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The conditions of local thermodynamic equilibrium of baryons (nonstrange, strange) and mesons (strange) are
presented for central Au + Au collisions at Facility for Antiproton and Ion Research (FAIR) energies using the
microscopic transport model UrQMD. The net particle density, longitudinal-to-transverse pressure anisotropy,
and inverse slope parameters of the energy spectra of nonstrange and strange hadrons are calculated inside a cell
in the central region within rapidity window |y| < 1.0 at different time steps after the collisions. We observed
that the strangeness content is dominated by baryons at all energies; however, contributions from mesons become
significant at higher energies. The time scale obtained from local pressure (momentum) isotropization and
thermalization of energy spectra are nearly equal and found to decrease with increase in laboratory energy. The
equilibrium thermodynamic properties of the system are obtained with a statistical thermal model. The time
evolution of the entropy densities at FAIR energies are found to be very similar to the ideal hydrodynamic
behavior at top Relativistic Heavy Ion Collider (RHIC) energy.

DOI: 10.1103/PhysRevC.94.054901

I. INTRODUCTION

The motivation of the relativistic heavy ion collider experi-
ments is to explore the properties of strongly interacting matter
(partonic or hadronic) at the finite temperature and/or density.
The current heavy ion research facilities, e.g., Relativistic
Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC),
are focused on unveiling the properties of deconfined quark-
gluon matter created at extreme temperatures and almost
vanishing net baryon density [1,2]. At this regime the lattice
quantum chromodynamics (lQCD) simulations have reported
a crossover from hadronic to partonic phases and the existence
of a critical point where the first-order phase transition line
terminates [3]. Thus RHIC has initiated the beam energy
scan program to find the location of a critical point in
the QCD phase diagram [temperature (T )–baryochemical
potential (μB) plane] [4].

In contrarst to the above experiments, the future Com-
pressed Baryonic Matter (CBM) experiment at the FAIR/GSI
Helmholtz Centre for Heavy Ion Research (GSI Helmholtzzen-
trum für Schwerionenforschung) laboratory is aimed to ex-
plore another facet of the QCD phase diagram, at high baryon
density (∼7 to 8 times ground-state nuclear matter density) and
moderate temperature [5,6]. The experiment would be playing
a very significant role in the scientific quest of understanding
the behavior of QCD at high density regime. The facility is
being designed to collide various species of heavy ions at
fixed target mode with anticipated beam energies of 5–45
GeV/nucleon. The diagnostic probes of the matter created
in the collisions include (i) short-lived vector mesons (ρ, ω)
decaying to dilepton pairs, (ii) production of multistrange
hyperons (�,�), (iii) dissociation of charmonium (J/�)
and charmed hadron (D,�c) states, etc. The existence of a
first-order phase transition from hadronic to partonic matter
and restoration of chiral symmetry at the large μB is ex-
pected to be found from the FAIR energy scan program [7].

Earlier experiments such as Relativistic Heavy Ion Collider
(RHIC)-Alternating Gradient Synchrotron (AGS) and Conseil
Européen pour la Recherche Nucléaire (European Council
for Nuclear Research) (CERN)-Super Proton Synchrotron
(SPS) were aimed to explore the above features through the
measurement of bulk observables like flow and momentum
spectra of hadrons. However, their efforts were constrained due
to limited beam luminosity. In recent years a similar research
program (NICA) at JINR-Dubna has been proposed to explore
phases of nuclear matter at high baryon density [8]. But the
CBM experiment would be more efficient for the detection of
bulk and rare probes, with the availability of high-intensity ion
beams [9].

In order to compute the dynamic evolution of the matter cre-
ated in such collisions, we need macroscopic and microscopic
models. The macroscopic models like hydrodynamics rely
upon the assumption of local thermal equilibrium of the created
matter on a certain time scale. The actual thermalization
criterion has seldom been tested. There are a few works that
have addressed the issue at higher collision energies in the
framework of perturbative QCD [10] or color-glass condensate
theory [11]. On the other hand, microscopic Monte Carlo
models like Ultra relativistic Quantum Molecular Dynamics
(UrQMD) [12], Hadron String Dynamics (HSD) [13], and
A Multi Phase Transport model (AMPT) [14] work on the
postulated interaction among the constituents (parton, hadron,
or string) and do not require any assumption of local thermal
equilibrium. Therefore, it is very important to test whether the
dense baryonic matter created in these collisions achieves a
local thermal equilibrium or not. In particular, we have inves-
tigated the time scale of local thermal equilibration of non-
strange and strange baryons in an elementary volume in phase
space from the time evolution of longitudinal-to-transverse
pressure anisotropy and slope of the energy spectrum. For this
purpose, we have employed the microscopic, N -body transport
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model called ultrarelativistic quantum molecular dynamics
(UrQMD). A comparison between the model and the data for
central Pb+Pb collisions at different energies at CERN-SPS
can be found in Ref. [15]. We considered the most central
collisions of gold (Au) nuclei at four beam energies associated
with the CBM experiment. The incident beam energy has
obvious implications on the time scale of equilibration, which
can be found in the subsequent section.

The organization of the paper is the following: In the
next section, we briefly review the microscopic transport
model UrQMD and then discuss the methodology of our
analysis. In Sec. III, we show the results for the time
evolution of density, ratio of longitudinal-to-transverse pres-
sure, and inverse slope parameter of the energy spectra for
nonstrange baryons, strange baryons, and strange mesons.
In Sec. IV, we utilize the statistical thermal model to
extract the postequilibrium thermodynamic parameters (e.g.,
temperature, chemical potentials) and calculated the entropy
density of the system. Finally we summarize the findings in
Sec. V.

II. METHODOLOGY OF THE ANALYSIS

The model UrQMD has been extensively used in recent
years for describing heavy ion collisions of center-of-mass
energy ranging from a few GeV/ nucleon to a few TeV/
nucleon [12]. We used the UrQMD version 3.3p2 in default
cascade mode without invoking any hydrodynamic evolution
for the initial state. It includes 55 baryon species (up to mass
2.25 GeV) and 32 meson species (up to mass 1.9 GeV)
and their corresponding antiparticles and isospin-projected
states. Particle production in UrQMD occurs through inelastic
collisions, decay of mesons, baryon resonances, and string
fragmentation. At low energies (Elab < 4 GeV) hadronic
interactions are based on two- or three-body potential. How-
ever, at high energies, hadron-hadron collisions are performed
stochastically in the spirit of the cascade model [16]. The
total (elastic and inelastic) cross sections of baryons and
mesons are generally fitted to experimental proton-proton or
proton-pion scattering data. For the resonant baryon-meson
or hyperon-baryon scattering where no experimental data are
available, the principle of detail balance or the additive quark
model have been used. The resonance scattering dominates the
total cross section at low beam momenta (up to plab ∼ 2 GeV);
however, toward higher beam momenta, string excitation has
the largest contribution. The inelastic collisions and decays are
responsible for changing the particle abundances of the system
while the elastic collisions modify the momentum distribution
of hadrons.

We have considered central collisions (impact parameter
b = 2 fm) of Au nuclei at the laboratory energies (Elab)
10A, 20A, 30A, and 40A GeV. For each energy we ran the
simulation at different time steps ranging from 1 to 15 fm/c;
6 × 104 events have been analyzed for each time step. The
center-of-mass frame is chosen as the computational frame
in our analysis. We have considered a cell of dimension
2 × 2 × 2 fm3 about the origin of Au + Au system. The test
volume has been chosen such that the effect of collective flow
of the system on the observables will be minimum and at the

same time the particle number should be large enough for
reasonably small fluctuation in the observables. Additionally
a momentum rapidity cut |yc.m.| < 1.0 has been imposed on
the particles under consideration to ensure that the beam
nucleon contribution does not come into account. We have
calculated the net particle density and different components of
microscopic pressure for nonstrange baryons, strange baryons,
and mesons inside the cell. The nonstrange baryons include
proton (p) and neutron (n), the strange baryons include �, �,
cascade (�), and �, and the strange mesons include kaons K+
and K0. All the higher mass resonances (baryon and meson)
are allowed to decay. We did not include � in the pressure
calculation at Elab = 10A and 20A GeV due to its limited
statistics at lower energies. However, we expect that inclusion
of � does not modify any conclusion drawn in this work. We
have also calculated the energy spectra (EdN/d3p vs E) of
protons and �s inside the cell. Lastly, the above quantities are
statistically averaged over the number of events for each time
step.

III. RESULTS

A. Time evolution of net particle density

The time (t) is the elapsed time in the center-of-mass
frame. Time t = 0 fm/c corresponds to the moment when
two nuclei touch each other. The net particle density ρ(t) is
defined as the difference of particle density and antiparticle
density. The evolution of net nonstrange baryon density (ρNS

B ),
net strange baryon density (ρS

B), net kaon density (ρS
M ), and

net strange baryon to kaon ratio (ρS
B/ ρS

M ) are depicted in
Fig. 1 at Elab = 10A, 20A, 30A, and 40A GeV. The net
particle density starts from a small value, reaches a maximum
around t = 2R/(γc.m.vc.m.) when the two nuclei pass through
each other, and then falls as the system expands. The generic
feature has been found in agreement with earlier works [17,18].
Here R is the radius of Au nucleus and γc.m. and vc.m. are
the Lorentz boost and velocity in the center-of-mass frame.
Thus we found the maximum matter densities near 6 fm/c
at 10A GeV and 3 fm/c at 40A GeV for all species. The
production of nonstrange baryons has been found to be similar
for all beam energies, but the strange baryon and meson
production becomes larger with increasing beam energy. This
is probably because the string excitation mechanism has major
contributions to strangeness production at higher energies.
The peak of baryonic (nonstrange and strange) matter density
has been found at 40A GeV, which is about 7–8 times
the ground-state nuclear matter density. The time evolution
of strange baryon to meson ratio has clearly shown the
net strangeness content of the created matter is dominated
by baryons for all the beam energies. The ratio has been
found to grow with time because the kaons and �s are
produced through the same strong interaction. However, the
kaons have suffered fewer scatterings in the medium due to
its small interaction cross section with other hadrons [19],
thus escaping the reaction volume quickly. The production
of kaons is larger at higher beam energies, which can be
seen from the nonmonotonus behavior of the ratio at smaller
times.
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FIG. 1. (Upper panel) Time evolution of net density of (a) nonstrange baryons (ρNS
B ), (b) strange baryons (ρS

B ); (lower panel) (c) kaons
(ρS

M ) and (d) net strange baryon to kaon ratio (ρS
B/ ρS

M ) inside the central cell for Au + Au collisions (b = 2 fm) at the laboratory energies
10A, 20A, 30A, and 40A GeV. The error bars are statistical only.

B. Isotropization of pressure components
of baryons and mesons

We have studied the isotropization of different compo-
nents of microscopic pressure of nonstrange baryons, strange
baryons, and kaons for an expanding system. The pressure
components are highly anisotropic immediately after the
collision. Thermal equilibrium is established in the cell
when the components have become nearly isotropic. Different
components of microscopic pressure are calculated in UrQMD
using the ideal gas ansatz [20]:

P(x,y,z) =
∑

i

p2
i(x,y,z)

3V
(
p2

i + m2
i

) 1
2

, (1)

where pi is the momentum, mi is the mass of ith hadron, and V
is the volume of the cell under consideration. The longitudinal
and transverse components of pressure for an ensemble of
hadrons are defined as

PL = 〈Pz〉; PT = 1
2 (〈Px〉 + 〈Py〉), (2)

where 〈 〉 corresponds to the statistical average over the
number of events. The time evolution of the longitudinal-to-
transverse pressure ratio (PL/PT ) for the above-mentioned
hadron species is shown in Fig. 2 at the four beam
energies.

The PL/PT ratio of baryons (nonstrange and strange)
starts from a large value at initial time and ultimately settles
down to a value close to 1.0. This reflects the longitudinal

(z) and transverse (x,y) momentum distribution of baryons,
which are highly anisotropic at initial times. Successive
elastic scatterings in the medium have made their momentum
distribution nearly isotropic. We found that the ratio PL/PT

becomes 1.0 around 6.5 fm for nonstrange baryons and 7 fm
for strange baryons at Elab = 10A GeV. However, the system
further evolves and the ratio reaches a constant value ∼ 0.8
for t � 9 fm/c. At this point we may say that the baryonic
matter achieves a thermal equilibrium. Earlier work at AGS
energy had also found similar time scale [20]. The deviation
of PL/PT from unity after equilibrium possibly arises due
to finite shear viscosity of the hadronic matter [21]. The
ratio is closer to unity as the system approaches the ideal
fluid limit. This has been shown by a recent study on the
pressure isotropization in a quark-gluon plasma for Au + Au
coliisions at top RHIC energy [22]. For other beam energies
the PL/PT ratio of baryons has become unity much earlier,
and it achieves a constant value ∼ 0.8–0.7 for t � 8 fm/c
at 20A GeV, for t � 7 fm/c at 30A GeV and for t � 6
fm/c at 40A GeV. On close inspection of Fig. 2, we found
the pressure isotropization of nonstrange baryons happens a
little earlier, 
t ∼ 0.5 fm/c, than that for strange baryons. The
observation is in concurrence with an earlier UrQMD-based
calculation [23], which has shown the average freeze-out time
of nucleons is smaller than the strange baryons (�,�). The
PL/PT ratio of kaons approaches to 1.0 at early times, t ∼ 3
fm/c, and then becomes almost constant ∼0.6–0.7 at the
same time as the baryons. The initial longitudinal-to-transverse
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FIG. 2. Time evolution of longitudinal-to-transverse pressure ratio (PL/PT ) of nonstrange baryons, strange baryons, and kaons inside the
central cell for Au + Au collisions (b = 2 fm) at the laboratory energies (a) 10A, (b) 20A, (c) 30A, and (d) 40A GeV. The error bars are
statistical only.

pressure (momentum) anisotropy of kaons has been found
smaller than baryons, which could be because kaons have
only one constituent quark from the original excited hadron
and suffer fewer resonant scatterings than baryons in medium.
Thus we found the pressure isotropization time of baryons and
mesons reduces by about 3 fm/c from Elab = 10A GeV to
Elab = 40A GeV.

C. Thermalization of energy spectra of baryons

In this section, we adopted an alternate approach to
equilibrium which would reinforce the findings of earlier
sections. We investigated the time scale of local thermalization
of baryonic matter from the time evolution of inverse slope
parameter of the energy spectra (EdN/d3p vs E). For
this purpose we have parameterized the energy spectra of
proton and � inside the cell by Tsallis distribution [24].
An important criticism often arises is that systems obeying
nonextensive statistics sometimes achieve thermal equilibrium
or not. Here we refer to the work of Bı́ró and Purcsel [25],
which has shown that two nonextensive subsystems do achieve
a common equilibrium distribution within the framework of
a nonextensive Boltzmann equation. The Tsallis distribution
has extensively been used in recent years for describing the
transverse momentum (pT ) distribution of produced hadrons
at RHIC and the LHC energies [26,27]. The special merit of
the distribution is that at a low-energy limit it reduces to an
exponential distribution and at a high-energy limit it reduces to
a power-law distribution [28]. Thus, it can accommodate both

equilibrium and nonequilibrium phenomena. A recent work
has found that the Tsallis distribution fits reasonably well for
all particle spectra for pT < 10 GeV at midrapidity in d +
Au, Cu + Cu, and Au + Au collisions at RHIC [29]. Keeping
these facts in mind, we write the energy spectra of proton and
� inside the cell of dimension 2 × 2 × 2 fm3 about the origin
of Au + Au system as

E
d3N

d3p
= C

(
1 + E

bT

)−b

, (3)

where E is the energy of baryon in the unit of GeV and b =
1/(q − 1) is dimensionless. C has the unit of Gev−2 and T
is in GeV. q is called the nonextensive parameter of Tsallis
distribution. The values of C, b, and T are obtained through
fitting the energy spectra up to E = 3 GeV. The inverse slope
parameter of this distribution is given by

Tslope = T + (q − 1)E. (4)

In the asymptotic limit E → 0, the inverse slope parameter
(Tslope) gives the thermodynamic temperature of the system
[25]. We have calculated the Tslope of proton and � energy
spectra at E = 0.1 GeV (nearly pion mass) and studied its
time evolution at the four beam energies. The error in Tslope

arises from the errors in the fitting parameters T and b. The
results are depicted in Fig. 3.

We have found Tslope (for proton and � both) falls sharply
with time and then almost scales as ∼t−1/3 for t � 9 fm/c
at 10A GeV laboratory energy. If Tslope corresponds to the
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FIG. 3. Time evolution of the inverse slope parameter (Tslope) of the energy spectra of proton and � inside the central cell for Au+Au
collisions (b = 2 fm) at the laboratory energies (a) 10A, (b) 20A, (c) 30A, and (d) 40A GeV. The error bars are statistical only.

local temperature of system, then we can infer an isentropic
longitudinal expansion sets in inside the above-mentioned cell
analogous to Bjorken ideal hydrodynamics. The temperature
follows the Bjorken scaling solution. We consider the time
as the local thermal equilibration time scale of the system at
which the scaling behavior of the slope parameter has initiated.
Similarly we have found the t−1/3 scaling holds good for t � 7
fm/c at 20A GeV, t � 6 fm/c at 30A GeV, and t � 5 fm/c
at 40A GeV beam energy. At later times (say, t > 10 fm/c at
Elab = 40A GeV), the Tslope is seen to scale as ∼t−1 owing to
the three-dimensional spherical expansion of the system (see

Fig. 4). The assumption of the Bjorken hydrodynamic regime
with the above-mentioned scaling solution, namely, initial one-
dimensional flow and ideal gas equation of state, could be
dubious at lower collision energies, although earlier works
at AGS and SPS energies [30] have found phenomenological
success based on it. However, it may be noted that we do
not study thermalization of the whole reaction volume, but
rather concentrate at the very central part of the system only.
For this region, the above assumptions may be relevant; at
least we can identify clearly the Bjorken scaling regime of
Tslope for all energies (see Fig. 3). Thus we have found time
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FIG. 4. The scaling behavior of inverse slope parameter (Tslope) of the energy spectra of � inside the central cell for Au+Au collisions
(b = 2 fm) at (a) 20A and (b) 40A GeV laboratory energies. The black dotted line denotes the scaling due to longitudinal expansion and the
red dashed line denotes scaling due to three-dimensional expansion. The error bars are statistical only.
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FIG. 5. (Upper panel) The χ 2 per degrees of freedom (χ 2/ndf )
at different times for the Tsallis (filled symbols) and Maxwell-

Boltzmann (open symbols) distribution which are fitted to the energy
spectra of proton and � in the central cell for Au +Au collisions
(b = 2 fm) at Elab = 30A GeV. (Lower panel) The thermalization
time obtained in this work (blue square) is compared with the local
thermalization time tstart (red circle) used in the hybrid (UrQMD +
hydrodynamics) model [31]. The error bars are considered to be
systematic.

scale of thermalization of energy spectra roughly in agrees
with the pressure isotropization time of baryons and decreases
with the increase in laboratory energy for the above mentioned
cell.

A natural question about the analysis involving Tslope is
the following: How better does the Tsallis distribution fit the
spectrum compared to any classical distribution? In order to
see that, we fit the energy spectra of baryons with Maxwell-
Boltzmann (MB) distribution: f (E) = C ′exp[−(E − μ)/T ].
C ′ is a constant, T is the temperature, and μ is the chemical
potential in usual notation. We have fitted the spectra for Au
+Au collisions at Elab = 30A GeV for the same range of E
and calculated the χ2 per degrees of freedom (χ2/ndf ) for
different times. The result is depicted in Fig. 5. It has been
observed that the Tsallis distribution mostly gives a lower
value of χ2/ndf which is close to unity in comparison to
the MB distribution. The inverse slope parameters of both
distributions at different times are listed in Table I.

Several facts emerge upon close inspection. First, the two
parameters are very similar at early times (say, up to 3
fm/c). This might be due to numerical equivalance of the

TABLE I. The inverse slope parameters for Tsallis and Maxwell-
Boltzmann distributions at different times. The distributions are fitted
to the energy spectra of protons in the central cell for Au+Au
collisions at Elab = 30A GeV.

t Tslope(Tsallis) T (MB)
(fm/c) (GeV) (GeV)

1 0.275 0.267
2 0.252 0.247
4 0.200 0.223
6 0.140 0.195
8 0.138 0.178
10 0.121 0.161
12 0.099 0.138
14 0.083 0.116

two distributions at these times. However, it can be noted
that χ2/ndf comes out very large at those times for both
distributions; thus the parameters may not be describing a
good fit.

Now in the thermal regime, say for t � 6 fm/c, the two
parameters differ by nearly 40 MeV and Tslope (Tsallis)
is smaller than T(MB). The behavior has been studied in
Ref. [32]. The Tsallis distribution describes a near-thermal
equilibrium situation for q value close to unity. For the same
particle yield, Tsallis distribution leads to lower temperature
(i.e., inverse slope parameter) than MB distribution for q > 1.
The Tsallis temperature often interpreted as the superposition
of different MB temperatures and the relative width of
fluctuation in T (MB) is related to the nonextensivity parameter
(q − 1) [33]. We have checked that (q − 1) remains almost
constant at ∼0.03 during the time span. The constant difference
between the slope parameters can be attributed to this fact. A
similar trend between the inverse slope parameters has been
reported in Ref. [34] where the particle spectra for central
Pb-Pb collisions at the LHC energy are fitted with both Tsallis
and MB distribution.

D. A comparison with earlier work

We have compared our result with the local thermalization
time scale (tstart) used by an earlier work of hybrid model
of Boltzmann transport and hydrodynamics by Petersen et al.
[31]. The model has successfully described the data of rapidity-
dependent yield and transverse mass spectra of hadrons at AGS
and SPS experiments. The tstart is considered ad hoc as the
nuclear passage time in the center-of-mass frame. The com-
parison can be found in Fig. 5. We have introduced a systematic
uncertainty of ±0.5 fm in our estimated thermalization time
because the simulation was carried out in time steps of 
t =
1 fm. It has been found that our result decreases with increasing
laboratory energy similar to tstart but is about 1.5 times larger
in magnitude. The earlier work has assumed that tstart is the
lowest possible time needed for local thermalization; however,
the current study could provide a more realistic estimate of
it. Nevertheless, the issue has been investigated further in
Ref. [31], which found that multiplicity and mean transverse
momenta of particles do not change appreciably when tstart

increases by factor of 2.
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FIG. 6. Time evolution of average number of collisions
(〈Ncoll(t)〉) suffered by (a) protons and neutrons, (b) � and � baryons,
and (c) kaons for Au + Au collisions (b = 2 fm) at laboratory energies
10A and 30A GeV.

IV. COMPARISON WITH STATISTICAL THERMAL
MODEL

In the preceding sections we argued that the dense hadronic
matter created in the collisions will achieve local thermal
equilibrium on a certain time scale. Thus we can employ the
statistical hadron gas model [35] to extract the intensive ther-
modynamic variables like temperature and chemical potential
of the system during subsequent evolution. The statistical
model cannot be applied prior to equilibrium but can be
applied beyond thermal freeze-out of the system. Traditionally
thermal freeze-out is defined as the average scattering rate
between the constituents becomes smaller than the average
expansion rate of the system. The system has become so dilute
that hardly any collision between the constituents takes place.
Following this criterion, we have checked the time evolution
of the average number of collisions (〈Ncoll(t)〉) suffered by
different hadron species. Figure 6 shows that average number
of collisions suffered by p, n, �,� baryons, and K mesons
almost saturate for t � 17 fm/c at Elab = 10A GeV and
t � 15 fm/c at Elab = 30A GeV. Considering the above
scenarios, we compared the statistical model with UrQMD
during the time interval 10 fm/c � t � 17 fm/c at 10A GeV
and 8 fm/c � t � 15 fm/c at 30A GeV laboratory energy.

The expressions for number density and energy density for
the ith hadron species in the statistical hadron gas model are
given by

ni = gi

(2π�)3

∫
4πp2fi(T ,μi) dp,

εi = gi

(2π�)3

∫
4πp2ei fi(T ,μi) dp,

TABLE II. The time evolution of temperature (T ), baryon
chemical potential (μB ), and strange chemical potential (μs) in the
central cell (2 × 2 × 2 fm3) for Au + Au collisions (b = 2 fm)
at laboratory energies of 10A and 30A GeV. The thermodynamic
parameters are obtained from the energy density of baryons (εB ),
number density of baryons (nB ), and number density of strange
hadrons (ns) using a statistical hadron gas model.

Elab = 10A GeV Elab = 30A GeV

t T μB μs t T μB μs

(fm/c) (GeV) (GeV) (GeV) (fm/c) (GeV) (GeV) (GeV)

10 0.145 0.708 0.174 8 0.152 0.616 0.123
11 0.136 0.697 0.148 9 0.145 0.601 0.100
12 0.128 0.687 0.125 10 0.137 0.595 0.081
13 0.120 0.680 0.102 11 0.129 0.593 0.067
14 0.114 0.670 0.082 12 0.123 0.587 0.047
15 0.108 0.664 0.070 13 0.115 0.586 0.031
16 0.102 0.659 0.049 14 0.110 0.586 0.019
17 0.097 0.656 0.041 15 0.105 0.585 0.011

where ei is the energy, T is the temperature, and μi is chemical
potential of the ith hadron. The hadrons are considered
relativistic, ei = (p2 + m2

i )
1
2 . fi is the distribution function

of the ith hadron (either Fermi-Dirac or Bose-Einstein).
However, the above distributions are practically approximated
to classical MB distribution as (ei − μi)/T � 1. μi can be
decomposed in terms of baryonic (μB) and strange (μs)
chemical potentials. The charge chemical potential (μQ),
which is an order of magnitude smaller than the other two,
has been neglected here:

μi = biμB + siμs,

where b and s are the baryon and strangeness quantum number
respectively. T ,μB , and μs are extracted from the following
equations:

εB =
baryon∑

i

εi , nB =
baryon∑

i

bini, ns =
baryon,meson∑

i

sini . (5)

The quantities in the left-hand side of Eq. (5), namely
energy density of baryons (εB), number density of baryons
(nB), and number density of strange hadrons (ns), are obtained
from the UrQMD. We have solved the above set of equations
during the time interval stated earlier. The values are listed
in Table II. We have plotted them in the QCD phase diagram
in order to get an estimate about the chemical and thermal
freeze-out time of the system (see Fig. 7). The chemical
freeze-out line has been obtained empirically from the thermal
model fit of particle ratios at different collision energies [36].
The thermal or kinetic freeze-out line has also been obtained
phenomenologically from the blast wave model fits of the
measured hadron spectra at different experiments [37]. It
can be seen at low energies Elab = 10A GeV, the chemical
and the kinetic freeze-out happens almost instantaneously
at t ≈ 17 fm/c. At higher energy Elab = 30A GeV, system
undergoes first chemical freeze-out at t ≈ 13 fm/c, and then
kinetic freeze-out at t ≈ 15 fm/c. The feature has already
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FIG. 7. The evolution of temperature (T ) and baryochemical
potential (μB ) in the central cell for Au + Au collisions (b = 2
fm) at Elab = 10A GeV and 30A GeV. The solid (blue) line denotes
the chemical freeze-out and the dashed (red) line denotes thermal
freeze-out boundary in relativistic heavy ion collisions [36,37].
The dotted circle denotes the expected region probed by the CBM
experiment (

√
sNN = 4–10 GeV) at FAIR.

observed in low-energy collision experiments at RHIC [38].
We would also like to add that our estimation of temperatures at
the kinetic freeze-out times closely agree with the values given
by the blast wave model fit to the � baryon spectra from the
NA49 Collaboration at the similar laboratory energies [15].

We are interested in computing bulk properties of a baryon-
rich hadronic medium, and thus the strange meson contribution
can be neglected as μsρ

S
M ≈ few MeV. Using the values of

temperature and chemical potential listed in Table II, we have
calculated the pressure of baryons with the statistical hadron
gas model:

P =
baryon∑

i

gi

(2π�)3

∫
4πp2dp

p2

3
(
p2 + m2

i

) 1
2

fi(T ,μi), (6)

and the entropy density (s) for baryons using the thermody-
namic relation:

T s = εB + P − μi

(
ρNS

B + ρS
B

)
, (7)

where μi is the chemical potential, defined earlier in this
section. We studied the time evolution of entropy density at
Elab = 10A and 30A GeV until thermal decoupling. Our aim
is to get some insight about the fluidity of the dense baryonic
matter created in these collisions. In recent times several
calculations [39–41] have been reported on the transport
properties of hadronic matter at finite baryochemical potential,
including the effect of high mass resonances, etc. However, the
fluidity of dense hadronic matter was discussed in Ref. [40]
and subsequently in Refs. [42,43]. The authors of Ref. [40]
have argued that the fluid behavior of a baryon-rich (μB ∼
500 MeV) hadron gas is closer to the ideal fluid limit than
the corresponding gas with zero baryon number. Following
their observation, we have compared the entropy densities
at Elab = 10A and 30A GeV with the ideal fluid limit
reached at the highest RHIC energy (

√
sNN = 200 GeV).

We have parameterized temporal evolution of entropy density
of hadronic matter from an ideal hydrodynamic simulation

t (fm/c)
7 8 9 10 11 12 13 14 15 16 17 18

)
-3

s 
(f

m

0

0.5

1

1.5

2

2.5

3

3.5
 = 10A GeVlabE
 = 30A GeVlabE

 = 0)
B

μIdeal hydro (

FIG. 8. The time evolution of entropy density of baryonic matter
inside the central cell for Au +Au collisions (b = 2 fm) at Elab = 10A

GeV and 30A GeV. The dashed line denotes the parametrization of
ideal hydrodynamic evolution of entropy density in the central region
for Au +Au collisions (b = 0 fm) at

√
sNN = 200 GeV [44].

[44] for central Au +Au collisions at
√

sNN = 200 GeV.
The entropy density at r = 3 fm from the center has been
found to scale with proper time (τ ) as ∼ τ−2.6 for τ � 10
fm/c. The results are depicted in Fig. 8 along with the
parameterization from ideal hydrodynamics. It is heartening
to see that the evolution of entropy density at Elab = 30A GeV
closely resembles that with ideal hydrodynamic limit at zero
net baryon density. The entropy density at Elab = 10A GeV
falls even a little faster than the aforementioned limit. It may
imply that the hadronic matter produced at 10A GeV beam
energy is more ideal than the same at 30A GeV beam energy.
The observation can be understood using the fact that shear
viscosity to entropy density ratio (η/s) of a hadronic system
decreases with increasing fugacity (μB/T ) of the system [21].

V. SUMMARY AND DISCUSSION

In this article, we have investigated the time scale for
local thermal equilibration of dense baryonic matter created in
central Au + Au collisions at the proposed CBM experiment
energies of Elab = 10A, 20A, 30A, and 40A GeV. The
microscopic transport model UrQMD has been used for
this purpose in the default cascade mode. The net baryon
density has been found maximum at 30–40 GeV and the
net strangeness of the created hadronic matter is dominated
by baryons for all energies stated above. We have studied
the time evolution of longitudinal-to-transverse microscopic
pressure anisotropy and inverse slope parameter of the energy
spectra of baryons and mesons inside a cell of 8 fm3 in the
central region of Au + Au system. The pressure anisotropy
ratio of baryons and mesons has achieved a constant value
close to unity, at a certain time. The time has been found
to decrease with the increase in laboratory energy. The time
scale obtained from the evolution of inverse slope parameter
of energy spectra of baryons nearly agrees with the pressure
(or momentum) isotropization time. However, a small time
difference (
t ∼ 0.5 fm/c) in the pressure isotropization as
well as in the thermalization of energy spectra between strange
and nonstrange baryons has been noticed. We have chosen
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our test volume in the central collision zone. The estimated
time scales are expected to grow in a region which is away
from the center because of small scattering rates. Therefore,
the present study provides a realistic estimate of the time
scales required for achieving thermodynamic equilibrium for
the central region of the system created at those energies.

Using a statistical thermal model, we have obtained the
temperature and chemical potentials of the hadronic matter
during the post-equilibrium evolution at Elab = 10A and 30A
GeV. They are found to agree qualitatively with the empirical
relation between T and μB at the chemical freeze-out.
In addition we have calculated the entropy density of the
baryonic matter inside the cell and found the evolution is

quasi-isentropic, close to the ideal hydrodynamic limit at zero
net baryon density.
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