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Surface direct nuclear photoeffect in heavy deformed nuclei

B. S. Ishkhanov,1,2 V. N. Orlin,2 and K. A. Stopani2
1Lomonosov Moscow State University, Department of Physics, Moscow 119991, Russia

2Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow 119991, Russia
(Received 13 July 2016; published 30 November 2016)

A mechanism of photon-induced direct knockout of a nucleon from the nuclear surface without formation of
intermediate excited nuclear state is described. The effect plays an important role at least for the (γ,p) reaction on
heavy nuclei in the energy region centered at about 30 MeV where the probability of formation of the giant dipole
resonance is already small but quasideuteron photoabsorption still does not prevail. A compact model of the
surface direct nuclear photoeffect (SDNP) in heavy deformed nuclei that can be used to calculate the differential
dσ (Eγ ,ϑ)/d� and total σ (Eγ ) cross sections of the SDNP under adiabatic approximation is formulated. The
model is applied to calculation of the (γ,p) reaction cross sections on 160Gd and 184,186W. The importance of the
SDNP effect for these nuclei at Eγ ∼ 30 MeV is demonstrated.
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I. INTRODUCTION

Description of the nuclear photoeffect, i.e., emission of
nucleons in photonuclear reactions, is typically performed
within semiclassical [1–7] or quantum multistep [8–14] pre-
equilibrium models in combination with the Weisskopf-Ewing
or Hauser-Feshbach statistical models. Such models treat
an excited nucleus as a composite system approaching to
statistical equilibrium, and successfully describe emission of
photoneutrons over a wide range of mass numbers A and
incident photon energies Eγ (up to the π meson production
threshold). However, these models are not able to explain the
experimentally observable excess yield of photoprotons from
nuclei with A > 100 at the high-energy tail of the giant dipole
resonance (GDR), which indicates a significant contribution
to the (γ,p) reaction, in this case from the direct mechanism
nuclear photoeffect [15].

In the late 1950s, a description of the direct nuclear
photoeffect based on the shell model was proposed in a series
of works [16–18]. It was assumed that direct photonucleons are
emitted directly from the doorway (1p1h) configurations that
are excited during absorption of a E1 photon. The energies of
such configurations had been shifted towards higher energies
so as to align the computed excitation energy with the actual
position of the GDR. Under these assumptions it follows (1)
that the direct photonucleon yield is at maximum near the
peak of the GDR and gradually decreases at higher energies
matching its behavior, and (2) that the angular distribution
of the emitted nucleons is not isotropic, with increased
probability of emission at 90◦ to the direction of motion of the
absorbed photon. In fact, this model describes the semidirect
nuclear photoeffect, since the GDR excitation is involved in
the nucleon knockout process. Apparently, this model as well
as the statistical approach cannot explain the large yield of
photoprotons in heavy nuclei at the high-energy tail of the
GDR.

Therefore, at large energies Eγ a major contribution
to the (γ,p) reaction arises not only from the semidirect
photoeffect, but also from direct nucleon knockout from
single-particle bound states of the target nucleus. In Ref. [15]
the high-energy bump corresponding to the protons emitted

from the 197Au(γ,p) reaction was interpreted in terms of
the direct-semidirect (DSD) model developed in [19–22].
In the DSD model, one explicitly considers only the first
stage of the reaction that includes both the direct process of
nucleon knockout (capture) and nucleon emission (absorption)
with excitation of a multipole giant resonance. Interaction
of the direct and semidirect reaction mechanisms as well
as the effects of more complex processes are taken into
account through modification of the multipole operators and
form factors describing decay and excitation of the multipole
giant resonances. Presently, the DSD model formalism allows
calculations only for nuclei with closed or almost closed
single-particle subshells.

It is unlikely that the excess yield of photoprotons from
heavy nuclei above the giant dipole resonance (about 30 MeV)
can be explained as direct knockout of nucleons from deep-
lying subshells of the target nucleus, since the probability
of this process is low compared to the probability of the
competing process of excitation of a composite state with
subsequent emission of semidirect and statistical nucleons.
Therefore, one is left to presume that the considered effect
is a result of the knockout of a nucleon from the surface
layer of the target nucleus (from the outermost subshell),
when the absorbed photon energy is almost entirely spent
to the knockout of a bound nucleon which then moves in
the average field while the core of the target nucleus only
experiences recoil. This process, which is called the surface
direct nuclear photoeffect (SDNP) in the rest of the present
work, is illustrated in Fig. 1.

The overall contribution of the described effect should not
be, at first glance, very considerable. However, it follows from
simple semiclassical argumentation that there can be cases
where it results in a significant yield of photoprotons. As it
is seen from Fig. 1, when a nucleon is knocked out from
the peripheral region of a nucleus due to photon absorption
the nucleus receives an orbital momentum l ≈ kγ R, where
kγ = Eγ /�c fm−1 is the wave vector transfer and R = 1.2A1/3

fm is the radius of the nucleus. Since l can take only integer
values in quantum mechanics, it is natural to expect that when
l is approximately an integer a maximum appears in the SDNP
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FIG. 1. Schematic illustration of the proton surface direct
photoeffect.

cross section. The lowest lying “resonance” is expected at
l = 1, which corresponds to electric dipole absorption and is
placed at the energy of about Eγ ∼ 165A−1/3 MeV. Thus, the
SDNP yield should be expected to be noticeable for heavy
nuclei with A ∼ 150–200 in the Eγ ∼ 30-MeV region.

The SDNP amplitude corresponding to the knockout of a
nucleon from a single-particle level jm can be approximated
by the product 〈f |a(jm)|0〉〈k(−)|Hptb|jm〉, where the first
term is the matrix element of the a(jm) annihilation operator
corresponding to a transition from the ground state |0〉 of
the initial nucleus to the |f 〉 state (ground state or a low-
lying excitation) of the final nucleus (coefficient of fractional
parentage), and the second term describes a photon-induced
transition of a single nucleon from the jm orbital to the
stationary scattering state |k(−)〉 in the average field of the final
nucleus with ingoing waves, corresponding to the emission of
a nucleon with the wave vector k.

Calculation SDNP in spherical nuclei is complicated by the
fact that due to the effect of the residual interaction the actual
wave functions of the |0〉 and |f 〉 states for open-shell nuclei
can be very different from the simple multiparticle shell wave
functions. An exception is comprised by magic or sufficiently
close to magic nuclei and light nuclei with closed subshells
where the SDNP can be calculated using the direct knockout
model developed in [23–25]. In this model, it is assumed (1)
that the states of the initial and final nuclei can be described
using a independent-particle shell model, (2) that the photon
is absorbed by a single bound nucleon that is subsequently
emitted into continuum, while other nucleons form an inert
core. If the final nucleus is produced in the ground state it is
easily seen that this reaction mechanism corresponds to the
SDNP. The direct process contribution to cross sections of
the reactions 12C(γ,p0)11B, 12C(γ,n0)11C, 16O(γ,p0)15N, and
40Ca(γ,p0)39K was calculated in [23–25].

The complexity of SDNP computation is also significantly
reduced in the case of heavy axially symmetric deformed
nuclei with sufficiently hard surface, for which the ground state
wave function in the intrinsic frame can be approximated as an
antisymmetrized product of single-particle (or quasiparticle)
states of nucleons in filled orbitals of a deformed nuclear
potential, which allows a general solution to the formulated
problem to be obtained. In this work we limit ourselves to
consideration of SDNP only in such nuclei.

The present work is structured as follows. The basic
assumptions used for description of the SDNP in deformed

nuclei with general expressions for the differential dσ
d�

(Eγ ,ϑ)
and total σ (Eγ ) cross sections under adiabatic approximation
are formulated in Sec. II. In Sec. III a system of algebraic
equations for the coupled lj reaction channels used for
calculation of the scattering state of nucleon at r � Rpeak ≈
1.6A1/3 fm in the deformed average nuclear field is described.
Section IV contains a description of the procedure used
to replace the spherically symmetric optical potential by a
deformed optical potential as an approximation of the average
nuclear field in which motion of the outgoing nucleon takes
place. Thus, a complete model of the SDNP for deformed
nuclei is constructed, after which in Sec. V it is applied to
the (γ,p) reactions in 160Gd and 184,186W. In the Conclusions
section the main results of the present work are summarized
and characteristic properties of the SDNP that can be used
to distinguish this process from other nuclear photoeffect
mechanisms are outlined.

II. ADIABATIC APPROXIMATION

The description of the surface direct nuclear photoeffect in
this work is based on the following assumptions:

(1) the consideration is limited only to heavy, axially
symmetric deformed nuclei;

(2) the adiabatic condition is met: the velocity of rotational
motion of the deformed nucleus and, thus, of the
average nuclear field, is negligible in comparison with
the velocity of the outgoing nucleon knocked out by the
photon, so its motion is not disturbed by the rotation;

(3) the photon interacts only with one of the nucleons
from the last-filled orbital of the initial nucleus,
other nucleons remain in their initial orbitals, and the
final nucleus remains in the ground state in intrinsic
coordinate frame;

(4) the initial electromagnetic interaction of the photon
with the target nucleus is considered within the time-
dependent perturbation theory under the assumption
that the main contribution to the reaction corresponds
to electric dipole absorption, according to the semiclas-
sical argumentation in the Introduction;

(5) the average nuclear field that interacts with the outgoing
nucleon is approximated with a deformed optical
potential (its construction is described below).

Under these assumptions the differential cross section of
nucleon emission due to SDNP in the intrinsic frame {x ′,y ′,z′},
the z′ axis of which is directed along the symmetry axis of the
nucleus, can be represented as

dσint(Eγ ,ϑ ′,φ′)
d�′

= 4

3
π3 mkEγ e2

eff

c�3

1

2

×
∑

μ=±1

∑
s=± 1

2

∣∣∣∣∑
ν

D1
μν(ω)〈〈(ks)(−)|r ′Y1ν(θ ′,ϕ′)|β〉

∣∣∣∣
2

,

(1)
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where m is the reduced mass of the nucleon, eeff is the effective
nucleon charge (equal to eN/A for a proton, and −eZ/A for
a neutron; Eq. 3C-35 in [26]), |(ks)(−)〉〉1 is the scattering
state in the average field of the deformed final nucleus with
ingoing spherical waves, that corresponds to an outgoing
nucleon with the wave vector k and projection of spin onto
the z′ axis s = ± 1

2 , k = |k| = √
2mε/� is the absolute value

of the wave vector of the outgoing nucleon, ε = Eγ − Bthr

is its energy (Bthr is the nucleon separation energy of the
target nucleus), ϑ ′,φ′ are the polar and azimuthal angles of
the emitted nucleon in intrinsic frame, |β〉 is the initial single
particle state from which the nucleon is knocked out (since the
target nucleus is axially symmetric it has a defined value mβ of
the angular momentum projection onto the symmetry axis z′),
D1

μν(ω) is the finite rotation matrix describing transformation
of the electric dipole moment operator from the intrinsic
{x ′,y ′,z′} to the laboratory {x,y,z} frame, where the z axis
coincides with the direction of motion of the incident photon,
ω ≡ {θ1,θ2,θ3} are the Euler angles defining the position of
the intrinsic frame relative to the laboratory frame, and the
μ = ± 1

2 quantum number accounts for two possible circular
polarization states of the photon. Thus, the summation in (1)
takes into account different spin orientations of the outgoing
nucleon and averaging over photon polarization states.

In the case of an even number of nucleons in the last-filled
orbital one of the two nucleons with jz′ = ±mβ is knocked out
by the photon with equal probabilities. Without the nuclear
pairing effect this should imply a twofold increase of cross
section (1). However, due to pairing the probability that the
nucleon pair is in the state ν close to the Fermi surface is less
than 1. In deformed nuclei this probability can be approximated
by the following expression [27]:

v2
ν = 1

2

[
1 − εν − λ√

(εν − λ)2 − �2
ν

]
, (2)

where εν is the energy of the single-particle state ν, λ is the
chemical potential, and �ν is the pairing energy. Since λ is
approximately equal to the energy of the last-filled orbital |β〉,
then an approximate relationship is obtained v2

β ≈ 1
2 and no

additional coefficient is required in (1).
The |(ks)(−)〉〉 state can be expanded into spherical harmon-

ics:

|(ks)(−)〉〉 = �√
mk

∞∑
l=0

l+1/2∑
j=|l−1/2|

j∑
m=−j

(
l,m − s,

1

2
,s|jm

)

×Y ∗
lm−s(θ

′,φ′)|α(−)〉〉, (3)

where |α(−)〉〉 ≡ |(ε ljm)(−)〉〉 are the scattering states in the
average nuclear field with the energy ε = �

2k2

2m
, which are not

eigenstates of l2 and j2 operators in the case of deformed field
(and do not have corresponding definite quantum numbers l

1Throughout the text the scattering states in the deformed average
field are denoted using the | . . . 〉〉 symbol, while scattering states in
spherical average field use the | . . . 〉 notation.

and j ), but still have the special property that a wave packet∫ ∞

−∞

γ /π

(ε − ε0)2 + γ 2
e−iεt |α(−)〉〉 dε

built from them approaches at t → +∞ the wave packet∫ ∞

−∞

γ /π

(ε − ε0)2 + γ 2
e−iεt |εljm〉〉free dε

of freely moving nucleons with fixed l, j . With spheroidally
deformed field the |α(−)〉〉 states have also a definite parity π
and projection m of the angular moment j onto the nuclear
symmetry axis. The �√

mk
factor accounts for the difference in

the normalization of the |(ks)(−)〉〉 and |(α(−)〉〉 states:

〈〈(k′s ′)(−)|(ks)(−)〉〉 = δ(k′ − k) δs ′s , (4)

〈〈α′(−)|α(−)〉〉 = δα′α ≡ δ(ε′ − ε)δl′ lδj ′ j δm′ m. (5)

Substituting expansion (3) into (1) and summing over s
yields

dσintr(Eγ ,ϑ ′)
d�′

= π2

6

Eγ e2
eff

c�

∑
μ=±1

∑
ν

∑
ν ′

∑
ljm

∑
l′j ′

∑
l′′

D1
μν(ω)D1∗

μν ′(ω)

×Pl′′ (cos ϑ ′)(−1)j+j ′+ 1
2 −m+l′′ ĵ ĵ ′ l̂ l̂′ l̂′′ 2

×
(

l l′ l′′
0 0 0

)(
j l j ′

−m 0 m

){
j l′′ j ′

l′ 1
2 l

}

×〈〈α(−)|r ′Y1ν(θ ′,ϕ′)|β〉〈〈α ′(−)|r ′Y1ν ′ (θ ′,ϕ′)|β〉∗
∣∣∣∣
ε′=ε

,

(6)

where the notation Ĵ = √
2J + 1 is used.

Formula (6) describes angular distributions of photonucle-
ons in the intrinsic coordinate frame whose fixed position rel-
ative to the laboratory frame is determined by the Euler angles
ω. In order to obtain angular distribution of photonucleons
(under adiabatic approximation) in the laboratory frame one
has to do the following:

(1) transform the components of the spherical tensor

Pl′′ (cos ϑ ′) =
√

4π
2l′′+1Yl′′0(ϑ ′,φ′) in (6) to the laboratory

frame:

Yl′′0(ϑ ′,φ′) =
∑
m′′

Dl′′∗
m′′0(ω)Yl′′m′′(ϑ,φ); (7)

(2) perform averaging of the obtained expression
over all possible orientations of the nucleus in
the laboratory frame, which effectively
reduces to computation of the integral 1

8π2∫ π

0 sin θ1dθ1
∫ 2π

0 dθ2
∫ 2π

0 dθ3D
1
μν(ω)D1∗

μν ′(ω)Dl′′∗
m′′0(ω),

(3) after which summation over the quantum numbers
μ, ν ′, and m′′ has to be performed.

As a result the following expression for the differential
cross section of SDNP in laboratory frame is obtained:

dσ (Eγ ,ϑ)

d�
= π2

6

Eγ e2
eff

c�
{A0 + A2P2(cos ϑ)}, (8)
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where

A0 = 2

3

∑
lj

∑
νm

|〈〈α(−)|r ′Y1ν(θ ′,ϕ′)|β〉|2, (9)

A2 = −
√

10

3

∑
lj

∑
l′j ′

∑
νm

(−1)j+j ′+1/2−m+ν ĵ ĵ ′ l̂ l̂′

×
(

l l′ 2
0 0 0

)(
j 2 j ′

−m 0 m

){
j 2 j ′

l′ 1
2 l

}

×
(

1 1 2
−ν ν 0

)
〈〈α(−)|r ′Y1ν(θ ′,ϕ′)|β〉

× 〈〈α′(−)|r ′Y1ν(θ ′,ϕ′)|β〉∗
∣∣∣∣
ε′=ε,m′=m

. (10)

As expected the angular distribution of direct photonucle-
ons associated with E1 photon absorption is symmetric with
respect to the ϑ = 90◦ angle between the directions of motion
of the outgoing nucleon and the incident photon.

Integration of Eq. (8) over the polar ϑ and azimuthal φ
angles of the outgoing nucleon yields the total cross section of
SDNP in the considered approximation:

σ (Eγ ) = 4π3

9

Eγ e2
eff

c�

∑
lj

∑
νm

|〈〈α(−)|r ′Y1ν(θ ′,ϕ′)|β〉|2. (11)

At the end of this section it should be emphasized that
computation of all matrix elements in (9)–(11) is performed in
the intrinsic coordinate frame {x ′,y ′,z′}.

III. SYSTEM OF EQUATIONS DESCRIBING COUPLED l j
REACTION CHANNELS

As it was mentioned above, an axially symmetric deformed
optical potential V (r,θ ) will be used for description of the
average field in which motion of the outgoing nucleon takes
place (in the following, the prime marks at spatial variables in
intrinsic coordinate frame will be omitted). The potential can
be split into two parts:

V (r,θ ) = Vsph(r) + Vdef(r,θ ), (12)

where Vsph(r) is a usual spherical optical potential (see [28])
and Vdef(r,θ ) is the part of the optical potential depending
on the polar angle θ , which leads to coupling between the
reaction channels for scattering states with different values of
the angular momentum l,j .

As shown in [29] the scattering state |(ks)(−)〉〉 in potential
(12) can be expressed in the form

|(ks)(−)〉〉 = |(ks)(−)〉 + 1

ε − H − iρ
Vdef|(ks)(−)〉,

(13)
ρ → +0,

where H = Hsph + Vdef is the total single-particle Hamiltonian

of the system, Hsph = −�
2

2m
� + Vsph is its spherical component,

|(ks)(−)〉 is the scattering state with ingoing waves correspond-
ing to Hsph.

An important property of (13) is fulfillment of proper
boundary conditions for the scattering state |(ks)(−)〉〉. Using

expansion (3) it can be transformed into an equation for partial
waves |α(−)〉〉:

|α(−)〉〉 = |α(−)〉 + 1

ε − H − iρ
Vdef|α(−)〉. (14)

Here, |α(−)〉 ≡ |(εljm)(−)〉 is the nucleon scattering with
ingoing waves in the spherical average field Vsph, that is
characterized by the nucleon energy ε, its orbital and total
angular momentum values l and j , and the angular momentum
projection m.

Matrix elements 〈〈α(−)|rY1ν(θ,ϕ)|β〉 that appear in the
SDNP cross sections dσ

d�
(Eγ ,ϑ) and σ (Eγ ) [Eqs. (8)–(11)]

describe the amplitudes of E1 transition of the nucleon from
the bound state |β〉 to the scattering state |α(−)〉〉. This implies
that the conjugate states (Dirac’s bra-vectors) 〈〈α(−)| in the
continuous spectrum and 〈n| in the discrete spectrum have
to be orthogonal to the eigenstates |α(−)〉〉 and |n〉 of the
Hamiltonian H .

In our case the Hamiltonian contains the complex opti-
cal potential and is, therefore, non-Hermitian. In order to
construct such states we note that the states 〈�1|,〈�2|, . . . ,
that are conjugate to the eigenvectors |�1〉,|�2〉, . . . of some
non-Hermitian Hamiltonian H̃ = H̃+ = H̃ ∗, will meet the
necessary requirements if they are defined via the following
equations:

〈�i |H̃ = Ei〈�i |, i = 1,2, . . . . (15)

Indeed, in this case 〈�i |H̃ |�k〉 = Ei〈�i |�k〉 = Ek〈�i |�k〉. It
follows that 〈�i |�k〉 = 0 when Ei = Ek .

Equation (15) can be rewritten as (with ξ being the spin
variable)∑

ξ=± 1
2

∫
〈r′ξ ′|H̃ ∗|rξ 〉〈�i |rξ 〉∗d3r = E∗

i 〈�i |r′ξ ′〉∗, (16)

from which it follows that (up to the phase factor eiϕi ) when
H̃ ∗ = H̃ the wave function 〈�i |rξ 〉 of the conjugate state 〈�i |
is a complex conjugate to the wave function of the eigenstate of
H̃ ∗, and not H̃ . The phase factors can always be chosen is such
a way that the orthonormality and completeness conditions of
the states {|�i〉} have the usual form:

〈�i |�k〉 = δik, (17)∑
i

|�i〉〈�i | = 1. (18)

In this way we obtain an equation for the conjugate
scattering state 〈〈α(−)|. Taking into account the decomposition
of the Hamiltonian H into two parts from (15) we find

〈α(−)|(H − ε) = 〈α(−)|Vdef.

It follows that the conjugate state 〈〈α(−)| that satisfies the
equation 〈〈α(−)|(H − ε) = 0 can be expressed in the form

〈〈α(−)| = 〈α(−)| + 〈α(−)| Vdef
1

ε − H + iρ
, (19)

where the sign in front of an infinitesimal constant ρ is chosen
so as to ensure orthonormality of the scattering states, as shown

054623-4



SURFACE DIRECT NUCLEAR PHOTOEFFECT IN HEAVY . . . PHYSICAL REVIEW C 94, 054623 (2016)

below: from (14) and (19) we have

〈〈α′(−)|α(−)〉〉 = δα′α + 〈α′(−)|Vdef|α(−)〉〉
ε′ − ε + iρ

+〈α′(−)| 1

ε − H − iρ
Vdef |α(−)〉.

Then, using the identity

〈α′(−)| 1

ε − H − iρ

= 1

ε − ε′ − iρ

{
〈α′(−)| + 〈α′(−)|Vdef

1

ε − H − iρ

}

and once again (14) we obtain

〈〈α′(−)|α(−)〉〉 = δα′α + 1

ε − ε′ − iρ
{−〈α′(−)|Vdef|α(−)〉〉

+ 〈α′(−)|Vdef|α(−)〉 + 〈α′(−)|Vdef|α(−)〉〉
− 〈α′(−)|Vdef|α(−)〉} = δα′α.

Which proves the statement.
The wave function of the scattering state 〈〈α(−)| overlaps

with the wave function of the bound state |β〉 only in the in-
ternal reaction region (when r � Rreact ≈ 1.6A1/3 fm). In this
limited space region the spherical harmonic oscillator states
|Nljm〉 can be used as a basis (N denotes the total number of
harmonic oscillator quanta). The 〈〈α(−)|rY1ν(θ,ϕ)|β〉 matrix
element can, therefore, be expressed as

〈〈α(−)|rY1ν(θ,ϕ)|β〉
=

∑
N ′l′j ′

〈〈α(−)|N ′l′j ′m〉〈N ′l′j ′m|rY1ν(θ,ϕ)|β〉, (20)

where it is taken into account that in an axially symmetric
field the scattering state has a definite value of the magnetic
quantum number m.

The �ω energy of the spherical oscillator is reasonable to
be chosen so as to reproduce the experimental mean-squared
radius of the nucleon distribution inside the nucleus. This
yields the value �ω = 41A−1/3 MeV.

The initial state of the nucleon |β〉 from which it is knocked
out can also be approximated using the oscillator states
|Nljm〉. Within the Nilsson deformed oscillator potential
model [30,31] it will be of the form

|β〉 =
∑
lj∈β

clj |Nβ ljmβ〉, (21)

where clj are the coefficients of expansion of the state |β〉 into
spherical oscillator states defined by the Nilsson model.

By substituting (21) into the matrix element
〈N ′l′j ′m|rY1ν(θ,ϕ)|β〉, we obtain

〈N ′l′j ′m|rY1ν(θ,ϕ)|β〉
=

∑
lj∈β

clj 〈N ′l′|r|Nβl〉〈l′j ′m|Y1ν(θ,ϕ)|ljmβ〉, (22)

where the radial matrix element 〈N ′l′|r|Nβl〉 can be calculated
using the analytical expression given in [30], and the angular

matrix element 〈l′j ′m|Y1ν(θ,ϕ)|ljmβ〉 is determined by the
relationship

〈l2j2m2|Ylν(θ,ϕ)|l1j1m1〉

= (−1)m2− 1
2

√
1

4π
l̂2 l̂1 ĵ2 ĵ1 l̂

(
l2 l l1
0 0 0

)

×
(

j2 l j1

m2 −ν −m1

){
j2 l j1

l1
1
2 l2

}
. (23)

The task of calculation of the amplitudes (20) is, therefore,
reduced to calculation of the Nljm components of the
conjugate scattering states 〈〈α(−)| in the internal region of
the reaction.

In order to obtain the system of equations connecting these
components and, consequently, different lj scattering channels
we reformulate expression (19) for the conjugate scattering
state. Namely, using the identity

1

ε − H + iρ
= 1

ε − Hsph + iρ
+ 1

ε − H + iρ

×Vdef
1

ε − Hsph + iρ
,

we transform it to the form

〈〈α(−)| = 〈α(−)| + 〈〈α(−)|Vdef
1

ε − Hsph + iρ
. (24)

Continuous spectrum solutions of the Shroedinger equa-
tion Hsph|α(−)〉 = ε|α(−)〉 together with the discrete spectrum
solutions form a complete set of base states {|αcmpl〉} =
{|α(−)〉} ∪ {|αdisc〉}. After multiplication of Eq. (24) on the right
with the oscillator state |N ′l′j ′m〉 and using the completeness
property of both the basis {|α〉cmpl} and oscillator states |Nljm〉
(in the limited space region of the interaction) we obtain

〈〈α(−)|N ′l′j ′m〉
= δll′δjj ′ 〈ε(−)lj |N ′l〉 +

∑
N ′′l′′j ′′

∑
N ′

1l
′
1j

′
1

∑
α̃cmpl

〈〈α(−)|N ′′l′′j ′′m〉

×〈N ′′l′′j ′′m|Vdef|N ′
1l

′
1j

′
1m〉〈N ′

1l
′
1j

′
1m|

× 1

ε − H + iρ
|α̃cmpl〉〈α̃cmpl|N ′l′j ′m〉, (25)

where 〈ε(−)lj |N ′l〉 = ∫ ∞
0 〈ε(−)lj |r〉〈r|N ′l〉r2 dr is the radial

part of the scalar product 〈α(−)|N ′ljm〉 and

∑
α̃cmpl

≡
∑
l̃ j̃ m̃

{ ∫
ε̃�0

dε̃ +
∑

Reε̃<0

}
.

We have∑
α̃cmpl

〈N ′
1l

′
1j

′
1m| 1

ε − Hsph + iρ
|α̃cmpl〉〈α̃cmpl|N ′l′j ′m〉

= δl′l′1δj ′j ′
1

{∫ ∞

0

〈N ′
1l

′|ε̃(−)l′j ′〉〈ε̃(−)l′j ′|N ′l′〉 dε̃

ε − ε̃ + iρ

+
∑

Reε̃<0

〈N ′
1l

′|ε̃l′j ′〉〈ε̃ l′j ′|N ′l′〉
ε − ε̃

}
. (26)
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The second term in this expression can be neglected since
|ε − ε̃| is large for discrete states in the region of the SDNP
“resonance.” The first term inside the curly braces can be
expressed as

fN ′
1N

′l′j ′ (ε) = P

∫ ∞

0

〈N ′
1l

′|ε′(−)l′j ′〉〈ε′(−)l′j ′|N ′l′〉dε′

ε − ε′

− iπ〈N ′
1l

′|ε(−)l′j ′〉〈ε(−)l′j ′|N ′l′〉. (27)

It follows from (26) and (27) that relationship (25) can be
rewritten as a system of algebraic equations with respect to the
Nljm components of the scattering state 〈〈α(−)| in the region
of interaction:∑

N ′′l′′j ′′
WN ′l′j ′, N ′′l′′j ′′ (ε,m)〈〈α(−)|N ′′l′′j ′′m〉

= −δll′δjj ′ 〈ε(−)lj |N ′l〉, (28)

where the elements of the W matrix are defined by the
expression

WN ′l′j ′, N ′′l′′j ′′ (ε,m) =
∑
N ′

1

fN ′
1N

′l′j ′ (ε)〈N ′′l′′j ′′m|Vdef|N ′l′j ′m〉

− δN ′N ′′δl′l′′δj ′j ′′ . (29)

The number of significant components 〈〈α(−)|Nljm〉 of the
scattering state in the region of interaction, which determines
the effective dimension of the W matrix at fixed values of the
energy ε = Eγ − Bthr and angular moment projection m =
ν + mβ [see (11)], is not very large due to the following:

(1) conservation of parity, (−1)l = (−1)N = −(−1)Nβ ;
(2) the fact that the orbital momentum of the knocked out

nucleon is limited by the constraint following from
classical mechanics, 0 � l � lmax = kRreact;

(3) additional conditions, l � N � Nmax, |l − 1
2 | � j �

l + 1
2 , j � |m| (where Nmax can be chosen approxi-

mately equal to lmax + 4, which allows one to describe

correctly the 〈〈α(−)|Nljm〉 components with large
orbital momentum values).

Taking into account these limitations the optimal dimension
of the system (29) does not exceed 100 × 100 at Eγ � 50 MeV.

IV. DEFORMED OPTICAL POTENTIAL

The spherical optical potential is of the form [28]

Vsph(r) = −(V1 + iW1)
1

1 + exp[(r − R1)/a1]

− 4iW2
exp[(r − R2)/a2]

{1 + exp[(r − R2)/a2]}2

− (V3 + iW3)

(
�

mπc

)2 1

2a3r

× exp[(r − R3)/a3]

{1 + exp[(r − R3)/a3]}2
s · l + VCoul(r), (30)

where the first two terms describe the nuclear forces, the third
term corresponds to the spin-orbit interaction, and the fourth
term

VCoul(r) =
{

3
2

qZe2

RCoul

(
1 − r2

3R2
Coul

)
if r � RCoul,

qZe2

r
if r � RCoul

(31)

corresponds to the Coulomb interaction (q is 0 for a neutron,
and 1 for a proton, RCoul = rCoulA

1/3 is the Coulomb radius).
If the nucleus is an oblate or prolate ellipsoid of revolution

with the semiaxes c and d directed, respectively, along the
nuclear symmetry axis and orthogonal to it, then its surface is
described with the function

R(θ ) = R0(1 − η)1/6(1 − η cos2 θ )−1/2, (32)

where R0 is the radius of the nondeformed nucleus (R3
0 =

cd2), η = (c2 − d2)/c2 is a deformation parameter connected
with nuclear quadrupole deformation parameter δ = 3

2 (c2 −
d2)/(c2 + 2d2) with the following relationship:

η = 2δ

1 + 4δ/3
. (33)

The radial and angular dependencies of the nuclear component of the average field are in a close correlation with the
distribution of nuclear matter density. If the thickness of the diffuse surface layer of the nucleus is small in comparison
with its radius, then variation of this component of the average field due to deformation can be taken into account by
introducing the angular dependence of R1 and R2 in (30) according to Eq. (32), where R0 is substituted with R1 and R2,
respectively.

Analogously to [32] the effect of deformation on the spin-orbit interaction is neglected, and for the Coulomb field
that strongly affects proton scattering we use in the deformed optical potential V (r,θ ) the expression obtained in
[33]:

VCoul(r,θ ) =

⎧⎪⎪⎨
⎪⎪⎩

3
2

qZe2

RCoul

[(
1 − r2

3R2
Coul

)
+ ∑∞

n=1

(
αn + βn

r2

R2
Coul

P2(cos θ )
)
ηn

]
if r � R(θ ),

qZe2
[

1
r

+ ∑∞
n=1

∑n
l=0 γnl

R2l
Coul

r2l+1 P2l(cos θ )ηn
]

if r > R(θ ),

(34)
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where R(θ ) is determined from (32) substituting R0 → RCoul and the coefficients αn,βn,γnl are defined by the expressions

αn =
n∑

k=0

(−1)k�k(1/3)

(2n − 2k + 1)k!
, βn = 2

(2n + 1)(2n + 3)
,

γnl = 3

(2l + 3)!!

n∑
k=l

(−1)n−k�n−k

(
2l+3

6

)
(2l + 2k + 1)!!

22l+k(n − k)! k!

l∑
m=0

(−1)m(4l − 2m)!

m! (2l − m)! (2l − 2m)! (2l − 2m + 2k + 1)
. (35)

[Here �j (x) = x(x − 1) . . . (x − j + 1) with j = 1,2, . . . ;
�0(x) = 1.]

The infinite series in (34) converge when |η| < 1, thus
enabling description of the Coulomb component of the optical
potential V (r,θ ) for the quadrupole deformations −0.3 < δ <
1.5. When δ � 0.4 only the first ten elements of the series need
to be considered.

From definition (12) the potential Vdef(r,θ ) that was used in
the previous section for derivation of the system of equations
for coupled lj channels is given by the expression

Vdef(r,θ ) = V (r,θ ) − Vsph(r). (36)

It can be expanded into spherical harmonics

Vdef(r,θ ) =
∑

λ

vλ(r)Yλ0(θ ), (37)

where λ takes the values 0,2,4, . . . and the vλ(r) function is
defined by the expression

vλ(r) = 4π

∫ 1

0
Vdef(r,θ )Yλ0(θ ) d(cos θ ). (38)

Using expansion (37) the matrix element
〈N ′′l′′j ′′m|Vdef|N ′l′j ′m〉 from (29) can be rewritten in
the form

〈N ′′l′′j ′′m|Vdef|N ′l′j ′m〉
=

∑
λ

〈N ′′l′′|vλ(r)|N ′l′〉〈l′′j ′′m|Yλ0(θ )|l′j ′m〉, (39)

where the radial matrix element 〈N ′′l′′|vλ(r)|N ′l′〉 is calculated
numerically and calculation of the angular matrix element
〈l′′j ′′m|Yλ0(θ )|l′j ′m〉 is performed according to (23).

V. (γ, p) REACTIONS ON 160Gd, 184,186W

The above described model was used to calculate cross
sections of the proton SDNP in 160Gd, 184,186W for which
experimental data obtained in a bremsstrahlung beam using the
activation technique are available in the literature [34,35]. The
calculation was performed in the energy range Eγ = [0,60]
MeV with variable energy step h � 0.1 MeV.

In order to compare the calculated SDNP cross sections
with the experiment they have to be smeared over a certain
energy interval � since the presented theoretical description
does not take into account the fact that the ground state of a
deformed final nucleus in laboratory the frame corresponds to
a rotational band built upon it, so the energy of the outgoing
nucleon is not exactly equal to ε = Eγ − Ethr, and also in order
to equalize the energy resolutions of measured and calculated

data. The theoretical cross sections σ (Ei),i = 1,2, . . . were
averaged over the energy interval � = 2 MeV:

σ̄ (E) =
∑

i

1

2π

�(Ei+1 − Ei)

(Ei − E)2 + (�/2)2
σ (Ei). (40)

Concerning other calculation details we note that the
maximum value of the outgoing proton energy ε′ in integral
(27) was set to 50 MeV. Only spherical harmonics with λ � 4
were considered in the expansion of Vdef(r,θ ) [see (37)]. The
potential itself (as described in Sec. IV) was calculated using
the spherical global optical potential from Ref. [28]. The
scattering states in the spherical optical potential Vsph(r) were
calculated using the program [36].

The statistical components of the photoproton cross section
(compound and pre-equilibrium decay modes) were also taken
into account. For their calculation the combined model of
photonuclear reactions [37] with a standard parameter set was
used. The quadrupole deformation parameters of 160Gd and
184,186W were estimated using the Stone static quadrupole
moments compilation [38]. The main results of the calculations
are shown in Figs. 2–4.
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100
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FIG. 2. Inset: calculated SDNP cross section of the (γ,p) reaction
on 160Gd without smearing; black circles with statistical errors:
experimental cross section of the (γ,p)∗ reaction [35]; blue and
green thick lines: cross sections of, respectively, the (γ,p) and (γ,np)
reactions proceeding through decay of composite state calculated
using the combined model [37]; red line: smeared SDNP cross section
of (γ,p); black line: resulting theoretical estimate of the (γ,p)∗ cross
section. Thin blue solid, dotted, dashed, dash-dotted curves show
separate components of the decay cross section of (γ,p): respectively,
the T< component of the GDR, the T> component, the isovector
quadrupole resonance, the GDR overtone [37].
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FIG. 3. Comparison of the experimental [34] and calculated cross
sections of the (γ,p) reaction on 184W. Same notation as in Fig. 2.

Figure 2 shows experimental [35] and theoretical cross
sections of the (γ,p)∗ = (γ,p) + (γ,np) reaction on the 160Gd
nucleus. The inset shows the calculated SDNP cross section
of the (γ,p) reaction in logarithmic scale without smearing.
The main pane of the figure shows the experimental cross
section of the (γ,p)∗ reaction [35] (black circles with statistical
errors), the cross sections of the (γ,p) and (γ,np) reactions
proceeding through decay of composite state calculated using
the combined model [37] (respectively, blue and green thick
lines), the smeared SDNP cross section of the (γ,p) reaction
(red line), and the resulting theoretical estimate of the (γ,p)∗
reaction cross section obtained by summation of these curves
(black line). In addition, thin blue curves show separate
components of the decay cross section of (γ,p): the solid
curve corresponds to the T< component of the GDR, the dotted
curve to the T> component of the GDR, the dashed curve to
the isovector quadrupole resonance, the dash-dotted curve to
the GDR overtone [37].

It should be noted that the activation technique employed in
[35] did not make it possible to separate the yields of reactions
160Gd(γ,p)159Eu and 160Gd(γ,np)158Eu and, therefore, only
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FIG. 4. Comparison of the experimental [34] and calculated cross
sections of the (γ,p) reaction on 186W. Same notation as in Fig. 2.

the sum of these cross sections was measured up to Eγ =
32.7 MeV. It is seen that the statistical model predicts that
the (γ,p) cross section has to gradually decrease behind the
maximum at Eγ ≈ 23 MeV, since new channels of decay of
the composite system open. However, the experiment shows
that starting with the energy Eγ ≈ 28 MeV there is a rather
steep increase of the combined cross section of (γ,p) and
(γ,np), which is attributed by the authors of work [35] to
the contribution of the (γ,np) reaction. This interpretation is,
however, probably incorrect, since due to the Coulomb barrier
the decay of an excited composite system with emission of
a neutron and a proton cannot compete with purely neutron
emission channels [first of all with the (γ,3n) reaction with the
energy threshold of 21.3 MeV]. Indeed, a detailed calculation
using the combined model [37] shows that the 160Gd(γ,np)
reaction cross section is comparatively small (green curve in
Fig. 2). This suggests that the (γ,p) reaction cross section
contains a significant contribution of the direct photoeffect
which is manifested at Eγ > 28 MeV.

With the SDNP model described in this work only the
target nucleus deformation and the single-particle state |β〉
which the nucleon is knocked out from have to be specified as
input data. The quadrupole deformation of the 160Gd nucleus is
δ ≈ 0.33. For this nucleus the last occupied state in deformed
single-particle potential from which the proton is knocked out
corresponds to the orbital with asymptotic quantum numbers
[N = 4,nz = 1,� = 3,� = 5/2], where N is the total number
of oscillator quanta, nz is their number along the nuclear
symmetry axis, � and � are the projections of the orbital
and total angular momenta on the symmetry axis [39]. This
assignment is in good agreement with the Jπ = 5

2

+
ground

state of the final nucleus 159Eu. As it is seen from Fig. 2, with
such choice of the deformation and the |β〉 state the calculated
cross section of the SDNP (γ,p) reaction (shown with red
curve) apparently correlates with the experimental data.

It also follows from Fig. 2 that the broad maximum
observed in the experimental (γ,p) reaction cross section at
Eγ ≈ 23 MeV can hardly be attributed to the giant quadrupole
resonance, which accounts only for a relatively small fraction
of the peak area.

It should be mentioned that in comparison of theoretical and
experimental cross sections one has to take into account large
systematic errors that necessarily arise during estimation of the
statistical reaction component of (γ,p) at Eγ ∼ 30 MeV, since
the detailed behavior of the GDR far from the photoabsorption
peak is mostly unknown. The GDR strength function of
deformed nuclei is usually approximated with two Lorentz
curves. However, this leads to interference of the parameters
of these Lorentz curves. If, for example, the width parameter
� of the second, higher energy Lorentz curve is increased,
this results in enlargement of the high energy tail of the
GDR. The total cross section of the (γ,p) reaction also
grows appropriately, becoming more compatible with the
experimental data. The systematic errors of the activation
technique measurement itself that can easily be large have
also to be taken into consideration.

The theoretical and experimental [34] cross sections of the
(γ,p) reaction on 184W are compared in Fig. 3. The notation is
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the same as in Fig. 2, except for not showing the (γ,np) reaction
cross section which had not been measured in the experiment.

The quadrupole deformation parameter δ of the 184W
nucleus is 0.24. The ground state of the final nucleus 183Ta
has Jπ = 7

2
+

, implying that the last filled proton state (|β〉) of
the 184W nucleus corresponds to an orbital with asymptotic
quantum numbers [N = 4,nz = 0,� = 4,� = 7/2] in the
single-particle deformed potential. It is seen from the figure
that the magnitude of the experimental cross section is properly
reproduced by the calculation but the peak of the theoretical
cross section is shifted by about 3 MeV towards higher energies
in comparison with the experimental cross section. One can
also see that the SDNP contribution to the total cross section
is substantial, but not as large as in the case of 160Gd.

Figure 4 shows similar data for the 186W nucleus. The
deformation parameter of 186W is δ = 0.20. As δ changes
from 0.24 to 0.20 the proton orbital [4 0 4 7

2 ] in the deformed
single-particle potential descends below the [4 1 1 1

2 ] proton
orbital, and, therefore, the latter has been chosen as the |β〉
state for 186W. As it is seen from the figure the agreement
with the experiment is somewhat better for this isotope than
in the case of 184W, though a certain shift of the peak of the
theoretical cross section is also visible. As with 160Gd and
184W the SDNP contribution (red curve) leads to a significant
increase of photoproton yield in the considered energy range.

The observed difference of the widths of the calculated
SDNP “resonances” of the 160Gd and 184,186W nuclei can be
explained by the difference of the initial nucleon configura-
tions |β〉. The least broad resonance corresponds to the 184W
nucleus, where the |β〉 state is practically identical to the
|N = 4,l = 4,j = 7

2 ,� = 7
2 〉 spherical oscillator state. The

situation is different for the two other nuclei: the |β〉 state
contains several different orbital l and angular j momentum
values.

It also follows from the performed calculations that the
angular distribution of the SDNP protons for the considered
nuclei is close to isotropic with |A2/A0| < 0.03 [see Eq. (8)].

VI. CONCLUSIONS

The SDNP reaction mechanism considered in this work
has a significant effect on the photoproton yield from heavy

deformed nuclei in the energy range Eγ ∼ 30 MeV. Unfortu-
nately, no recent measurements of the (γ,p) reaction on heavy
deformed nuclei at these energies could be found in the litera-
ture, so the experimental results obtained in the 1960s–1970s
were used for comparison. However, the performed analysis
clearly shows the relevance of the considered approach and
the necessity of further experimental and theoretical research
in this direction for both deformed and spherical nuclei.

The following results were obtained in the present work:

(1) A model of SDNP for heavy deformed nuclei, for which
to the first order of approximation nuclear surface
vibrations can be neglected, is formulated within the
adiabatic approach.

(2) A compact system of algebraic equations for the
coupled lj reaction channels was obtained, which
allows the problem of calculation of scattering states
at r � Rpeak in deformed average field to be reduced to
calculations in a spherical average field.

(3) The SDNP contribution to the (γ,p) reaction cross
sections was calculated for the 160Gd and 184,186W
nuclei. Comparison of the calculated and experimental
data shows importance of the SDNP effect at least for
the proton reaction channel at the high-energy tail of
the GDR (at Eγ ∼ 30 MeV).

(4) The calculated angular distribution of the SDNP
protons was almost isotropic for the considered nuclei
(|A2/A0| < 0.03 in the region of the obtained proton
bump).

Is should be noted that the correlation between the experi-
mental and theoretical data is achieved using the global optical
potential [28] to describe the spherical average nuclear field,
whose parameters are adjusted independently of the considered
effect, from nucleon scattering data. The comparison of exper-
imental and theoretical results also reveals the important role
of E1 photoabsorption in formation of the SDNP “resonances”
in heavy deformed nuclei.

Among the distinctive features that distinguish the SDNP
from other mechanisms of nuclear photoeffect one can name
the high energy of the SDNP “resonance” and the energy
distribution of the outgoing nucleons which has the form of a
narrow peak at the energy ε0 = Eγ − Bthr.
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