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Shear viscosity of nuclear matter
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Shear viscosity η is calculated for the nuclear matter described as a system of interacting nucleons with the
van der Waals (VDW) equation of state. The Boltzmann-Vlasov kinetic equation is solved in terms of the plane
waves of the collective overdamped motion. In the frequent-collision regime, the shear viscosity depends on the
particle-number density n through the mean-field parameter a, which describes attractive forces in the VDW
equation. In the temperature region T = 15–40 MeV, a ratio of the shear viscosity to the entropy density s is
smaller than 1 at the nucleon number density n = (0.5–1.5) n0, where n0 = 0.16 fm−3 is the particle density of
equilibrium nuclear matter at zero temperature. A minimum of the η/s ratio takes place somewhere in a vicinity
of the critical point of the VDW system. Large values of η/s � 1 are, however, found in both the low-density,
n � n0, and high-density, n > 2n0, regions. This makes the ideal hydrodynamic approach inapplicable for these
densities.
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I. INTRODUCTION

The shear viscosity η and its ratio to the entropy density
s became recently attractive (see, e.g., Refs. [1–4] and
references therein) in connection with a development of the
hydrodynamic approach to the relativistic nucleus-nucleus
collisions. Chapman and Enskog (CE) obtained [5–10] the
shear viscosity η in a gas of nonrelativistic particles by using
the Boltzmann kinetic equation (BKE) for the phase-space
distribution function f (r,p,t), where r and p are the particle
coordinate and momentum, respectively, and t denotes the time
variable.

The BKE was solved within the frequent-collision (FC)
regime for which one can use a perturbation expansion in a
small parameter, e.g., ω/ν, where ν is the collision frequency
and ω measures the characteristic dynamical variations of the
distribution function δf (r,p,t). In this case the Boltzmann
integral collision term is dominant as compared to other
collisionless terms. For their calculations the local-equilibrium
distribution function fl.e. was used in a standard form in terms
of the evolution of particle-number density n(r,t), temperature
T (r,t), and collective velocity u(r,t). The hydrodynamic
variables n(r,t) and u(r,t) are defined as the zero and first
moments of the distribution function in the momentum space.
Thus, the evolution derivative of the distribution function,
df/dt , as one of the local equilibrium distribution, dfl.e./dt , in
solving the BKE at the first order in ω/ν can be decomposed
into terms proportional to that of n(r,t), T (r,t), and u(r,t).
Using then the standard closed system of hydrodynamical
equations and condition δT = 0, one obtains [5,8–10] the
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expression for the shear viscosity η. For a gas of elastic
scattering balls with the diameter d, at the first approximation
in ω/ν, one finds [5]

ηCE = 5

16
√

π

√
mT

d2
, (1)

where m is the particle mass. The shear viscosity ηCE appears
to be independent of the particle-number density n because, at
the first order in small parameter ω/ν, the attractive interaction
on large distances between particles was neglected to simplify
the CE viscosity calculations.

Extensions of the CE method to the relativistic high energy-
density problems are given in Refs. [3,11]. In particular,
Eq. (1) was reproduced in the nonrelativistic limit within the
CE approach in Ref. [3]. The mixture of different hadron
species was considered in Ref. [12]. Several investigations
were devoted to go beyond the hydrodynamical approach
[5]; see, e.g., Refs. [13–28]. In contrast to the CE approach,
the main problem solved in these works was to take into
account a self-consistent mean field in calculations of the
viscosity of Fermi liquids within the Landau quasiparticle
theory.

In the present paper, we use the Boltzmann-Vlasov kinetic
equation (BVKE) for a system of interacting nucleons with
the van der Waals (VDW) equation of state. Therefore, both
scattering of particles owing to the hard-core repulsions and
Vlasov self-consistent mean field, owing to the VDW attractive
interaction, are taken into account in solving the BVKE.

In our consideration, the small dynamical variations δf are
found from a linearized BVKE in the simplified form,

δf (r,p,t) = f (r,p,t) − f0(p), (2)

2469-9985/2016/94(5)/054620(11) 054620-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevC.94.054620


MAGNER, GORENSTEIN, GRYGORIEV, AND PLUJKO PHYSICAL REVIEW C 94, 054620 (2016)

where f0(p) is the static global-equilibrium distribution
function

f0(p) = n

(2mπT )3/2
exp

(
− p2

2mT

)
. (3)

The function f0(p) (3) is taken in the Maxwell form with con-
stant values of T and n and zero value of the collective velocity,
u = 0. The damping plane wave (DPW) solutions are assumed
to be a good approximation to the dynamical variations δf
at finite frequencies ω within the FC regime (large-enough
collision frequency ν). These dynamical deviations allow us to
take into account analytically the attractive VDW interactions
through the self-consistent Vlasov mean field in the BVKE.
As a result, we obtain the shear viscosity dependence on the
particle number density at the leading order in a small parame-
ter ω/ν. The overdamped (see, e.g., Refs. [18,28]) attenuation
of the DPW will be considered. Our approach is based on
the methods applied earlier for calculations of the viscosity of
the Fermi liquids [13,14,16,17,28]. In the present paper, the
shear viscosity in the first order over small parameter ω/ν is
calculated analytically for the nuclear matter considered as a
gas of interacting nucleons with the VDW equation of state.

The paper is organized as follows. In Sec. II we remind the
basic properties of thermodynamically equilibrated systems
with the VDW equation of state. In Sec. III we outlook
the kinetic approach based on the BVKE and give general
definitions of the shear viscosity coefficient. In Sec. IV,
the solution to the BVKE and its perturbation expansion is
presented in terms of the plane waves accounting for a strong
attenuation owing to the particle collisions. Finally, this section
is devoted to the main results for the VDW viscosity. The
obtained results are discussed in Sec. V and summarized in
Sec. VI. Some details of our calculations can be found in
Appendixes A–C.

II. VDW EQUATION OF STATE

The VDW equation of state presents the system pressure P
in terms of the particle-number density n and temperature T
as [29],

P (T ,n) = nT

1 − bn
− an2, (4)

where a > 0 and b > 0 are the VDW parameters that describe
attractive and repulsive interactions, respectively. The first
term on the right-hand side of Eq. (4) contains the excluded
volume correction (b = 2πd3/3, with d being the particle
hard-core diameter), while the second term comes from the
mean-field description of attractive interactions.

The entropy density s and energy density ε for the VDW
system are calculated as [29]

s(T ,n) = 5

2
n + n ln

[
(1 − bn)

n
g

(
mT

2π

)3/2]
, (5)

ε(T ,n) = n

[
3

2
T − an

]
. (6)

In Eq. (5) m is the particle mass and g is the degeneracy factor
(g = 4 for nucleons; two spin and two isospin states). Note that

the VDW entropy density (5) is independent of the attractive
mean-field interaction parameter a, whereas the energy density
(6) does not depend on the particle repulsion constant b.

The VDW equation of state contains the first-order liquid-
gas phase transition with a critical point [29]:

Tc = 8a

27b
, nc = 1

3b
, Pc = a

27b2
. (7)

To study the phase coexistence region which exists below the
critical temperature, T < Tc, the VDW isotherms should be
corrected by the well-known Maxwell construction of equal
areas.

The VDW equation of state was recently applied to a
description of nuclear matter in Ref. [30]. In the present study
we fix the VDW parameters for the system of interacting
nucleons as d = 1 fm, i.e., b ∼= 2.1 fm3, and a = 100 MeV
fm3. This gives nc

∼= n0 = 0.16 fm−3 and Tc
∼= 14 MeV

(n0 = 0.16 fm−3 corresponds to the nucleon number density
of the normal nuclear matter at zero temperature). In what
follows we restrict our analysis of the kinetic properties of the
VDW system of nucleons to T > Tc. In this region of the phase
diagram the VDW equation of state describes a homogeneous
one-phase system, and all criteria of the thermodynamical sta-
bility are satisfied. We do not consider too large temperatures
by taking T � 40 MeV. This allows us to neglect a production
of new particles (pions and baryonic resonances) in the system
of interacting nucleons. In addition, this restriction guarantees
a good accuracy of the nonrelativistic approximation adopted
in the present study. Note also that at T → 0 the quantum
statistics effects neglected in the present study should be taken
into account (see Ref. [30]).

III. KINETIC APPROACH

For calculations of the shear viscosity, we start with the
BVKE linearized near the static distribution function (3) for
the dynamical variations of the distribution function δf (r,p,t)
(2):

∂δf

∂t
+ p

m

∂δf

∂r
− ∂f0

∂p
∂δU

∂r
= δSt. (8)

The dynamical part of the attractive potential δU from the
VDW forces is defined self-consistently as

δU (r,t) = −a

∫
dpδf (r,p,t). (9)

In Eq. (8), the collision term δSt is taken in the standard
Boltzmann form [5,8],

δSt = 2π

m

∫
dp1|p1 − p|

∫
βdβδQ, (10)

where

δQ ≈ f0(p′)δf (r,p′
1,t) + f0(p′

1)δf (r,p′,t)

−f0(p)δf (r,p1,t) − f0(p1)δf (r,p,t) (11)

is the variation of f (r,p′,t)f (r,p′
1,t) − f (r,p,t)f (r,p1,t)

over δf and β the impact parameter for two-body collisions.
Figure 1 shows the collision geometry for two hard-core sphere
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FIG. 1. The geometry of the collision of two hard spheres in
the center mass system; q = p1 − p, q′ = p′

1 − p′, OO1 = d , d is
the sphere particle diameter, β is the impact parameter; θp′ is the
scattering angle.

scattering in the center-of-mass coordinates. The relationship
between the impact parameter, β, and the cross section,
σ = πd2, where d is the diameter of the particle, is given
in Appendix A for calculations of the integral term (10).

The shear viscosity η can be defined through the dynamical
components of the momentum flux tensor �μν(r,t),

δ�μν = −δσμν + δP δμν + δP δμν, (12)

where δσμν is a traceless stress tensor. Other terms are diagonal
kinetic and interaction pressures. The stress tensor δσμν can be
determined through the second p moment of the distribution
function linearized over δf as

δσμν = −
∫

dp
m

pμpνδf (r,p,t) + δPδμν. (13)

In Eq. (12), the quantities δP and δP are calculated as

δP = 1

3m

∫
p2dpδf (r,p,t), (14)

δP = −2an

∫
dpδf (r,p,t). (15)

The shear viscosity η is defined as a coefficient in the relation-
ship between the dynamical component of the stress tensor
δσμν [Eq. (12)] and the traceless tensor Uμν of the coordinate
derivatives of the velocity field u(r,t) [10,14,15,17,31],

δσμν(r,t) = η Uμν(r,t), (16)

where

Uμν =
(

∂uμ

∂rν

+ ∂uν

∂rμ

− 2

3
∇u δμν

)
. (17)

The velocity field u is defined through the first p moment of
δf (r,p,t),

u = 1

n

∫
dp

p
m

δf (r,p,t). (18)

Note that our method can also be presented within the linear
response-function theory [15,28,32] (cf. the Kubo formulas
for the diffusion, thermal conductivity, and viscosity; see also
the recent article [33]).

IV. DISPERSION RELATION AND VISCOSITY

We suggest to calculate the shear viscosity η by directly
solving the BVKE (8) in terms of the plane-wave repre-
sentation for the dynamical distribution-function variations
δf (r,p,t) [Eq. (2)] in the following rather general form
[14,17,28],

δf (r,p,t) = f0(p)ϕ(p̂) exp(−iωt + ikr), (19)

where ω and k are a frequency and a wave vector of the DPW,
respectively. As unknown yet, amplitudes ϕ(p̂) are functions
of the momentum angle variable p̂ = p/p. It is naturally
to find solutions of the BVKE as proportional to the static
distribution function, f0(p), specifying the dependence of δf
on the modulus of momentum p because the derivative of f0(p)
(3) over momentum in Eq. (8) and the variations of the collision
integral (10) are proportional to f0(p). Then, one can reduce
the problem for solving the BVKE (8) to a function of angles
ϕ(p̂) which, however, depends on the unknown frequency ω.
[We shall leave out the argument ω in ϕ(p̂) for simplicity of
the notations.] Note that any physical quantity, in particular
the viscosity coefficient, is independent of the direction of the
unit wave vector k̂ = k/k of the DPW spreading in infinite
nuclear matter. Therefore, it is convenient to use the spherical
phase-space coordinate system with the polar axis directed
to this vector k̂. The solution for the plane-wave distribution
function δf (r,p,t) [Eq. (19)], or more precisely ϕ(p̂), and the
frequency ω depends only on the wave vector length k. For
convenience, one may write the frequency ω through the wave
number k and the dimensionless sound velocity c,

ω = kv = kvT c, (20)

where v = vT c is the DPW speed, and c its dimensionless
value given in units of the most probable thermal velocity vT

of particles at a given temperature T , vT = √
2T/m.

The viscosity η is related to an attenuation of the DPW
(19) measured by the collision term δSt (10). Following
Refs. [5,8,9,14], one applies the perturbation expansion of
the dynamical distribution-function variations δf through their
amplitudes ϕ(p̂),

ϕ(p̂) = ϕ(0)(p̂) + εϕ(1)(p̂) + ε2ϕ(2)(p̂) + · · · , (21)

and similarly, in addition to Ref. [5], for the frequency ω,

ω = ω(0) + εω(1) + ε2ω(2) + · · · , (22)

in a small parameter,

ε = ω/ν = ωτ. (23)
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Here, τ is the relaxation time1 defined by the collision term
through the time-dependent rate ν (collision frequency) of the
damping of distribution function δf ,

τ = 1/ν. (24)

Expansions (21) and (22) are defined within the standard
perturbation method [8,14,28,34] for the eigenfunction, ϕ(p̂),
and eigenvalue, ω, problem. In these perturbation expansions,
the coefficients ϕ(n)(p̂) and ω(n) are assumed to be independent
of ε. By using the BVKE with this perturbation method, they
can be found at each order of ε. Note that ω in the definition
of the small parameter ε (23) is determined consistently at any
given order of the perturbation expansions (21) and (22); see
Appendix B for details. A smallness of ε can be achieved by
increasing the collision frequency ν for a given ω (Appendix
A). Substituting the plane-wave representation (19) for the
distribution function δf into the BVKE (8), for convenience,
one can also expand ϕ(p̂) in series over the spherical harmonics
Y�0(p̂),

ϕ(p̂) =
∞∑

�=0

ϕ� Y�0(p̂), p̂ = p · k
pk

. (25)

This reduces the integro-differential BVKE to much more
simple linear algebraic equations (B1) for the partial multipole
amplitudes ϕ� at each order in ε [Eq. (23) and Appendix B].

As shown in Appendixes A and B, in the FC regime, |ε| � 1
[Eq. (23)], one can truncate the multipole expansion (25) over �
at � = 2 because of a good convergence in the small parameter
ε. At this leading approximation to viscosity calculations, for
the collision term δSt [Eq. (10)], one obtains (Appendix A)
the simple expression

δSt = −νδf2(r,p,t), (26)

where

ν ≈ 3nvT σ

2
, σ = πd2, (27)

σ is the cross section for a two elastic hard-core sphere
scattering, as introduced above,

δf2(r,p,t) = f0(p)ϕ2Y20(p̂) exp(−iωt + ikr). (28)

As shown in Appendix A, within the accuracy about 6%,
this value agrees with its mean effective quantity νav (A18),
evaluated through the momentum average of the collision term,
〈δSt〉av, over particle momenta p with the help of the Maxwell
distribution f0(p) (3). Multiplying then the BVKE (8), with
the quadrupole collisional term (26), by the spherical function
YL0(p̂) (L = 0,1,2, . . .), one can integrate the BVKE term by
term over angles (p̂) of the momentum p. Thus, one obtains the
linear homogeneous equations (B1) with respect to coefficients
ϕ� of the expansion (25) in the plane-wave amplitudes ϕ(p̂) at
any order in ε in Eqs. (21) and (22). This system has nontrivial
solutions in the quadrupole approximation � � 2, valid at the

1We do no not use the standard τ approximation and introduce the
relaxation time τ for sake of the convenience in comparison with
other approaches.

leading (linear in ε) approximation in expansions (21) and
(22). They obey the cubic dispersion equation for c = ω/(kvT )
(expansion of c is similar to Eq. (22); see also Appendix B),

detA2 ≡ c3 + iγ c2 − c

[
4

15
+ 1

3
(1 − F)

]

− i

3
(1 − F)γ = 0, (29)

where F is the dimensionless VDW interaction parameter,

F = an/T . (30)

The truncated (at � = 2) 3 × 3 matrix A(2)
L�(c) is given by

Eq. (B4). For convenience, we introduced also the dimen-
sionless collisional rate (27):

γ = ν

kvT

= νc

ω
= c

ωτ
. (31)

The FC perturbation parameter ε [Eq. (23)] can be expressed
in terms of the γ and c as

ε = c/γ, |c/γ | � 1. (32)

The cubic dispersion equation (29) has still two limit solutions
with respect to the complex velocity, c = cr + ici for real k
(or equivalently, a complex wave number k = kr + iki for a
real velocity c, both related by the same ω = kcvT = ωr + iωi ,
where low subscripts denote the real and imaginary parts). One
of them can be called as the underdamped (weakly damped)
first sound mode for which the imaginary part of c, ci , is
much smaller than the real one cr , |ci/cr | � 1, while in the
opposite case |ci/cr | � 1, one has the overdamped motion. In
the first underdamped sound case (|ci/cr | � 1), the collision
term can be considered as small with respect to the left-hand
side (LHS) of the BVKE, |γ /c| ∼ 1/|ωτ | � 1, that is, the rare
collision (RC) regime. For the overdamped motion (FC case)
the collision term is dominant. In our DPW derivations below
one can use also the frequency expansion (22) over the same
small parameter |c/γ | ∼ |ωτ | � 1 [Eqs. (31) and (32)]. In the
present study we consider the overdamped motion, while the
underdamped case will be studied in separate publications.

Expanding the LHS of the truncated (quadrupole) disper-
sion equation (29) for c in powers of ε [see Eqs. (23) and (32)]
in the FC perturbation expansions (21) and (22), one can divide
all of its terms by γ 3. Then, one can neglect the relatively small
cubic [(c/γ )3 ∼ ε3] and quadratic (∼ ε2) terms as compared
to the last two linear (in ε) ones depending explicitly on the
interaction parameter F [Eq. (30)]. At this leading order, one
results in the explicit quadrupole solution for the velocity c
[Eq. (B7)],

c = ici = −5i

9

1 − F
1 − 5F/9

γ. (33)

To get small corrections of the real sound velocity cr , one
has to take into account the quadratic and cubic in c terms
of the dispersion equation (29). Note that, formally, one can
consider the real DPW velocity c but the complex wave number
k within the same complex frequency ω, which are both
almost pure imaginary ones. The latter describes the sound
attenuation as the exponential decrease of the DPW amplitude,
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δf ∝ exp(−t/T ) [Eq. (19)] with the damping time T ,

T ≈ 6

5π

1 − 5F/9

(1 − F)nvT d2
. (34)

This time was obtained as the imaginary part of the complex
frequency, ω = −i/T , through Eq. (33), formally introduced
above (finally, all physical quantities will be determined by
taking their real parts). Note also that the relaxation time τ
[Eqs. (24) and (27)],

τ = 1

ν
≈ 2

3nvT πd2
, (35)

differs from the damping time, T [Eq. (34)]. In particular, this
time T , being of the order of τ , depends on the interaction
constant F . Note that the FC condition (32) can be satisfied
for the interaction parameter F of the order of one. However,
as shown below, one finds a reasonable result even in the limit
F → 0.

Using the DPW solutions (19) for δf of the BVKE (8), and
Eqs. (C3) forUzz and (C5) for σzz, for the definition of the shear
viscosity η [Eq. (16)], one finds the FC expansions [(21) and
(22)] of η in powers of small ε [see Eq. (23), and Appendixes
C and B]. As shown in Appendix C, the leading term of this
FC shear viscosity η at first order in ε is approximately a
constant, independent of ω (or k), and proportional to 1/ν,
i.e., to the relaxation time τ [Eq. (35)]. Finally, up to relatively
high (second) order terms in the small parameter ε we arrive
at

η = 9

20
√

2π

(
1 − 5

9

an

T

)√
mT

d2
= 36

25
√

2

(
1 − 5

9

an

T

)
ηCE

= 1.018

(
1 − 5

9

an

T

)
ηCE. (36)

In these derivations we used, at the leading first order in ε,
the quadrupole multipolarity truncation of rapidly converged
series (25); see Eqs. (C8) for the amplitudes ϕ� and (33) for the
sound velocity c (� � 2) within the dispersion equation (29).
As seen from Eq. (36), within the present accuracy, the shear
viscosity η differs in 2% from the CE result ηCE [Eq. (1)] at
zero attractive mean field, a → 0. Note that a more exact CE
result is η = 1.016ηCE (see Ref. [5], Chap. 12.1).

Formula (36) for the shear viscosity can be presented in a
more traditional way through the relaxation time τ [Eq. (35)],

η = 27
√

π

80

(
1 − 5

9
F

)
mnv2

T τ. (37)

This relationship, η ∝ τ , is typical for the FC regime, in
contrast to the rare collision one, η ∝ 1/τ , which should be
expected for the perturbation expansion at leading order in the
opposite small parameter 1/ε; see Refs. [14,16,17,28]. Note
that the perturbation method for the eigenfunctions ϕ(p̂) (or ϕ�,
Eq. (21) as in Ref. [5]), and in addition, eigenvalues ω allows
us to obtain in a regular way high-order corrections in ε. In
this way, one has to go beyond the quadrupole multipolarity
(� � 2) approximation, taking into account, consistently at a
given ε, higher order terms, � > 2, in expansion (25) for ϕ(p̂).

0 0.4 0.8 1.2 1.6 2
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0.2

0.4

0.6

0.8

1

T=20 MeV 30 40

η/
η C

E

n/n0
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FIG. 2. Shear viscosity η [Eq. (36)] in the frequent-collision
regime in units of the CE value ηCE [Eq. (1)] versus particle-number
density n in units of the normal density n0 = 0.16 fm−3 of nuclear
matter; m ∼= 938 MeV; d = 1 fm, a = 100 MeV fm3.

V. DISCUSSION OF THE RESULTS

Equation (36) for η has the same classical hydrodynamical
dependence on the temperature T and diameter d, η ∝√

mT /d2 [cf. with Eq. (1)], because of using the FC approxi-
mation as in both the molecular kinetic theory [10] and the CE
approach [5]. In this approximation for the overdamped case
(Appendix B) the dominating contribution into the viscosity
yields from the collision term which mainly determines both
the classical hydrodynamical solutions (Ref. [5]) and our DPW
ones [Eq. (19)] for the distribution function to the BVKE.
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n no

T
�M
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�

FIG. 3. Contour plot for the ratio η/s of the DPW viscosity η

[Eq. (36)] to the entropy density s (5) in the n-T plane at g = 4 and
the same m, d , and a parameters as in Fig. 2.
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FIG. 4. Same as in Fig. 3 but for the ratio of the hydrodynamic
CE shear viscosity [Eq. (1)] to the entropy density [Eq. (5)].

Therefore, as expected, in the limit a → 0 (F � 1), one finds
the number constant [in front of

√
mT /d2; see Fig. 2 and

Eq. (36)] that approximately coincides within the accuracy
of 2% with the CE result (1). The difference between the
hydrodynamical (1) and overdamped DPW (36) viscosities in
the zero interaction constant limit should be, indeed, small as
compared to the leading collisional term.

Figure 2 shows the shear viscosity η [Eq. (36)] for a
few temperatures above the critical value Tc [Eq. (7)]. From
Fig. 2, one can clearly see that the shear viscosity η differs
significantly from the classical hydrodynamical formula (1) by
the particle density dependence. It appears through the VDW
parameter F [Eq. (30)], owing to accounting for dynamical
variations of the mean-field interaction (9) in our derivations.
As displayed in this figure, the significant effects originate
by the Vlasov self-consistent attractive-interaction terms of
the BVKE. In our approach this is achieved by solving
the BVKE (8) in terms of the DPW nonlocal-equilibrium
distribution function δf [see Eq. (19)] and using, therefore,
the perturbation expansion (22) for the frequency ω as a
solution of the dispersion equation, in addition to Eq. (21).
This is in contrast to the CE approach based on the dy-
namical local-equilibrium distribution-function variations and
hydrodynamical equations, used on the left-hand side of the
BVKE. The interaction term of the Boltzmann kinetic equation
containing δU [Eqs. (9)] is neglected in the CE method [5] as
compared to the integral collision term of the BVKE at the
leading first order in ε. Therefore, there is no particle density
corrections to the shear viscosity in the CE approach at this
order. To obtain these corrections, we found another alternative
DPW solution (19) through the self-consistent interaction
term of the BVKE. Note also that with increasing attractive
interaction parameter a (a > 0), one finds a linearly decreasing
viscosity η through the dimensionless parameter F .

Figures 3 and 4 show the ratio, η/s, of the viscosity η to
the entropy density s [Eq. (5)] given by Eqs. (36) and (1),
respectively, in the n-T plane for temperatures T above the
critical value Tc [Eq. (7)]. As seen from comparison of the two
overdamped viscosities in units of the entropy density in these
figures, the ratio η/s takes form of a minimum with values
η/s � 1 at densities (0.5–2)n0, somewhere in a vicinity of the
critical point (Tc,nc). This minimum is significantly smaller
and moves to smaller temperatures in our DPW calculations
(Fig. 3) as compared to the CE ones (Fig. 4) though they
are both smaller than 1. Note also a weak sensitivity of these
properties depending of the size of the hard spheres d around
d = 1 fm for its deflections in about 20%. However, η/s � 1
both at small (n � n0) and large (n � 2n0) particle density,
which makes the ideal hydrodynamic approach inapplicable
for these densities. We should emphasize that the BVKE can
be applied for enough dilute system of particles where the
mean free path is large as compared to particles’ interaction
region (in our example, of the order of the size of particles d).
This gas condition should be satisfied for all desired densities.

VI. CONCLUSIONS

The shear viscosity of a nucleon gas is derived by solving
the BVKE for the FC regime with taking into account the
van der Waals interaction parameters for both the hard-elastic
sphere scattering and attractive mean-field interaction. The
viscosity η depends on the particle density n through the
dynamical mean-field forces measured by the VDW parameter,
an/T , which is positive for the attractive long-distance mean-
field interaction. Therefore, the viscosity η decreases with the
interaction constant a > 0 through the VDW parameterF . The
ratio of the FC viscosity to the entropy density, η/s, as function
of the particle density n and temperature T is found to have a
minimum which is essentially smaller than one. The viscosity
is significantly smaller at this minimum, which moves to
smaller temperatures toward the critical temperature owing
to the long-distance interaction, as compared to the classical
hydrodynamical CE result. Our DPW viscosity calculations
have the same overdamped behavior (strong attenuation) such
that the collisional term is dominating above all of other
parts of the BVKE. Note that the viscosity coefficient can be
consider as a response (Ref. [15,28,32,35]) of the stress tensor
σμν for the shear pressure on the velocity derivative tensor
Uμν ; see, e.g., Eq. (16). See also the Green’s-Kubo formula for
the shear viscosity, as for the conductivity coefficient [15,33].

Our results might be interesting for the kinetic and hydro-
dynamic studies of nucleus-nucleus collisions at laboratory
energies of a few hundreds MeV per nucleon. The ideal
hydrodynamics can be a fairly good approximation for a
system of the interacting nucleons in the region of n and T
that corresponds at least to η/s � 1. However, the classical
hydrodynamical approach for both the dilute nucleon gas with
n � n0 and the nuclear-dense matter with n � 2n0 seems
to be rather questionable to use. As a different perturbation
theory has to be used in expansions over small ωτ for the FC
and small 1/(ωτ ) in the RC regime, we should expect very
different dependencies of the viscosity (and other transport
coefficients) on the particle density n in these two opposite

054620-6



SHEAR VISCOSITY OF NUCLEAR MATTER PHYSICAL REVIEW C 94, 054620 (2016)

limits. For instance, the RC regime is important to study a
weak absorption of the DPW in the gas system with small
far-acting interactions, especially for ultrasonic absorption
[36,37]. Therefore, in the case when the contributions of
collisions into the BVKE dynamics are changed from the
dominant (small ε) to almost collisionless process (small
1/ε) with increasing DPW frequency for a given collision
frequency ν, a transition from the FC to RC regimes should
be accounted beyond the classical hydrodynamical approach.
This can be realized for small n/n0 and large η/s, in the
corresponding n-T regions of the phase diagram for analysis
of the nucleus-nucleus collisions. Our approach can be applied
to calculations of the thermal conductivity and diffusion
coefficients in nuclear physics, as well as those and viscosity
in nuclear astrophysics, and to study different phenomena in
the electron-ion plasma.
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APPENDIX A: COLLISION TERM CALCULATIONS

We shall neglect approximately an influence of the effective
potential δU [n(r,t)] (9) of the long-range particle interaction
during a two-particle collision of hard-core sphere particles of
the gas in the FC regime. Using the multipole expansion (25)
of the amplitude factor ϕ(p̂), one can simplify the linearized
collisional term, δSt [Eqs. (10) and (19)], in the BVKE (8),

δSt = d2

4m

∑
�

χ�

∫
dp1|p1 − p|

∫
d�p′

×{f0(p′
1)f0(p′)[Y�0(p̂′

1) + Y�0(p̂′)

−f0(p1)f0(p)[Y�0(p̂1) + Y�0(p̂)]}, (A1)

where f0(p) is the static distribution function (3),

χ� = ϕ� exp(−iωt + ikr), (A2)

and ϕ� is the � coefficient in the expansion (25) for amplitudes
ϕ(p̂). One finds the relationship between the impact parameter
β in the center-of-mass coordinate system (see Fig. 1) and the
scattering angle θp′ (and βdβ to d�p′ ),

β = cos(θp′/2)d, βdβ = d2

8π
d�p′ = d2

8π
sin θp′dθp′dϕp′ .

(A3)

The Boltzmann collision term (A1) is defined in such a way
that its zero and first p moments have to be zero because
of the particle-number conservation (related to the continuity
equation), and momentum conservation,

p + p1 = p′ + p′
1, (A4)

(associated with the momentum continuity equation) during
a two-body collision. We take also into account that the
distribution function (3) is located within a small momentum
interval (2mT )1/2. Within this range the momentum vectors
are approximately changed only by their direction angles,

p̂ + p̂1 ≈ p̂′ + p̂′
1, (A5)

and one can use also the kinetic-energy conservation equation,

p2 + p2
1 = p′ 2 + p′ 2

1 . (A6)

Substituting Eq. (3) for the static distribution function,
f0(p), and using the conservation equations (A4)–(A6) in
Eq. (A1), one finds f0(p′

1)f0(p′) = f0(p1)f0(p). Therefore,
from Eq. (A1), one obtains

δSt = d2

4m
f0(p)

∑
�

χ�

∫
dp1|p1 − p|f0(p1)

×
∫

d�p′ [Y�0(p̂′
1) + Y�0(p̂′) − Y�0(p̂1) − Y�0(p̂)].

(A7)

Thus, the collisional term (A1) ensures all necessary (particle
number, momentum, and energy) conservation laws. In par-
ticular, one can check that there is no � = 0 and 1 terms in
the sum over � of Eq. (A7). By that reason, because of zero
two first moments of the collision term δSt (A7), there are no
contributions from (A7) into the continuity equation [zero p
moment of the Boltzmann equation (8)] and, explicitly, into
the momentum equation [the first p moment of (8)]. This term
δSt will affect only on the momentum flux tensor δ�μν (12)
through the solutions (19) for the distribution function δf [see,
e.g., Eq. (13)] in terms of the viscosity coefficients [Eq. (16)].

For the integration over p1 in Eq. (A7), it is convenient to
use the system of the center of mass for a given two-body
collision, with the symmetry z axis directed along the relative
motion of projectile particle having the reduced mass (Fig. 1).
We transform the integral over p1 to the relative momentum
q = p1 − p. Then, using the spherical-coordinate system with
the symmetry z axis directed along the vector q of the relative
motion of projectile particle (Fig. 1), dq = q2dq sin θqdθqdϕq

and (xq = cos θq), one finds from (A7)

δStL ≡
∫

d�pYL0(p̂)δSt(p)

= π2d2

4m
f0(p)f0(p)

∑
�

χ�

√
(2L + 1)(2� + 1)

×
∫ 1

−1
dxPL(x)

∫ 1

−1
dxq

∫ ∞

0
q3dq exp

[
−q2+2pqxq

2mT

]

×
∫ 1

−1
dx ′[P�(x ′

1) + P�(x ′) − P�(x1) − P�(x)]. (A8)
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Here, P�(cos θp) = [4π/(2� + 1)]1/2 Y�0(p̂) is the Legendre
polynomial of � order, and several transformations of the angle
coordinates are performed:

x = cos θp, x1 = cos θp1 ,
(A9)

x ′ = cos θp′ , x ′
1 = cos θp′

1
.

Note that the integration over the azimuthal angle of the relative
momentum was taken from zero to π [13]. For the integration
over the modulus of the relative momentum q, for the fixed x
and x ′, one can change the angle variables to functions of the
relative xq :

x ′
1 = x1 + x − x ′,

(A10)
x1 = z

√
2mT xq/p + x.

For the fixed x and x ′ we integrate first analytically over
the variable z = q/pT , where pT = √

2mT , and then over
xq . Integrating then, e.g., the � = 2 term, δSt2 of Eq. (A8),
explicitly over remaining angles x and x ′, one obtains

δSt2 = 5π2d2

2m
p4

T χ2f0(p)ISt (p), (A11)

where

ISt (p) = f0(p)
∫ 1

−1
dxP2(x)

∫ 1

−1
dx ′

∫ 1

−1
dxq

×
∫ ∞

0
z3dz exp[−(z2 + 2pxqz/pT )]

×[P2(z
√

2mT xq/p + 2x − x ′) + P2(x ′)

−P2(z
√

2mT xq/p + x) − P2(x)]

= 2n
(
2p2 + p2

T

)
5π p p4

T

erf

(
p

pT

)
+ 4n

5π3/2p3
T

× exp

(
− p2

p2
T

)
= 4n

5πp3
T

JSt (p/pT ), (A12)

with the error function erf(y) = 2
∫ y

0 dz exp(−z2)/
√

π ,

JSt (y) = y2 + 1/2

y
erf(y) + 1√

π
exp(−y2), y = p/pT .

(A13)

To reduce the BVKE to the perturbation eigenvalue problem
[Eqs. (21) and (22)] for the eigenfunctions ϕ(p̂) and eigen-
values c = ω/(kvT ) as solutions of the linear homogeneous
equations for ϕ(p̂), and dispersion equation for c (Appendix
B), we may derive now the accurate constant (independent
of y) approximations to the function JSt (y) [Eqs. (A13)].
Using these approximations, one obtains Eqs. (26) with (27)
for the collision term δSt (A8). Indeed, we may note that for
the derivation of such approximations the collision term St
[Eq. (A7)] can be considered through all of its p moments.
They are integrals over the modulus p, which are taken up to
the constant from the product of JSt (p) [Eq. (A13)] and the
power pλ at λ � 2, in addition to the Maxwell distribution

4

Λ�
2

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.5

1.0

1.5

2.0

y

J S
t

yΛ

FIG. 5. Integral yλJSt (y) [Eq. (A13), solid] vs y for powers λ =
2 (red), 3 (blue), and 4 (black); dashed lines show those with the
corresponding asymptotics [Eq. (A15)] up to fourth order.

function f0(p),∫ ∞

0
dppλδSt2 ∝ χ2

∫ ∞

0
dyyλJSt (y)f0(ypT ). (A14)

Figure 5 shows a fast convergence of the product yλ JSt (y)
[Eq. (A13)] of the integrand in Eq. (A14) to its asymptotics at
large y in powers of 1/y taking enough many terms,

JSt (y) = y + 1

2y
+ O

(
1

y4

)
, y � 1, (A15)

up to fourth-order terms for all y values owing to the power
factor pλ (λ � 2). Evaluating a smooth asymptotical function
JSt (y) (A15) with respect to the Maxwell distribution function
f0(ypT ) at the maximum contribution into the integrals (A14)
at y ≈ 1 (p ≈ pT ), one obtains approximately the damping
rate ν of the collisional term (27):

ν = nvT σ JSt (1) ≈ 3πnvT d2

2
. (A16)

Note that the second exponent term in Eq. (A13) for JSt was
exactly canceled by the second term of the error function
expansion, that leads to a good relative accuracy (about 6%)
after neglecting terms of the order of 1/y4 in asymptotics
(A15).

This accuracy can be checked by comparison of (A16)
with calculations of the exact function JSt (y), and its average
〈JSt (y)〉av over y with the static distribution f0 (3),

〈JSt (y)〉av =
∫ ∞

0 y2dyJSt (y)f0(y)∫ ∞
0 y2dyf0(y)

=
√

8

π
. (A17)

Calculating ν traditionally [13,19,27] through the averaged
value (A17) of the collision term [or JSt (y) (A13)] over all
momenta p (or y), one obtains

ν ≈ 〈ν〉av = nvT σ 〈JSt (y)〉av

≈
√

8/π π nvT d2. (A18)

Thus, both approximations for ν, Eqs. (27) and (A18), are
almost the same within a good relative precision mentioned
above.
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APPENDIX B: DERIVATIONS OF DISPERSION EQUATION

To derive the dispersion equation (29) for the ratio c =
ω/(kvT ) with respect to c in the FC regime, one may specify
a small perturbation parameter ε [Eq. (23)] in perturbation
expansion for ϕ(p̂) [Eqs. (21) and (22)]. Then, in the FC
regime (small ε), one can truncate the expansion of ϕ(p̂) (25)
over spherical functions Y�0(p̂) in the plane-wave distribution
function δf (19) at the quadrupole value of �, � � 2, because
of a fast convergence of the sum (25) over � [14]. Substituting
the plane-wave solution (19) with the multipole expansion
(25) for ϕ(p̂) in δf into the BVKE (8), after simple algebraic
transformations, one finally arrives (within the same approxi-
mations used in Appendix A) at the following linear equations
(L = 0,1,2, . . .) for ϕ�:

∑
�

AL�(c)ϕ� = 0, c = ω/(kvT ), (B1)

where

AL�(c) ≡ cδL� − C�1;L + F√
3
δL1δ�0

+iγ δ�L(1 − δ�0)(1 − δ�1), (B2)

C�1;L =
√

4π

3

∫
d�pYL0(p̂)Y10(p̂)Y�0(p̂)

=
√

2� + 1

2L + 1

(
CL0

�0,10

)2
, (B3)

CL0
�0,10 is the Clebsh-Gordan coefficients [38], and γ is given

by Eq. (31) (Appendix A). We multiplied the BVKE (8) by
YL0(p̂), and integrated term by term over angles d�p of the unit
momentum vector p̂ in the spherical coordinate system with
the polar z axis along the unit wave vector k̂. The integrals can
be calculated explicitly by using the orthogonal properties of
spherical functions and Clebsh-Gordan techniques for calcula-
tions of a few spherical function products in the integrand. The
matrix AL� has a simple structure. At the diagonal, one finds
nonzero values A�� depending on the sound velocity c. There
are also two L = � ± 1 lines, parallel to the diagonal, above
and below it, with the nonzero number coefficients, depending
on the Clebsh-Gordan coefficients through Eq. (B3). They are
independent of the velocity c and the dimensionless collisional
rate γ . Other matrix elements are zero. The isotropic mean field
δU (9) influences, through the interaction constant F (30), on
only one matrix element, A01 = F/

√
3 − C01,0. The damping

rate constant γ related to the collision integral [Eq. (26)] are
placed only in the main diagonal A�� at � � 2, A�� = c + iγ
because of the conservation conditions, as explained above
(Appendix A). For the FC regime, because of large γ , one
notes the convergence of the coefficients ϕ� of the expansion
in multipolarities (25): Any ϕ� at � � 2 is smaller than ϕ�−1
by factor 1/(c + iγ ) [14,17]. See more explicit expressions
for ratios of the amplitudes ϕ� in Appendix C [Eq. (C8)] in the
case of the quadrupole truncation of the characteristic matrix
A. Truncating this matrix at the quadrupole value � � 2 and

L � 2, one obtains the simple 3 × 3 matrix

A(2) =
⎛
⎝c −C11;0 0
F/

√
3 − C01;1 c −C21;1

0 −C11;2 c + iγ

⎞
⎠, (B4)

with C01;1 = C11;0 = 1/
√

3 and C21;1 = C11;2 = 2/
√

15. Ac-
counting for Eq. (31) for γ , and explicit expressions for these
constants C�1;L (B3), in the quadrupole FC case, one obtains
the condition of existence of nonzero solutions [detA(2)(c) =
0] of linear equations (B1), that is the cubic equation (29) with
respect to c.

Substituting c = cr + ici into the dispersion equation (29),
one can use the overdamped conditions within the FC regime,

|c/γ | = |ωτ | � 1, |cr/ci | � 1. (B5)

Then, at leading order one obtains (for γ �= 0)

−iF1
ci

γ
− F1

cr

γ
− iF2 = 0, (B6)

where F1 = 3/5 − F/3 and F2 = (1 − F)/3, and γ is given
by Eq. (31). Separating real and imaginary parts, at leading
order within the conditions (B5), one finds the overdamped
solution,

cr = 0, ci = −F2

F1
γ, (B7)

that is identical to Eq. (33).

APPENDIX C: MOMENTS OF THE DISTRIBUTION
FUNCTION AND VISCOSITY

For the shear viscosity η [Eq. (16)], one has to calculate
the matrices Uμν [Eq. (17)] and δσμν [Eq. (13)]. Taking the
polar axis of the spherical coordinate system in the momentum
space along the unit wave vector k̂ = k/k, we note that
these matrices are symmetric with zero nondiagonal terms,
and

Uxx = Uyy = − 1
2 Uzz, (C1)

σxx = σyy = − 1
2 σzz. (C2)

We find easy these relations using the symmetry arguments and
properties of the integrals of the plane-wave solution (19) for
δf over the angles d�p of vector p. Therefore, from Eqs. (17),
(13), (19), and (25) one has to obtain only the simplest zz
components,

Uzz = 2
∂uz

∂z
− 2

3
∇u = 4

3
ikũz exp(−iωt + ikr),

(C3)
σzz = σ̃zz exp(−iωt + ikr),

where

ũz =
∫

dp
nm

pzf0(p)ϕ(p̂) = vT

π
√

3
ϕ1,

(C4)

ϕ� =
∫

d�pY�0(p̂)ϕ(p̂),
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and

σ̃zz = −
∫

dp
3m

(
3p2

z − p2
)
f0(p)ϕ(p̂)

= − 2

3m

√
4π

5

∫
p4dpf0(p)

∫
d�pY20(p̂)ϕ(p̂)

= − nT√
5π

ϕ2. (C5)

We calculated explicitly the Gaussian-like integrals over p
using the static distribution function f0 [Eq. (3)],

Iλ =
∫ ∞

0
dppλf0(p) = npλ−2

T

2π3/2
�

(
λ + 1

2

)
, (C6)

where �(x) is the � function. Using the orthogonal properties
of the spherical functions and Eqs. (C3), (C4), and (C5), from

Eq. (16), one arrives at

η = 9i
√

π

4
√

15

nT c

ω

ϕ2

ϕ1

. (C7)

So far we did not use a specific regime of collisions and
the truncated linear system of equations (B1). Solving these
equations (B1), one obtains

ϕ0

ϕ1

= 1√
3 c

,

ϕ2

ϕ1

= 2√
15 (c + iγ )

. (C8)

With these expressions, from Eq. (C7) one obtains

η = 3
√

π

10

1

1 + c/(iγ )

nT

ν

= 1

5
√

2π

1

1 + c/(iγ )

√
mT

d2
. (C9)

Substituting the overdamped solution for the sound velocity
[Eq. (33)], from Eq. (C9) one obtains Eq. (36).
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