may neglect the mass term. However, in this work we will retain it throughout.
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The set of denominators can now be evaluated using contour integration. For the central cut diagram of Fig. 2, this yields the
phase factor

Ī c
11 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]

×θ (y−
1 − y−

0 )θ (y ′−
1 − y ′−

0 )

×
{

1 − exp

[
−i

(
xL + y

1 − y
xM

)
P +(

y−
1 − y−

0

)]}{
1 − exp

[
i

(
xL + y

1 − y
xM

)
P +(y ′−

1 − y ′−
0 )

]}
.

This single diagram contains four contributions depending
on the one propagator that remains off shell after contour
integration.

Multiplying through we find four terms similar to the work
of Ref. [42] [Eqs. (A20)–(A23)]. The first term where the
same propagator is off shell in both amplitude and complex
conjugate corresponds to the so-called hard-soft process (this
is terminology used and described by the authors of Ref. [42],
in Sec. III of that paper), where the gluon radiation is induced
by the initial hard scattering. The heavy quark is knocked off-
shell by the initial hard scattering and becomes on-shell after
radiating the on-shell gluon. Afterwards, the on-shell quark or
gluon will have a scattering with another soft medium gluon
from the nucleus. The second term is the case where the quark
is on-shell immediately after the first hard scattering. Gluon
radiation is induced by subsequent scattering of the heavy
quark off a in-medium gluon which carries a specific finite
momentum fraction. This is often referred to as “hard-hard”
scattering (terminology used and described by the authors of
Ref. [37], in Sec. III of that paper). The two cross terms,
where different propagators are off shell in the amplitude and
complex conjugate, represent interference between soft-hard
and hard-hard scatterings.

The equations derived above contain both longitudinal and
transverse momentum exchanges with the medium. The por-
tion due to transverse exchange may be isolated by imposing
that k− → 0(η → 0,ζ → 1) limit, and then comparing with
expressions from similar diagrams in Ref [21]. One will
immediately note that factors containing xM which contribute
to the Landau-Pomeranchuck-Migdal (LPM) [43,44] effect are
not modified by factors of k−, while factors containing xD are
modified by the presence of k−. Factors of xD will eventually
be absorbed in the definition of the transport coefficients
including q̂. Such factors introduce a nontrivial dependence
of in-medium transport coefficients on the mass of the probe.

In this section, we have demonstrated how a certain diagram
for heavy-quark production and energy loss via gluon radiation
can be simplified. Similar rules will be applied to all other real
diagrams which include a cut of the radiated gluon line. In
the subsequent section, all real diagrams will be combined
to obtain the real gluon emission spectrum from a heavy
quark that undergoes one scattering and one emission after
production.

IV. GLUON EMISSION SPECTRUM

In the preceding section we evaluated the diagram in Fig. 2,
in some detail, to highlight the approximations that will be

made in the course of the full calculation. In this section, the
result of the sum of all real diagrams (with an emitted gluon
in the final state), will be presented. This will be followed by
a gradient expansion in the exchanged transverse momentum
(k⊥ → 0). While the leading term in the limit of k⊥ → 0, will
correspond to a gauge correction to the vacuum process of
gluon radiation from a heavy quark, the focus in this section
will be on first correction in the k⊥ → 0 limit, usually denoted
as the next-to-leading twist contribution.

In total, there are 11 separate topologically distinct dia-
grams similar to that in Fig. 2. We denote these with two
subscripts: m,n = 1, . . . ,3, where, m denotes the location of
the scattering in the amplitude, and n denotes the location in
the complex conjugate, for the case of a central cut, where one
gluon scattering is on either side of the cut line. In either case
of m or n, 1 signifies that the scattering occurs on the quark
line beyond emission, 2 signifies scattering on the quark line
between the hard production and the emission, and 3 signifies
scattering of the emitted gluon. Each one of these diagrams
will also generate a left and right cut component, where the
cut line will be moved to the left or right of the scatterings,
with the topology of the diagram held fixed. There are also
the two special configurations, where both scatterings occur
between the hard production and the gluon emission in the
amplitude or complex-conjugate. These are denoted as C0,1

and C1,0. The next-to-leading twist portion, of the sum over all
possible cuts, for each of these contributions is outlined in the
Appendix.

Adding all the contributions from all the diagrams, catego-
rized in the Appendix, we obtain the entire contribution to the
hadronic tensor. In what follows, we decompose the hadronic
tensor as

Wμν = g42π (−g
μν
⊥ )Hc,l,r . (22)

The entire contribution from all real diagrams is contained in
the factor Hc,l,r . This includes the initial hard scattering, the
final state scattering of the quark or gluon, and the emission
vertex. Virtual contributions, where the final state radiated
gluon is not cut, will not be considered in this effort. Some part
of the spin sum in the numerator has already been factorized
out in the term −g

μν
⊥ above. In what follows, we will simplify

Hc,l,r by factoring different contributions within it and then
applying approximations to them separately. In the interest of
readability, the exact details of the calculation for each diagram
separately are included in the Appendix.
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This entire factor Hc,l,r is obtained as

Hc,l,r =
3∑

m,n=1

Cc,l,r
m,n + C0,1 + C1,0

= 2παs

Nc

∫
dl2

⊥Hc,l,r

× exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

+i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)

×P +(y ′−
1 − y−

1 )

]

×〈A|ψ̄(y ′
0)γ +A+(y ′

1)A+(y1)ψ(y0)|A〉. (23)

In the equation above, cut-specific phase factors and the hard
part for each cut are entirely contained within Hc,l,r . The
overall phase factor represents the generic portion of the phase
factor.

In order to calculate the next-to-leading power con-
tribution to the semi-inclusive hard partonic cross sec-
tion, one needs to expand the cross section in k⊥ and
in k−. In each case, we will extract the corresponding
transport coefficients inside the gluon emission spectrum
kernel for the semihard heavy quark [45]. Factors of k⊥
and k− are absorbed as derivatives within the definition
of the transport coefficients [e.g., k⊥A+(y⊥) exp(ik⊥ · y⊥) =
−i∇⊥A+(y⊥) exp(ik⊥ · y⊥) 
 iF+⊥(y⊥) exp(ik⊥ · y⊥)].

We will also factor the four-point non-perturbative operator
using the usual phenomenological factorization, which for the
case of transverse scattering may be expressed as

〈A|ψ̄(y ′
0)γ +F+

⊥ (y ′
1)F+

⊥ (y1)ψ(y0)|A〉

 CA

p 〈p|ψ̄(y ′
0)γ +ψ(y0)|p〉 ρ

2p+ 〈p|F+
⊥ (y ′

1)F+
⊥ (y1)|p〉.

(24)

The first operator product on the right hand side of the
equation above will yield the incoming quark distribution
function within one nucleon. The second operator product
will yield the transport coefficient due to the scattering of the
final state, off a gluon within a nucleon in the nucleus. We
have assumed the average condition that both nucleons have a
momentum p = P/A. The factor ρ represents the nucleon
density within the nucleus, and CA

p represents an overall
normalization constant that contains the nucleon density. The
factor of ρ/(2p+) is written separately, as that will be absorbed
within the definition of the transport coefficient.

These transport coefficients, defined below, are nonpertur-
bative objects, which are factorized from the hard part that
describes the propagation of the heavy quark. While the exact
value of each of these coefficients depends on the nonpertur-
bative dynamics of the medium, the relative contributions of
the different hard parts that appear as a multiplicative factor
along with these coefficients will be calculated below. Terms
for the transverse diffusion q̂ and the drag (and longitudinal
diffusion) coefficient ê (ê2) can be obtained through derivatives
of the kernel with respect to the transverse and “−” light-cone
component of the exchange momentum,[∇2

k⊥ ,∇k− ,∇2
k−

]
Hc,l,r

∣∣
k⊥,k−=0

= 4CA

(
1 + (1 − y)2

y

)
l4
⊥

[l2
⊥ + y2M2]4

H̃
q̂,ê,ê2
c,l,r . (25)

In the equation above, the factor H̃
q̂,ê,ê2
c,l,r represents several

terms, depending on the cut taken, i.e., central c, left l, or right
r , and the momentum component with respect to which the
Taylor expansion is carried out, i.e., q̂ for the second derivative
in terms of k⊥, ê for the first derivative with respect to k−, and
ê2 for the second derivative with respect to k−. One should note
that, for each case, once the derivatives have been taken, both
factors of the momentum k⊥,k− are set to zero. The complete
expressions for H̃

q̂,ê,ê2
c,l,r can be expressed as a sum of products

of a phase factor and a nonphase factor coefficient, expressed
as c

q̂,ê,ê2
n :

H̃ q̂,ê,ê2
c = c

q̂,ê,ê2
1

[
1 − e−i(xL+ y

1−y
xM )P +(y−

1 −y−
0 )][1 − ei(xL+ y

1−y
xM )P +(y ′−

1 −y ′−
0 )] + c

q̂,ê,ê2
2

{
e−i(xL+ y

1−y
xM )P +(y−

1 −y−
0 )

× [
1 − ei(xL+ y

1−y
xM )P +(y ′−

1 −y ′−
0 )] + [

1 − e−i(xL+ y
1−y

xM )P +(y−
1 −y−

0 )]ei(xL+ y
1−y

xM )P +(y ′−
1 −y ′−

0 )}
+c

q̂,ê,ê2
3

[
e−i(xL+ y

1−y
xM )P +(y−

1 −y−
0 )][ei(xL+ y

1−y
xM )P +(y ′−

1 −y ′−
0 )],

H̃
q̂,ê,ê2
l = c

q̂,ê,ê2
4

[
e−i(xL+ y

1−y
xM )P +(y ′−

0 −y ′−
1 ) − e−i(xL+ y

1−y
xM )P +(y ′−

0 −y−
1 )] + c

q̂,ê,ê2

5

[
1 − e−i(xL+ y

1−y
xM )P +(y ′−

0 −y ′−
1 )],

H̃ q̂,ê,ê2
r = c

q̂,ê,ê2
4

[
e−i(xL+ y

1−y
xM )P +(y−

0 −y−
1 ) − e−i(xL+ y

1−y
xM )P +(y−

0 −y ′−
1 )] + c

q̂,ê,ê2

5

[
1 − e−i(xL+ y

1−y
xM )P +(y−

0 −y−
1 )].

In each case above, the coefficients c
q̂,ê,ê2
n depend on the momentum component being considered. The subscript n merely denotes

the order in which the coefficient occurs: c1, c2 and c3 appear in the expression for the central cut, where c4 and c5 appear in both
the left and right cuts. We list them in the following for each different case, starting from the case of transverse diffusion, i.e., q̂.
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The coefficients are

c
q̂
1 = 1 − (2 − 3κy2)χ + (1 − κy2)χ2,

c
q̂
2 = −y

2
+

[(
1 − 1

2
κy2 − κy3

)
+ y2 CF

CA

(
2 − κy2

)]
χ −

[
1

2
(y − κy2) − y2 CF

CA

(κy2)

]
χ2,

c
q̂
3 = y2 CF

CA

[1 − 4(1 − κy2)χ + (1 − 2κy2)χ2], (26)

c
q̂
4 =

[
1 + y2

1 + (1 − y)2
χ

][
CF

CA

y2 + 1 − 2y

]
χ,

c
q̂
5 =

[
1 + y2

1 + (1 − y)2
χ

]
χ.

The momentum fractions y, κ , and χ are defined in Eq. (18). For the longitudinal drag coefficient ê, the c factors are

cê
1 = y2M2

l−

[
1

2
+ 1

2
(1 + κy2)χ + 1

2
χ2

]
, cê

2 = y2M2

l−

[
−1

4
− 1

4
(1 + κy2)y2χ − 1

4
χ2

]
, cê

3 = 0, cê
4 = 0, cê

5 = 0.

For longitudinal diffusion coefficient ê2, the c- factors are

c
ê2
1 = y2M2

(l−)2

[
−1

2
+

(
7

2
− 1

2
κy2

)
χ + 7

2
y2χ2

]
, c

ê2
2 = y2M2

(l−)2

[
1

4
−

(
3

4
− 1

4
κy2

)
χ − 3

4
κy2χ2

]
,

c
ê2
3 = 0, c

ê2
4 = 0, c

ê2
5 = 0.

All the terms presented above can be combined to obtain the real single gluon emission spectrum. In the second line of the
equation below [Eq. (27)], we have retained terms only up to O(

√
λ), the approximation that has been justified in this study. All

terms which scale as O(λ) or greater have been neglected. We express the gluon spectrum per unit light-cone length as

dNg

dydl2
⊥dτ

= 2
α

π
P (y)

1

l4
⊥

(
1

1 + χ

)4

sin2

(
l2
⊥

4l−(1 − y)
(1 + χ )τ

)[{
c
q̂
1 + c

q̂
2

}
q̂ + 4

{
cê

1 + cê
2

}
ê + 2

{
c
ê2
1 + c

ê2
2

}
ê2

]

= 2
α

π
P (y)

1

l4
⊥

(
1

1 + χ

)4

sin2

(
l2
⊥

4l−(1 − y)
(1 + χ )τ

)

×
[{(

1 − y

2

)
− χ +

(
1 − y

2

)
χ2

}
q̂ + l2

⊥
l−

χ (1 + χ )2ê + l2
⊥

(l−)2
χ

(
1

2
− 11

4
χ

)
ê2

]
. (27)

In the equation above, we have defined a mean light-cone
location of the first scattering (between the amplitude and
complex conjugate) as

τ = y−
1 + y ′−

1

2
. (28)

We also define the offset between the light cone locations in
the amplitude and complex conjugate as

y− = y−
1 − y ′−

1 . (29)

This variable enters the definitions of all transport coefficients
that will be discussed in this paper. There are three transport
coefficients, which contain the nonperturbative expectation of
the gluon field strength operators: the transverse diffusion
coefficient, q̂, which represents the transverse momentum
squared per unit light-cone length, exchanged between the
hard quark and the medium; the longitudinal drag per unit
light-cone length, ê, caused due to the exchange of light-cone
components of momentum; and ê2, the diffusion in light-cone

momentum, per unit light-cone length:

q̂ = 4π2CRαs

N2
C − 1

∫
dy−

π

ρ

2p+

× 〈A|F+
⊥ (y−)F⊥+(0)|A〉e−i�̄P +y−

,

ê = 4π2CRαs

N2
C − 1

∫
dy−

π

ρ

2p+

× 〈A|i∂−A+(y−)A+(0)|A〉e−i�̄P +y−
,

ê2 = 4π2CRαs

N2
C − 1

∫
dy−

π

ρ

2p+

× 〈A|F−+(y−)F−+(0)|A〉e−i�̄P +y−
. (30)

In the equations above, we observe the appearance of another
momentum fraction:

�̄ = ζxD + (ζ − 1)
xM

1 − y
− ζ

ηy2

1 − y
xL. (31)
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The presence of such a momentum fraction indicates that the
range of momentum fractions in the definition of q̂, ê, and ê2

for heavy-quark scattering is different from that for light flavor
energy loss. This indicates that the actual value of q̂ (or even
ê or ê2) for heavy quarks may be different from that for light
quarks. Thus, careful analysis of heavy-quark energy loss may
lead to an understanding of the x dependence of the in-medium
gluon distribution function that sources transport coefficients,
and may, in the end, lead to an understanding of the degrees of
freedom within dense media, where heavy-quark energy loss
is carried out.

V. CONCLUSION AND OUTLOOK

In this work, the gluon bremsstrahlung from a “semihard”
heavy quark in a dense nuclear medium has been studied in
greater detail than in several earlier efforts. In this work, we
have considered a hard virtual photon scattering off a hard
heavy quark (within a proton), that converts it to a slowly
moving heavy quark that moves through the remainder of the
nucleus before escaping and fragmenting into a jet containing
a heavy meson.

In this work both transverse broadening as well as the
longitudinal drag and longitudinal diffusion have been studied
on an equal footing. We have categorically focused our study
on “semihard” quarks where the mass and momentum scale as
M,p ∼ √

λQ, as these are the quarks for which mass modifi-
cations are most prominent. We have used power counting
arguments loosely based on soft collinear effective theory
(SCET) at various stages to isolate the leading contributions.
It was shown in our earlier studies that both longitudinal and
transverse momentum transfers have a comparable effect on
the off-shellness of the heavy quark [37]. This earlier work
implied that longitudinal transfers not only lead to the drag
and diffusion, similar to light flavors, but will also noticeably
affect the radiative energy loss and left strong indications
that, for heavy quarks, the drag-induced radiation may be
as significant as transverse momentum diffusion (q̂) induced
radiation.

In this paper we have explicitly demonstrated that the gluon
bremsstrahlung spectrum from a semihard heavy quark is
indeed strongly modified by drag-induced radiation. We have
shown that due to the presence of the “−” light-cone momen-
tum exchange from the medium (k−), in our calculations, the

pi pi

q q

PP

lQ

k k

l

y0 y 0
y1 y 1

pf pf

FIG. 3. Central, left and right cuts for C11.

definition of all the transport coefficients for heavy quark is
different from that for light quark. Thus transport coefficients
may indeed depend on properties of the probe, i.e., on mass
or on the l2

⊥. Whether this is phenomenologically significant
cannot be ascertained at this point, and is left for a future
investigation. This explicit dependence on the “−” light-cone
momentum was absent in the limit of k− → 0, assumed in
several prior calculations.

Analysis of the implications of the present study on the
phenomenology of HIC is under way. In this work we have
shown that the gluon bremsstrahlung spectrum of heavy quarks
(unlike light quarks) is parametrically sensitive to ê, which
quantifies the amount of drag the moving quark experiences.
This result can be used to estimate the value of this subleading
nonperturbative jet transport parameter (ê) from heavy flavor
data of HIC experiments. These extra additive contributions
may lead to an eventual solution of the heavy-quark puzzle.
We leave these for a future effort.
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APPENDIX

There are three different cuts (central, left, and right) in Fig. 3 and their contributions are

Cc,l,r
11 = α2

s

Nc

[CF ]
∫

dl2
⊥

(
1 + (1 − y)2

y

)
[l2

⊥ + κy4M2]

(l2
⊥ + y2M2)2

Ī
c,l,r
11 , (A1)

Ī c
11 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]
θ (y−

0 − y−
1 )

×θ (y ′−
0 − y ′−

1 )

{
1− exp

[
−i

(
xL + y

1 − y
xM

)
P +(y−

1 − y−
0 )

]}{
1 − exp

[
i

(
xL + y

1 − y
xM

)
P +(y ′−

1 − y ′−
0 )

]}
, (A2)
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p0 p0

q q

PP

lQ

k k

l

y 0
y1 y 1y0

FIG. 4. Single possible central cut for C22.

p0 p0

q q

PP

lQ

k

l

y0 y 0
y1 y 1

k

FIG. 5. Central and left cuts for C12.

Ī l
11 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]

×θ (y ′−
1 − y−

1 )θ (y ′−
0 − y ′−

1 )(−1)

{
1 − exp

[
i

(
xL + y

1 − y
xM

)
P +(y ′−

1 − y ′−
0 )

]}
, (A3)

Ī r
11 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]
θ (y−

0 − y−
1 )

×θ (y−
1 − y ′−

1 )

{
1 − exp

[
−i

(
xL + y

1 − y
xM

)
P +(y−

1 − y−
0 )

]}
(−1). (A4)

In Fig. 4 there is only a central cut with the contribution

Cc
22 = α2

s

Nc

[CF ]
∫

dl2
⊥

(
1 + ηy + (1 − y + ηy)2

y

)
[[(1 + ηy)l⊥ − yk⊥]2 + κy4M2]

[(l⊥ − yk⊥)2 + y2M2 + 2yη(l2
⊥ − l⊥k⊥) + y2η2l2

⊥]2
Ī

c,l,r
22 , (A5)

Ī c
22 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]
θ (y−

0 − y−
1 )

×θ (y ′−
0 − y ′−

1 )

{
− exp

[
−i

(
xL + y

1 − y
xM

)
P +(y−

1 − y−
0 )

]}{
− exp

[
i

(
xL + y

1 − y
xM

)
P +(y ′−

1 − y ′−
0 )

]}
. (A6)

In Fig. 5 there are two different cuts for induced gluon radiation, central and left:

Cc,l
12 = α2

s

Nc

[
−

(
CF − CA

2

)]∫
dl2

⊥

(
1 + (1 − y)2 + ηy(2 − y)

y

)

× {l⊥[(1 + ηy)l⊥ − yk⊥] + κy4M2}
[l2

⊥ + y2M2][(l⊥ − yk⊥)2 + y2M2 + 2yη(l2
⊥ − l⊥k⊥) + y2η2l2

⊥]
Ī

c,l
12 , (A7)

Ī c
12 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]
θ (y−

0 − y−
1 )

×θ (y ′−
0 − y ′−

1 )

{
1 − exp

[
−i

(
xL + y

1 − y
xM

)
P +(y−

1 − y−
0 )

]}{
− exp

[
i

(
xL + y

1 − y
xM

)
P +(y ′−

1 − y ′−
0 )

]}
, (A8)

Ī l
12 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]

×θ (y ′−
1 − y−

1 )θ (y ′−
0 − y ′−

1 )

{
exp

[
i

(
xL + y

1 − y
xM

)
P +(y−

1 − y ′−
0 ) + i(xK − xD)P +(y ′−

1 − y−
1 )

]

− exp

[
i

(
xL + y

1 − y
xM

)
P +(y ′−

1 − y ′−
0 )

]}
. (A9)
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FIG. 6. Central and right cuts for C21.
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FIG. 7. Central, left and right cuts for C33.

In Fig. 6 there are two different cuts for induced gluon radition, central and right:

Cc,r
21 = α2

s

Nc

[
−

(
CF − CA

2

)] ∫
dl2

⊥

(
1 + (1 − y)2 + ηy(2 − y)

y

)

× {[(1 + ηy)l⊥ − yk⊥]l⊥ + κy4M2}
[(l⊥ − yk⊥)2 + y2M2 + 2yη(l2

⊥ − l⊥k⊥) + y2η2l2
⊥][l2

⊥ + y2M2]
Ī

c,r
21 ,

Ī c
21 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]
θ (y−

0 − y−
1 )

×θ (y ′−
0 − y ′−

1 )

{
− exp

[
−i

(
xL + y

1 − y
xM

)
P +(y−

1 − y−
0 )

]}{
1 − exp

[
i

(
xL + y

1 − y
xM

)
P +(y ′−

1 − y ′−
0 )

]}
, (A10)

Ī r
21 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]

×θ (y−
1 − y ′−

1 )θ (y−
0 − y−

1 )

{
exp

[
−i

(
xL + y

1 − y
xM

)
P +(y ′−

1 − y−
0 ) − i(xK − xD)P +(y−

1 − y ′−
1 )

]

− exp

[
−i

(
xL + y

1 − y
xM

)
P +(y−

1 − y−
0 )

]}
. (A11)

In Fig. 7 there are again all three possible cuts for induced gluon radition:

Cc
33 = α2

s

Nc

[CA]
∫

dl2
⊥P (y)

[(l⊥ − k⊥)2 + κy4M2]

[(l⊥ − k⊥)2 + (1 − η)2y2M2]2
Ī c

33

Ī c
33 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]
θ (y−

0 − y−
1 )

×θ (y ′−
0 − y ′−

1 )

[
exp

{
i

(
ζ

y(1 − η)
xD + η(1 − y)

(1 − η)
xL + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y−

1 − y−
0 )

}

− exp

{
−i

(
xL + y

1 − y
xM

)
P +(y−

1 − y−
0 )

}][
exp

{
−i

(
ζ

y(1 − η)
xD + η(1 − y)

(1 − η)
xL + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)

×P +(y ′−
1 − y ′−

0 )

}
− exp

{
i

(
xL + y

1 − y
xM

)
P +(y ′−

1 − y ′−
0 )

}]
,

C l,r
33 = α2

s

Nc

[CA]
∫

dl2
⊥P (y)

l2
⊥ + κy4M2

[l2
⊥ + y2M2]2

Ī
l,r
33 , (A12)
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FIG. 8. Central, left and right cuts for C13.

p0 p0

q q

PP

lQ

k k

l

y0 y 0
y1 y 1

FIG. 9. Central, left and right cuts for C31.

Ī l
33 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]
θ (y ′−

1 − y−
1 )

×θ (y ′−
0 − y ′−

1 )

[
− exp

{
i

(−ζ [1 − 2y(1 − η)]

y(1 − η)
xD − η(1 − y)

(1 − η)
xL + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y−

1 − y ′−
1 )

}]

×
{

1 − exp

[
i

(
xL + y

1 − y
xM

)
P +(y ′−

1 − y ′−
0 )

]}
, (A13)

Ī r
33 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]
θ (y−

0 − y−
1 )

×θ (y−
1 − y ′−

1 )

{
1 − exp

[
−i

(
xL + y

1 − y
xM

)
P +(y−

1 − y−
0 )

]}

×
[
− exp

{
−i

(−ζ [1 − 2y(1 − η)]

y(1 − η)
xD − η(1 − y)

(1 − η)
xL + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

}]
. (A14)

There are also three cuts in Fig. 8, and the contributions are

Cc,l,r
13 = α2

s

Nc

[
−CA

2

] ∫
dl2

⊥P (y)
[l⊥(l⊥ − k⊥) + κy4M2]

[l2
⊥ + y2M2][(l⊥ − k⊥)2 + y2(1 − η)2M2]

Ī
c,l,r
33 , (A15)

Ī c
13 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]
θ (y−

0 − y−
1 )

×θ (y ′−
0 − y ′−

1 )

{
1 − exp

[
−i

(
xL + y

1 − y
xM

)
P +(y−

1 − y−
0 )

]}[
exp

{
−i

(
ζ

y(1 − η)
xD + η(1 − y)

(1 − η)
xL

+ (ζ − 1)
xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y ′−
0 )

}
− exp

{
i

(
xL + y

1 − y
xM

)
P +(y ′−

1 − y ′−
0 )

}]
, (A16)

Ī l
13 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]
θ (y ′−

1 − y−
1 )

×θ (y ′−
0 − y ′−

1 )(−1)

[
exp

{
−i

(
ζ

y(1 − η)
xD + η(1 − y)

(1 − η)
xL + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y ′−
0 )

}

− exp

{
i

(
xL + y

1 − y
xM

)
P +(y ′−

1 − y ′−
0 )

}]
, (A17)
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Ī r
13 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]
θ (y−

0 − y−
1 )

×θ (y ′−
1 − y−

1 )

[
exp

{
i

(
ζ

y(1 − η)
xD + η(1 − y)

(1 − η)
xL + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y−

1 − y−
0 )

}

− exp

{
−i

(
xL + y

1 − y
xM

)
P +(y−

1 − y−
0 )

}][
− exp

{
−i

(−ζ (1 − 2y(1 − η))

y(1 − η)
xD − η(1 − y)

(1 − η)
xL + (ζ − 1)

xM

1 − y

−ζ
ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

}]
. (A18)

The contributions from the three cuts in Fig. 9 are

Cc,l,r
31 = α2

s

Nc

[
−CA

2

] ∫
dl2

⊥P (y)
[(l⊥ − k⊥)l⊥ + κy4M2]

[(l⊥ − k⊥)2 + y2(1 − η)2M2][l2
⊥ + y2M2]

Ī
c,l,r
31 ,

Ī c
31 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]
θ (y−

0 − y−
1 )

×θ (y ′−
0 − y ′−

1 )

[
exp

{
i

(
ζ

y(1 − η)
xD + η(1 − y)

(1 − η)
xL + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y−

1 − y−
0 )

}

− exp

{
−i

(
xL + y

1 − y
xM

)
P +(y−

1 − y−
0 )

}][
1 − exp

{
i

(
xL + y

1 − y
xM

)
P +(y ′−

1 − y ′−
0 )

}]
, (A19)

Ī l
31 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]
θ (y ′−

0 − y ′−
1 )

×θ (y ′−
1 − y−

1 )

[
− exp

{
−i

(−ζ [1 − 2y(1 − η)]

y(1 − η)
xD − η(1 − y)

(1 − η)
xL + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

}]

×
[

exp

{
−i

(
ζ

y(1 − η)
xD + η(1 − y)

(1 − η)
xL + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y ′−
0 )

}

− exp

{
i

(
xL + y

1 − y
xM

)
P +(y ′−

1 − y ′−
0 )

}]
, (A20)

Ī r
31 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]
θ (y−

1 − y ′−
1 )

×θ (y−
0 − y−

1 )(−1)

[
exp

{
i

(
ζ

y(1 − η)
xD + η(1 − y)

(1 − η)
xL + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y−

1 − y−
0 )

}

− exp

{
−i

(
xL + y

1 − y
xM

)
P +(y−

1 − y−
0 )

}]
. (A21)

Contributions from two cuts from Fig. 10 are as follows:

Cc
23 = α2

s

Nc

[
−CA

2

] ∫
dl2

⊥

(
1 + (1 − y)2

y

)
[(l⊥ − yk⊥)(l⊥ − k⊥) + κy4M2][

(l⊥ − yk⊥)2 + y2M2 + 2y
(

k−
l−

)
l2
⊥
]
[(l⊥ − k⊥)2 + y2(1 − η)2M2]

Ī c
23,

Ī c
23 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]

× θ (y−
0 − y−

1 )θ (y ′−
0 − y ′−

1 )

{
− exp

[
−i

(
xL + y

1 − y
xM

)
P +(y−

1 − y−
0 )

]}

×
[

exp

{
−i

(
ζ

y(1 − η)
xD + η(1 − y)

(1 − η)
xL + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y ′−
0 )

}

− exp

{
i

(
xL + y

1 − y
xM

)
P +(y ′−

1 − y ′−
0 )

}]
, (A22)

Cr
23 = α2

s

Nc

[
−CA

2

] ∫
dl2

⊥

(
1 + (1 − y)2

y

)
[l⊥{l⊥ − (1 − y)k⊥} + κy4M2]

[l2
⊥ + y2M2][{l⊥ − (1 − y)k⊥}2 + y2(1 − η)2M2]

Ī r
23, (A23)
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FIG. 10. Central and right cuts for C23.

p0 p0

q q

PP

lQ

k

l

y0 y1 y 1

k

y 0

FIG. 11. Central and left cuts for C32.

Ī r
23 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]

×θ (y−
1 − y ′−

1 )θ (y−
0 − y−

1 )

{
exp

[
−i

(
xL + y

1 − y
xM

)
P +(y ′−

1 − y−
0 ) − i(xK − xD)P +(y−

1 − y ′−
1 )

]

− exp

[
−i

(−ζ [1 − 2y(1 − η)]

y(1 − η)
xD − η(1 − y)

(1 − η)
xL

)
P +(y ′−

1 − y−
1 ) − i

(
xL + y

1 − y
xM

)
P +(y−

1 − y−
0 )

]}
. (A24)

Contributions of Fig. 11 are

Cc
32 = α2

s

Nc

[
CA

2

] ∫
dl2

⊥

(
1 + (1 − y)2

y

)
[(l⊥ − k⊥)(l⊥ − yk⊥) + κy4M2]

[(l⊥ − k⊥)2 + y2(1 − k−/l−)2M2]
[
(l⊥ − yk⊥)2 + y2M2 + 2y

(
k−
l−

)
l2
⊥
] Ī c

32, (A25)

Ī c
32 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]
θ (y−

0 − y−
1 )

×θ (y ′−
0 − y ′−

1 )

[
exp

{
i

(
ζ

y(1 − η)
xD + η(1 − y)

(1 − η)
xL + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y−

1 − y−
0 )

}

− exp

{
−i

(
xL + y

1 − y
xM

)
P +(y−

1 − y−
0 )

}][
− exp

{
i

(
xL + y

1 − y
xM

)
P +(y ′−

1 − y ′−
0 )

}]
, (A26)

Cl
32 = α2

s

Nc

[
CA

2

] ∫
dl2

⊥

(
1 + (1 − y)2

y

)
[{l⊥ − (1 − y)k⊥}l⊥ + κy4M2]

[(l⊥ − k⊥)2 + y2(1 − η)2M2][(l⊥ − yk⊥)2 + y2M2 + 2yηl2
⊥]

Ī l
32, (A27)

Ī l
32 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]

×θ (y ′−
1 − y−

1 )θ (y ′−
0 − y ′−

1 )(−1)

[
exp

{
i

(
xL + y

1 − y
xM

)
P +(y−

1 − y ′−
0 ) + i(xK − xD)P +(y ′−

1 − y−
1 )

}

− exp

{
i

(−ζ (1 − 2y(1 − η))

y(1 − η)
xD − η(1 − y)

(1 − η)
xL

)
P +(y−

1 − y ′−
1 ) + i

(
xL + y

1 − y
xM

)
P +(y ′−

1 − y ′−
0 )

}]
. (A28)

Figure 12 has one possible cut,

Cl
10 = α2

s

Nc

[CF ]
∫

dl2
⊥P (y)

[l2
⊥ + κy4M2]

(l2
⊥ + y2M2)2

Ī l
10, (A29)

Ī l
10 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]
θ (y ′−

1 − y−
1 )

×θ (y ′−
0 − y ′−

1 )

{
− exp[−i(xK − xD)P +(y ′−

1 − y−
1 )] exp

[
i

(
xL + y

1 − y
xM

)
P +(y−

1 − y ′−
0 )

]}
. (A30)
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FIG. 12. Single possible right cut for C01.
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FIG. 13. Single possible left cut for C10.

Figure 13 also has single possible cut,

Cr
01 = α2

s

Nc

[CF ]
∫

dl2
⊥P (y)

[l2
⊥ + κy4M2]

(l2
⊥ + y2M2)2

Ī r
10, (A31)

Ī r
01 = exp

[
i

(
xB + xL + xM

1 − y

)
P +(y ′−

0 − y−
0 )

]
exp

[
i

(
ζxD + (ζ − 1)

xM

1 − y
− ζ

ηy2

1 − y
xL

)
P +(y ′−

1 − y−
1 )

]

×θ (y ′−
1 − y−

1 )θ (y ′−
0 − y ′−

1 )

{
− exp[i(xK − xD)P +(y ′−

1 − y−
1 )] exp

[
−i

(
xL + y

1 − y
xM

)
P +(y ′−

1 − y−
0 )

]}
. (A32)
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