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Calculation of three-body nuclear reactions with angular-momentum and parity-dependent optical
potentials
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Angular-momentum or parity-dependent nonlocal optical potentials for nucleon-16O scattering able to fit
differential cross-section data over the whole angular regime are developed and applied to the description
of deuteron-16O scattering in the framework of three-body Faddeev-type equations for transition operators.
Differential cross sections and deuteron analyzing powers for elastic scattering and 16O(d,p)17O transfer reactions
are calculated by using a number of local and nonlocal optical potentials and compared with experimental data.
Angular-momentum or parity-dependence of the optical potential turns out to be quite irrelevant in the considered
three-body reactions whereas nonlocality is essential for a successful description of the differential cross-section
data, especially in transfer reactions.
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I. INTRODUCTION

Deuteron scattering from composite nuclei is, in general, a
many-body problem, but very often it is treated as three-body
problem in a system consisting of proton p, neutron n, and
inert nuclear core A [1–3]. The interactions between nucleons
and core are modeled by effective optical potentials (OPs);
there is a large variety of phenomenological parametrizations
[4–8]. In some cases such models are successful in describing
the experimental data, and in some cases they fail, calling
for improvements in the OP or the dynamical model, e.g.,
by including the excitation of the core [9]. In particular
cases the failures can be seen already in the nucleon-nucleus
two-body system. For example, standard optical potentials
were found to be unable to account for precise large-angle
nucleon-nucleus elastic differential cross-section data above
20 MeV laboratory energy for stable closed-shell nuclei such
as 16O or 40Ca [10]. This is not very surprising given the
significant momentum transfer in that regime and possible
excitations. It was argued [11,12] that these effects give rise to
parity- or angular-momentum-dependent (π - or L-dependent)
components in the OP. Indeed, with such additional terms
the description of large-angle differential cross-section data
was significantly improved [10,13]. Naturally, one may raise
the question of what consequences the improvements and
new OP terms have on three-body reaction observables.
Unfortunately, explicitly π - or L-dependent OPs are not
suitable for standard practical calculations within the dis-
torted wave Born approximation (DWBA), adiabatic wave
approximation (ADWA), and continuum discretized coupled
channels (CDCC) frameworks. However, exact Faddeev-type
theory, implemented in individual partial-wave representations
for all three pairs involved, is capable of using such π - and
L-dependent potentials. Thus, the aim of the present work is to
study three-body nuclear reactions with π - and L-dependent
OPs. We choose d + 16O elastic and transfer reactions as a
working example. However, all existing π - and L-dependent
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OP parametrizations for nucleon-16O are local [10,13], while
in Ref. [14] it was found that the Perey–Buck-type exchange
nonlocality of the OP is important in three-body reactions,
especially for transfer. For this reason we create several
nonlocal parametrizations of π - and L-dependent OPs, fitted
to the same experimental data [15,16] as the local ones [10,13].

In Sec. II we describe the two-body nucleon-16O potentials
employed, and in Sec. III the three-body scattering equations.
The results are presented in Sec. IV, while the summary is
given in Sec. V.

II. NUCLEON-NUCLEUS POTENTIALS

A. Angular-momentum-dependent optical potential

We start with a nonlocal OP of the form proposed by
Giannini and Ricco [17] and augment it with an L-dependent
part, resulting in

VL(r′,r) = −Hc(x)[VV fV (y) + iWV fW (y) + iWSgS(y)]

−Hs(x)Vs

2

y

dfs(y)

dy
σ · L

−Hc(x)
[
Ṽ gṼ (y) + iW̃gW̃ (y)

]
fL

(
L2

)
. (1)

Here, Vi and Wi are potential strengths for various real and
imaginary terms, while for each term the shape is given by

x = |r′ − r|, (2a)

y = |r′ + r|/2, (2b)

Hi(x) = (
πβ2

i

)−3/2
e−x2/β2

i , (2c)

fi(y) = [1 + e(y−Ri )/ai ]−1, (2d)

gi(y) = −4aidfi(y)/dy = 4fi(y)[1 − fi(y)], (2e)

with radius Ri , diffuseness ai , and nonlocality parameter βi .
The dependence on the orbital angular momentum L in the
form of the Woods–Saxon function fL(L2) given in Eq. (2d) is
taken over from Ref. [10] where a local L-dependent potential
was constructed. We determine potential strength parameters
by fitting theoretical p + 16O predictions to experimental data
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for the differential cross section dσ/d�, total inelastic cross
section, and proton analyzing power Ay from Refs. [15,16],
i.e., the same data that constrain the local OP of Ref. [10].
In addition, the geometric parameters Ri , ai , and βi have
also been varied, typically within 10% of the original values
[17], to improve the fit quality. The parameters defining the
L-dependence turn out to be comparable to the local case
[10], i.e., typically 3 <

√
RL < 4 and 0.5 <

√
aL < 0.7. Note

that some local OP parameters in Ref. [10] depend strongly
on the collision energy and that dependence is not smooth,
reflecting the fact that backward-angle experimental data
exhibit nonmonotonic energy dependence, probably due to the
presence of resonant proton-nucleus states. We emphasize that,
in three-body reactions, the energy of each interacting two-
body subsystem formally runs from the available three-body
energy to −∞ but, to have a single three-body Hamiltonian
and thereby preserve a Hamiltonian theory [18], it is preferable
to use two-body potentials with fixed sets of parameters;
the results in Sec. III are obtained following this strategy.
The ability of the OP to account for the two-body reaction
data over a broader energy regime may be important for its
success in three-body reactions and deserves investigation.
The nonlocal OP, at least to some extent, is able to absorb a
smooth energy dependence of data into nonlocality, but far less
so a nonsmooth behavior. Thus, we have not achieved a single
parameter set describing the data over the full angular regime
at all energies. In fact, the analyzing-power data are only
accounted for center-of-mass (c.m.) scattering angles �c.m. up
to about 100◦. Nevertheless, when we fit the experimental data
at a given energy, the resulting OP reproduces well the data
for other energies at �c.m. � 90◦ and only fails at backward
angles where the differential cross section is very small. This
is an important improvement as compared with the local OP
of Ref. [10] that yields a considerably worse description of
the data not included in the fit. An example is shown in
Figs. 1 and 2 where the predictions using local and nonlocal
L-dependent OPs, determined solely by the data at proton
laboratory energy Ep = 27.3 MeV, are compared with data
at Ep = 27.3 and 34.1 MeV. Thus, Fig. 1 reflects the quality
of the fit at a single given energy, while Fig. 2 reflects the
predictive power of fixed-energy OPs for energies not included
in the fit. In this latter case nonlocal OPs are more successful,
indicating a weaker energy dependence of their parameters
as compared with the local OP. We present also predictions
of parity-dependent OPs from the next section, Vπ , and of
nonlocal L-independent OP with parameters from Ref. [14],
labeled VN . The latter was not properly fitted to the present
data, failing at backward angles and, for Ay , also at forward
angles �c.m. � 40◦, but otherwise provides a rough description
of the experimental data. To confirm the conclusion of the
superiority of nonlocal L-dependent OPs in the two-body
system, we created a number of parametrizations [19].

As for n + 16O scattering, the available experimental data
[20–22] are scarcer and less precise. We tried two options for
L-dependent n + 16O potential: (i) taking over the parameters
of the p + 16O potential, (ii) explicitly fitting to n + 16O
experimental data. An example for n + 16O scattering at
En = 24 MeV neutron energy is presented in Fig. 3. While
for the differential cross section the quality is nearly the same
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FIG. 1. Differential cross section divided by Rutherford cross
section and proton analyzing power for p + 16O elastic scattering
at Ep = 27.3 MeV. Parameters of local L-dependent OP from
Ref. [10] (dotted curves), nonlocal L-dependent OP (solid curves),
and nonlocal π -dependent OP (dashed-dotted curves) are fitted
to experimental Ep = 27.3 MeV data. Results for nonlocal L-
independent OP (dashed curves) without proper fit are shown as
well. The data are from Refs. [15,16].

in both cases, explicit fitting leads to a better description of
the neutron analyzing power. We show results for two sets
of parameters to demonstrate large model dependence for
backward angle Ay .

B. Parity-dependent optical potential

The mechanism giving rise to parity-dependent terms in the
OP [12,13,23] is different from that of L-dependent terms, but
nevertheless has led to a comparable quality when fitting the
data. To get the nonlocal version we replace the fL(L2) term
in Eq. (1) by a parity-dependent term, resulting in a nonlocal
π -dependent OP,

Vπ (r′,r) = −Hc(x)[VV fV (y) + iWV fW (y) + iWSgS(y)]

−Hs(x)
2

y

[
Vs
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dy
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]
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[
ṼV fṼ (y) + iW̃V fW̃ (y)

+ ṼSgS̃r
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(y)
]
. (3)
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FIG. 2. Differential cross section divided by Rutherford cross
section and proton analyzing power for p + 16O elastic scattering at
Ep = 34.1 MeV. Curves are as in Fig. 1 with OP parameters fit to
experimental Ep = 27.3 MeV data. The results are not constrained
in any way by the shown Ep = 34.1 MeV data from Refs. [15,16].
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FIG. 3. Differential cross section and neutron analyzing power
for n + 16O elastic scattering at En = 24 MeV. Results obtained with
various nonlocal potentials are compared with the experimental data
from Refs. [20] (•), [22] (�), and [21] (◦). The predictions with
p + 16O potential parameters from Fig. 1 are denoted by (p).

In addition, we allowed for an imaginary spin-orbit term with
strength Ws , following Ref. [13] where a π -dependent local
OP was developed, but fixed nonlocality parameters βi to the
original values from Ref. [17]. Otherwise the fitting procedure
is the same as in the previous section, and the achieved
quality in describing experimental data is comparable to that
of L-dependent OP as can be seen in Fig. 1. Worth noting
are different radial shapes for π -dependent and -independent
terms, in particular significantly smaller diffuseness aṼ as
compared with aV , consistently with findings of Ref. [12].

C. Discussion

L and π dependence of the OP is not really surprising,
since OP describes not a fundamental interaction but an
effective one between the nucleon and composite nucleus.
Internal degrees of freedom of the nucleus A, if taken
into account explicitly, would lead to a highly complicated
effective two-body nucleon-nucleus interaction. Solving the
(A + 1)-nucleon scattering problem with sufficient accuracy
is beyond the present capabilities, but attempts have been made
to justify the nonstandard OP terms by the effect of simplest
internal degrees of freedom of the nuclear core. For example,
Ref. [12] argues that contributions of the core excitation can
be approximated by π -dependent terms, while Refs. [10,11]
relate the L-dependence of the OP to the deuteron channel
coupling. For curiosity we verified this concept in a toy model
by using theoretical results from Ref. [14] for proton elastic
scattering on 16O and 17O, but we expect it to be qualitatively
valid for any nuclei (A − 1) ≡ B and A. Starting with an
L-independent OP for p + B, a real binding potential for
n + B, and a realistic n + p potential having central, spin-spin,
spin-orbit, and tensor terms, results for p + A were obtained
by solving exact three-body equations, thereby including
p + n + B breakup and d + B transfer channels to all orders.
The resulting three-body p + A elastic cross section could
not be fit well with the two-body standard OP for p + A, but
the inclusion of L-dependent terms in the OP for p + A, i.e.,
p + 17O in the case of Ref. [14], significantly improved the fit.
Obviously, such an approach is not reliable for a quantitative
determination of the OP because it takes into account only
one-neutron internal degrees of freedom in the core and relies
on the potentials for the p + B and n + B subsystems (that
may be L dependent themselves), but it demonstrates that the
L dependence of the OP appears. Of course, L-independent
phenomenological OPs do not exclude the coupling to the
deuteron channel but include it implicitly in an L-averaged
way by fitting the data. Applying an L-dependent potential
in a three-body p + n + A system with the present deuteron
channel is justified in exact calculations dealing with three
pairwise p + A, n + A, and n + p interactions, but may lead
to double counting in DWBA-type approaches that generate
the p + (A + n) wave not through a rigorous solution of the
three-body problem but from a p + (A + n) two-body OP. We
also expect that, if one would attempt to calculate deuteron-
nucleus two-body OP starting from a three-body problem with
L-independent nucleon-nucleus OPs, the resulting OP in a
similar way should acquire L dependence.
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III. THREE-BODY SCATTERING EQUATIONS

We describe deuteron-nucleus reactions in the framework
of exact Faddeev-type three-body scattering equations. We use
the Alt–Grassberger–Sandhas (AGS) integral equations [24]
for transition operators:

Uβα = δ̄βαG−1
0 +

∑
γ

δ̄βγ Tγ G0Uγα, (4)

with δ̄βα = 1 − δβα , free resolvent G0(Z) = (E + i0 −
H0)−1, three-particle relative motion kinetic-energy operator
H0 and available energy E, and two-body transition matrix

Tγ = vγ + vγ G0Tγ . (5)

The latter is calculated for each pair γ with the corresponding
two-body potential vγ , where in the odd-man-out notation v1

denotes the interaction within the pair (23) and so on. On-shell
matrix elements of Uβα taken between the corresponding chan-
nel states are reaction amplitudes needed for the calculation of
scattering observables.

We solve the AGS equations in the momentum-space
partial-wave representation. We employ three complete sets
of base functions |pαqα(lα{[Lα(sβsγ )Sα]jαsα}Sα)JM〉. Here
(αβγ ) = (123), (231), or (312), pα is magnitude of relative
momentum within pair (βγ ), qα is magnitude of relative
momentum between spectator α and the c.m. of pair (βγ ),
Lα and lα are orbital angular momenta associated with pα and
qα , respectively, and sα, sβ, sγ are spins of the corresponding
particles. All discrete angular-momentum quantum numbers
are coupled to total angular momentum J with the projection
M , while Sα , jα and Sα are angular momenta of intermediate
subsystems. Using all three sets α = 1, 2, and 3 of these basis
states allows the calculation of each potential vα and transition
matrix Tα in its proper basis. Obviously, this enables easy
inclusion of L- and π -dependent potentials, in contrast to
CDCC and other approximations, where only one set of base
functions is being used.

The proton-nucleus Coulomb force is included via the
screening and renormalization method [25–27]. For d + 16O
elastic and transfer reactions we obtain well-converged results
with Coulomb screening radius around 10 or 12 fm, and
including J � 30 states with Lα up to 3, 8, and 14 for
n + p, n + 16O, and p + 16O pairs, respectively. For the n + p
interaction we take the realistic charge-dependent (CD) Bonn
potential [28] and use potentials from previous section for
nucleon-nucleus pairs.

IV. RESULTS

Using nucleon-nucleus OPs from Sec. II and Refs. [10,17]
and the realistic neutron-proton CD Bonn potential [28],
we study d + 16O elastic scattering and transfer reactions
16O(d,p)17O. In the former case there exist differential
cross section and deuteron analyzing power data at Ed =
56 MeV deuteron laboratory energy [29]. A comparison
of those experimental data and our predictions, including
four L-dependent and three π -dependent nonlocal models,
is presented in Fig. 4. One can notice immediately that
the local L-dependent OP from Ref. [10], although being
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FIG. 4. Differential cross section divided by Rutherford cross
section and deuteron analyzing powers for d + 16O elastic scattering
at Ed = 56 MeV. Predictions obtained by using local L-dependent OP
from Ref. [10] (dotted curves), four parametrizations of nonlocal L-
dependent OP (four solid curves,) three parametrizations of nonlocal
π -dependent OP (three dashed-dotted curves), and nonlocal L-
independent OP (dashed curves) are compared with the experimental
data from Ref. [29].

successful in p + 16O scattering, fails heavily at large angles
in d + 16O scattering, strongly overpredicting the differential
cross section. In contrast, nonlocal models, both L or π
dependent, slightly underpredict the differential cross section
at large angles, but quite reasonably follow its shape. Properly
fitted L- and π -dependent models, both local and nonlocal,
provide a reasonable description of deuteron analyzing powers
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FIG. 5. Differential cross section for 16O(d,p)17O transfer reac-
tions at Ed = 36 MeV leading to 17O ground 5
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+
(top) and excited

1
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+
(bottom) states. Predictions obtained using local L-dependent

OP from Ref. [10] (dotted curves), nonlocal L-dependent OP
(solid curves,) nonlocal π -dependent OP (dashed-dotted curves),
and nonlocal L-independent OP (dashed curves) are compared with
experimental data from Ref. [30].

up to �c.m. = 40◦ or 60◦ (in some cases, with exception of
�c.m. = 20◦ where dσ/d� has a deep minimum), but deviate
from data and from each other at larger scattering angles. The
L-independent nonlocal OP [17] accounts for cross-section
data with a quality comparable to nonlocal L- and π -dependent
OPs, but fails for the deuteron vector analyzing power Ay at
20◦ � �c.m. � 40◦. This is expected given that is was not fitted
to p + 16O Ay data and shows there a similar discrepancy.
Quite surprisingly, the description of all measured deuteron
tensor analyzing powers Ayy , Axx , and Axz using this model
[17] turns out to be quite similar to L- and π -dependent models
of Sec. II and Ref. [10]. This may indicate that deuteron tensor
analyzing powers are not well constrained by nucleon-nucleus
Ay data.

Next we study 16O(d,p)17O transfer reactions. In this case
the potential must support the bound state for the final nucleus
17O. We therefore take real binding potentials from Ref. [31]
in n + 16O partial wave 5

2

+
( 1

2
+

) when calculating transfer
to 17O ground state (excited state). Differential-cross-section
results for both reactions at Ed = 36 MeV are shown in Fig. 5.
By comparing with the experimental data [30] one notices
the failure of the local L-dependent OP from Ref. [10] over
the whole angular regime. In contrast, all nonlocal OPs, L
or π dependent or not, provide a quite good description of
the experimental data. Thus, L- and π -dependent terms in the
OP appear to be quite irrelevant while the nonlocality of the
OP turns out to be essential. Similar findings regarding the
OP nonlocality in transfer reactions emerged in Refs. [14,31]
where a broader range of reactions was investigated. Note
that there is a difference between present calculations and
those of in Ref. [14] in the choice of n + 16O potential: it
was real in Ref. [14] but complex here (except for the 17O
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FIG. 6. Differential cross section for 16O(d,p)17O transfer to 17O
ground state 5

2

+
at Ed = 63.2 MeV. Predictions obtained by using

the nonlocal L-dependent OP (solid curves,) nonlocal π -dependent
OP (dashed-dotted curves), and nonlocal L-independent OP (dashed
curves) are compared with experimental data from Ref. [30].

bound-state partial wave). In Fig. 6 we present one more
example, i.e., 16O(d,p)17O transfer to the 17O ground state 5

2

+

at Ed = 63.2 MeV, which was not considered in Refs. [14,31].
Again, the account of the experimental data [30] by all nonlocal
potentials used is quite good, while the calculations of Ref. [18]
with local but explicitly energy-dependent potentials heavily
failed in reproducing this observable.

V. SUMMARY AND CONCLUSIONS

We developed a number of angular-momentum or parity-
dependent optical potentials for nucleon-16O system. Those
nonstandard additional terms enabled us to fit elastic nucleon-
nucleus scattering data at large angles. However, the param-
eters turn out to be energy dependent. The optical potential
with energy-independent parameters is able to fit two-body
data very well around the chosen energy in the whole angular
regime for the differential cross section and up to about
�c.m. = 100◦ for the analyzing power. At more distant energies
the description remains good at not-too-large scattering angles
�c.m. � 100◦. The local L-dependent OP from Ref. [10] turns
out to be much more strongly dependent on energy, with a
fixed parameter set able to account for the data in a narrow
energy region only. In this respect the potentials of the present
work represent a significant improvement.

The explicit angular-momentum or parity dependence of
the OP can be handled in the Faddeev or AGS three-body
scattering equations solved in the momentum-space partial-
wave representation where each two-body potential and the
corresponding transition matrix is calculated in its proper
basis. In an energy-independent form the nonlocal L- or π -
dependent potentials were used to calculate differential cross-
section and deuteron analyzing powers for d + 16O elastic
scattering and 16O(d,p)17O transfer reactions. To isolate the
effect of L or π dependence and nonlocality, the same
observables were calculated by using local L-dependent [10]
and nonlocal L-independent [17] potentials. In all considered
reactions nonlocal OPs provide a quite similar and reasonable
description of differential cross-section data. In contrast, the
predictions using the local L-dependent OP [10] strongly
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deviate from the data and all nonlocal OPs for �c.m. � 50◦
in d + 16O elastic scattering and in the whole angular regime
for 16O(d,p)17O transfer reactions. Based on this fact we
conclude that L- and π -dependent terms in the OP may be quite
irrelevant for three-body scattering but the nonlocality plays a
major role, especially in transfer reactions; the latter finding
is in accordance with Refs. [14,31–33]. The comparison
of predictions and data for deuteron analyzing powers in
d + 16O elastic scattering is less conclusive. The agreement
is reasonable for all properly fitted models at not-too-large

scattering angles �c.m. � 60◦, but beyond the predictions may
deviate from data and from each other. Furthermore, a proper
fit to two-body analyzing power data appears to be relevant
for deuteron vector analyzing power Ay , but not for tensor
analyzing powers Ayy , Axx , and Axz.
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