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Self-consistent collective coordinate for reaction path and inertial mass
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We propose a numerical method to determine the optimal collective reaction path for a nucleus-nucleus
collision, based on the adiabatic self-consistent collective coordinate (ASCC) method. We use an iterative
method, combining the imaginary-time evolution and the finite amplitude method, for the solution of the ASCC
coupled equations. Itis applied to the simplest case, a-« scattering. We determine the collective path, the potential,
and the inertial mass. The results are compared with other methods, such as the constrained Hartree-Fock method,
Inglis’s cranking formula, and the adiabatic time-dependent Hartree-Fock (ATDHF) method.

DOI: 10.1103/PhysRevC.94.054618

I. INTRODUCTION

The time-dependent Hartree-Fock (TDHF) method has
been extensively applied to studies of heavy-ion reactions
[1-5]. The TDHF method provides a successful description
for the time evolution of one-body observables. Its small-
amplitude limit corresponds to the random-phase approxi-
mation [6,7], which is a current leading theory for nuclear
response calculations. However, beyond the linear regime,
it is not trivial to extract quantum mechanical information
from the TDHF trajectories of given initial values. It is also
well known that the TDHF method has some drawbacks due
to its semiclassical nature [1,6]. For instance, the real-time
description of sub-barrier fusion and spontaneous fission
processes is practically impossible, because a single Slater
determinant with a single average mean-field potential is not
capable of describing quantum mechanical processes in rare
channels.

The “requantization” of TDHF is a possible solution to
these problems, that was proposed from a viewpoint of the path
integral [1,8]. However, the original quantization prescription
requires the identification of periodic TDHF trajectories,
which is a very difficult task. As far as we know, there has been
no application of the theory to realistic nuclear problems [9].
A family of the periodic TDHF trajectories is associated with a
collective subspace decoupled from the other intrinsic degrees
of freedom. If we identify the collective subspace spanned
by a small number of canonical variables, the requantization
becomes much easier than finding the periodic orbits [3]. In
fact, the theory of the adiabatic TDHF (ATDHF) method
aimed to determine such an optimum collective subspace
[10-13]. The ATDHF, however, encounters a “nonuniqueness”
problem; namely it cannot provide a unique solution for the
collective subspace. In order to uniquely fix the solution, a
prescription, so-called validity condition, was proposed [14].
Goeke, Reinhard, and coworkers have developed a numerical
recipe for the reaction path and inertial mass, solving the
ATDHF equations of the initial-value problem [15,16]. Their
procedure requires us to calculate a large number of trajectories
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with different initial states, then to obtain the optimal collective
path as an envelope curve of those [15].

The self-consistent collective coordinate (SCC) method,
originally proposed by Marumori and coworkers [17], is solely
based on the invariance principle of the TDHF equation in the
collective subspace, which treats the collective coordinate g
and the momentum p on an equal footing. The SCC method
is able to determine the unique collective path. In addition,
the Anderson-Nambu-Goldstone (ANG) modes are properly
decoupled in the SCC method [3,18]. Its weak point is that
practical solutions to the basic equation were restricted to
a perturbative expansion around the HF state. To overcome
this perturbative nature of the SCC, a method treating the
coordinate g in a nonperturbative way but expanding with
respect to momenta p was later proposed. It is named
the “adiabatic self-consistent collective coordinate (ASCC)
method” [19]. The ASCC method provides an alternative
practical solution to SCC [19]: The state is determined at
each value of g by solving the equation expanded up to the
second order in p. The ASCC method has been successfully
applied to nuclear structure problems with large-amplitude
shape fluctuations and/or oscillations for the Hamiltonian of
the separable interactions [3,20-26]. It should be noted that a
solution to the nonuniqueness problem of the ATDHF method
was given by higher-order equations with respect to momenta
[27,28], which are similar to the ASCC equations.

In this paper, we apply the ASCC method to nuclear reaction
studies, then self-consistently determine the optimal reaction
path, the internuclear potential, and the inertial mass. Since
the separable interactions, such as the pairing-plus-quadrupole
interaction, are not applicable to a system with two colliding
nuclei, we need to treat a Hamiltonian of nonseparable type.
For this purpose, we developed a computer code employing a
novel numerical technique. We use a procedure combining the
imaginary-time method [29] and the finite-amplitude method
[30-32] for the solution of the ASCC equations. We show
that this method nicely works for the three-dimensional (3D)
coordinate-space representation, taking a reaction of *Be <>
o + o as an example.

The paper is organized as follows. In Sec. II, we give
the formulation of the basic ASCC equations to determine
the one-dimensional (1D) collective path and the canonical
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variables (g, p). In Sec. III, we show the numerical results and
compare with those of conventional methods. A summary and
concluding remarks are given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. The adiabatic self-consistent collective
coordinate (ASCC) method

The SCC method aims to determine a collective sub-
manifold embedded in the large dimensional TDHF space
of Slater determinants, which is maximally decoupled from
the remaining intrinsic degrees of freedom. For the 1D
collective path, a pair of canonical variables (g,p) along
the collective path are introduced by labeling the Slater
determinants as |¥(p,q)), where ¢ and p respectively rep-
resent the coordinate and the conjugate momentum. Once
the states |{(gq,p)) are determined, the (classical)A collective
Hamiltqnian is given by Heonl(g,p) = (¥ (q,p)|H|¥ (g, p)),
where H is the total Hamiltonian of the system. Therefore, the
main task is to determine |1/(g, p)) on a decoupled collective
submanifold.

In the ASCC [19], the wave function is written in the
form

W (p.@) = €791y (), )
using a local generator Q(q) which is defined as
Q@Y (@) = —=id,|¥ (@)} p=o- @)

The collective coordinate operator Q(q) is an infinitesimal
generator for “accelerating” the system. The momentum oper-
ator is introduced in a similar way as an infinitesimal generator
for “translating” the system, ﬁ(q)lw(q)) =10,V (q)).

Since the Thouless theorem guarantees that small variation
of a Slater determinant can be generated by the particle-hole
(ph) excitations [6], the local generators, Q(q) and I3(q), can
be written in terms of ph and hp operators as

P(g)=i)_ Pu(q)al(q)aj(q)+He., 3)
n,j
0(q) =Y _ 0uj(@)al(q)a;j(q) + He. )
n,j

In this paper, the indexes i,j and n,m refer to the hole and
particle states with respect to |¢(q)), respectively, Hereafter,
the creation and annihilation operators are denoted as (ai,ai)
instead of (a,];(q),ai (¢)) for simplicity. These generators are
required to follow the weak canonicity condition

W (I P(@), O @IY(q)) = 1. 5

In the ASCC, the collective momentum p is assumed
to be small. Keeping the expansion with respect to p up
to the second order, the invariance principle of the TDHF
equation leads to a set of ASCC equations [3,4,19,20,22,33]
to determine the wave function |y (q)) and the local generators
(f’(q), Q(q)) self-consistently along the collective path. In this
paper, we consider only the 1D collective motion, without
taking the pairing correlations into account. The equations
in the zeroth, first, and second order in momentum read,
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respectively,

SW (DI Huy( IV (@) =0 (6)

2

N 1. Ul AN
8(W(‘])||:Hmv(CI)vlTP(CI)j| - a—qu(q)llﬁ(q)) =0, (D

. . 1 .
S (I Hmv(9),i (@)l — ——P(@I¥(q)) =0, (8)
M(q)
where f]mv(q) =H—( V/aq)Q(q) is the “moving” Hamil-
tonian. The collective potential V(q) is defined as

V(g) = (W(@IH V(@) (€))

and M (q) is the inertial mass of the collective motion. Equation
(6) is called the moving mean-field equation [or moving
Hartree-Fock (HF) equation], and Egs. (7) and (8) are the
moving random-phase approximation (RPA).

In fact, to derive the second-order equation (8), an ad-
ditional term called the curvature term [19] is neglected.
Although the exact treatment of the curvature term is possible,
it involves numerically iterative tasks and has only minor
effect on the final result [33]. Here, we neglect this curvature
term, which leads to Eq. (8). Equation (6) looks similar to
a constrained Hartree-Fock (CHF) equation. However, the
constraint operator Q(q) changes along the collective path
| (g)), which is self-consistently determined by the moving
RPA equations (7) and (8).

Substituting P and O of Egs. (3) and (4) into Egs. (7) and

(8) leads to
(A(g) B(q))(mq)) _ v (Q(q)) (10)
B*(q) A*@))\P*(@)) 842 \Q0% ()’
(A(q) B(q))( 0(q) >= 1 < P(q) ) an
B*(q) A*(q))\—0%(q) M@ \—P*(@q))

where the A and B matrix elements are defined as
Aninj(q) = (Iﬂ(q)lajam[ﬁmv(q),alaj]W(é])),
Buinj(@) = —(¥(@)lalan[ Any(@).ata )1V (9)).

When all of these matrix elements are real, Eqs. (10) and (11)
can be recast into an eigenvalue equation

{A(g) + B(@)HA(q) — B(@)}Q(q) = 0*(9)Q(q),  (13)
with

12)

1 9%V
M(q) 3q*’
where w(q) is the moving-RPA eigenfrequency. w(g) can be

purely imaginary (w*(g) < 0). The generator P(g) can be
obtained from a matrix equation for P,;(q),

P(q) = M(9){A(q) — B(9)}Q(q). s)

Equation (13) has many solutions, among which we choose the
collective mode of our interest. For instance, in the numerical
calculation for the scattering o + @ <> °Be in Sec. III, the
lowest quadrupole mode of excitation is selected.

Since the scale of the coordinate is arbitrary, the ASCC
equations (6), (7), and (8) and the weak canonicity condition
(5) are invariant with respect to the scale transformation

w*(q) = (14)
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of the collective coordinate, ¢ — ag (p — p/a). The gen-
erators andAthe co}lective ipertial mass are transformed as
0(q) — @ Q(q), P(q) — P(q)/a, and M(q) — a>M(q),
respectively. Therefore, when we perform the numerical
calculation to determine the collective coordinate g, we need
a condition to fix the scale of the coordinate g. A convenient
choice could be the condition that the mass M(g) is unity,
which we adopt in the present paper. Then, the eigenvalue o’
of Eq. (13) gives the second derivative of V(g) with respect
togq.

In this way, we obtain a series of states |(q)) on the
collective path, the collective potential V(q) of Eq. (9), and
the collective inertial mass M(q) equal to unity by tuning the
scale of g. Thus, the collective Hamiltonian is constructed as

Heott = 3° + V(@) (16)

The canonical quantization of this Hamiltonian immediately
leads to

. 1/d\*
Heon = _§<E> + V(g). a7

B. Mapping to different variables

In order to obtain a physical picture of the collective
dynamics, it is often convenient to adopt an “intuitive”
variable, such as the distance between two nuclei, R. Of course,
the optimal collective coordinate ¢, determined by the ASCC
solutions, is different from R, in general. Nevertheless, as far as
the one-to-one correspondence between ¢ and R is guaranteed,
we may use the variable R = R(g) to modify the scale of
the coordinate. Without affecting the collective dynamics, the
collective Hamiltonian, Egs. (16) and (17), is rewritten in terms
of R.

Let us denote a new variable as R, defined by the
expectation value of the corresponding one-body Hermitian
operator R. For instance, the operator of the relative distance
between two symmetric nuclei (2 x A/2) is given by

R

3 [ @O0 - o). ay
A/2

where 6(z) is the step function. We also assume the one-to-one
mapping between g and R, R(q) = (lp(q)|1é|1//(q)) and its
inverse function g(R). The transformation of the collective
potential, V(g) — V(R), is trivial: V(R) = V(g(R)). In con-
trast, the inertial mass is transformed as

mery = mg(90) = (94) 2 (4R )
“W\gr) T\ar) “\4q)
where we use M(g) = 1. The inertial mass M(R) is not

constant but depends on R. The collective Hamiltonian is
rewritten as

HE = IMR)R* + V(R). (20)

coll —

A quantization identical to Eq. (17) is given by the Pauli
prescription [34]

gro__ 1 4 1 d
cll ™ 2 /M(R)dR /M(R)dR

+V(R). @D
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The mass M(R) requires calculation of the derivative,
dR/dqordq/dR,inEq.(19). These quantities can be obtained
by use of the local generator P(g),

dR d N P A
- = - W@IRIV @) = <w<q>|[R:P(q)}|w(q>>
q dq i
=23 Rui(q) Pui(q). (22)

where R,,;(q) are the ph matrix elements of R with respect
to the state |{/(g)) and are assumed to be real. Since this
calculation can be performed using the local quantities at g,
it has an advantage over the conventional finite difference,
dR/dq ~ {R(q + 8q) — R(q)}/dq, with two adjacent points,
| (g)) and | (g + 8q)), on the collective path. Thus, we use
Eq. (22) for calculation of the derivatives.

In the present ASCC method, the variable R is merely a
parameter to represent the collective coordinate g = g(R). It
should be emphasized that this is different from assuming
the collective coordinate to be R. First of all, the potential is
different, V(R) = (¥ (¢(R)|H|¥(q(R))) # (¢(R)|H|p(R)).
Here, |¢(R)) is calculated by minimization of the total energy
with a constraint on R. Even if the state |¢(R)) is close to
[¥(g(R))), the inertial masses M*(R) for the motion along
the direction R can be very different from M(R). The ASCC
method guarantees a block-diagonal form of the inertial tensor
between the collective coordinate g and the rest of intrinsic
degrees {£} perpendicular to ¢g. In contrast, the inertial mass
tensor MR (R) for the coordinate R is not block-diagonal in
general. Thus, we need to adopt its diagonal element MR (R),
which is different from M(R):

dg' dg/

R _ L. -
M <R>—M(R)—;M,,(q<R)) T

where M;;(g(R)) is the inertial mass tensor for the intrinsic
motion. Last but not least, the inertial mass M *(R) is usually
calculated according to Inglis’s cranking formula, ME(R) (see
Sec. IIIC1). The cranking mass MC’f(R) cannot take into
account the effects of the time-odd mean fields. In contrast,
the ASCC inertial mass M (R), which is determined from the
moving RPA equation (8), reflects the presence of the time-odd
mean fields. Therefore, even if the collective coordinates g and
R are identical, the calculated inertial masses may be different.
For instance, for the translational (center-of-mass) motion of
the nucleus, the cranking mass fails to reproduce the total mass,
Mclf(R) # Am, when the effective mass m* is different from
the bare nucleon mass m. It is compensated by the time-odd
effect in the ASCC inertial mass, that leads to the exact relation
M(R) = Am.

C. Numerical algorithm and details
1. Coordinate-space and mixed representation

In this paper, we adopt the Bonche-Koonin-Negele (BK}\I )
energy density functional [35] for the Hamiltonian H.'

!The diagonal approximation of the center-of-mass energy modifies
the nucleon mass, m~' — m~'(1 — A~"). In this paper, we do not
adopt this correction, thus the nucleon mass is the bare mass.
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The BKN energy density functional assumes spin-isospin
symmetry without the spin-orbit interaction, thus all the single-

particle states at the HF ground state are real [¢}(F) = ¢;(F)].
The one-body Hamiltonian is given by
Mol = 5V + 2100 P) + 13°)
=—— —top(r) + — r
Y m 0P 16 30
+ [ dinG = o), 24)

where v(¥) is the sum of the Yukawa and the Coulomb
potentials,

—r/a (6/2)2

r

v(F) = Voa

(25)

We take the same parameter set as in Ref. [35].

For the BKN energy density functional, it is convenient
to utilize the coordinate-space representation. Each single-
particle wave function g; (¥) is represented in the 3D grid points
of asquare mesh, gy, = ¢;(7p) with 7z = k x h = (ky,ky,k;) X
h, where h is the mesh size. Although every quantity is defined
locally at g, in this subsection we omit the collective coordinate
q for simplicity, e.g., ¢;(¥;q) — @;(F). The 3D space is a
rectangular box of volume 10 x 10 x 16 fm> with mesh size
h = 0.8 fm.

We adopt the mixed representation for the moving RPA
equation: The particle-state indices m,n, ... are replaced by
the coordinate 7. Thus, the generator Q of Eq. (4) is represented
as

0= f dr Y Q;(Fal(Fa; + He.
J
~h'Y Y 0p ala; +He., (26)
P

where O ; = Q;() and ag = a'(7;). Since the coordinate
indices 7; contain not only the particle states but also hole
states, we should remove the hole parts. Using the projection
operator, C =1— )", |¢;){¢;|, this is done by replacing
Q;(r) = (FIQ;) by

/ dFCEFNQ,F) = 0,0 — Y el Q). (27)

where C(F,7")=8(F — ') — > ; ¢i(F)@i(r"). Equivalently,
|Q ;) is replaced by Clo ;). Similar modification is performed
for the generator P of Eq. (3).

The matrices of Eq. (12) are represented as Ap;p; =
Ajj (rk,rk,) and the same for matrix B. The hole contnbutlons
are removed in the same manner as in Eq. (27). For instance,
(A Qi = an Apninj Qnj in the ph representation becomes

(A- Q) =) / / / dr\dr,drs
j

x C(F,r1)Aij(r1,12)C(F2,73)Q(r3),  (28)
which can be discretized as

(A-Qp =h"Y" Y CitAiiiCi, Qe (29)

J kikaks
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where Cj ;, = h’38,;1,;2 -> go,;li(p;;"zi.

Although we remove the hole-hole contributions in this
manner, the RPA matrices are oversize and contain redundant
components. Therefore, the diagonalization of the moving
RPA equation produces spurious solutions that consist of only
hole-hole elements.> The number of these spurious modes
is equal to square of the number of the hole orbits, AZ.
These spurious solutions are decoupled and have no influence
on physical solutions. Thus, we simply discard the spurious
solutions after the diagonalization of the RPA matrix.

2. Finite amplitude method for the moving RPA solution

Solutions of the moving RPA equation (13) determine the
local generators O(q), then P(q) is obtained from Eq. (15).
To evaluate the matrix elements of A + B in Eq. (13), we
adopt the finite amplitude method (FAM) [30-32,36-41],
especially the matrix FAM (m-FAM) prescription [32]. The
FAM requires only the calculations of the single-particle
Hamiltonian constructed with independent bra and ket states
[30], providing us an efficient tool to solve the RPA problem.

Let us assume that the state |1 (q)) is determined from the
moving HF equation (6). The single-particle states |¢;(g)) and
their energies €;(g) of the hole states are defined by

ho(@l9i(@)) = €(@)ei(q)), (30)

where hnyy(q) = hurlpo(g)] — A(q)Q(q) is the smgle particle
Hamiltonian reduced from Hmv(q) H— A(q)Q(q) with
Mg) = 0V /dq. The self-consistent density po(g) is given by
po(q) = Y~ 19i(@)) (¢i(g)]. According to Ref. [32], the matrix
elements (A &= B)y; 7; can be calculated as follows:

(Ax Bz, = [y (FF) — €;8(F — 7/)]5,',' + 8hii -
€19}
Here, again, the g dependence is omitted for simplicity. Using
a small real parameter n = 10~*, the m-FAM provides the
elements Shs; 7 j by

“FE Lo ] —
where o is defined as

pij1 = po + n(1F)(@;] + 1@, (7). (33)

Note that Eq. (32) requires only the operation of the single-
particle Hamiltonian on the hole orbits. In addition, the single-
particle Hamiltonian A, can be replaced by the HF single-
particle Hamiltonian sgg in Egs. (31) and (32). It is trivial, for
Eq. (32), to see that the term A 0 is canceled by the subtraction.
For Eq. (31), this is because the hole components are always
removed from 7 and 7, and the generator O has only ph and
hp components.

Shiizj =1 humvlpol} i), (32)

3. Imaginary-time method for the moving HF solution

Let us assume that Q(g) is determined from the moving
RPA equation, and now we want to move to the next point on

2They should not be confused with the zero modes associated with
the symmetry breaking of the state |¥(g)), which are often called
“spurious modes” as well.
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the collective path (g — g + §¢). This can be done by solving
the moving HF equation (6), with the following constraint:

(Vg + 8 0@V (g +89)) = 8q, (34)

which controls the step size of the collective coordinate 8q.
Equation (34) can be understood as

(¥ (q + 810V (q + 89))
= (Y@ D O(g)e 4P Dy (q))
~ 8q(P(Ili P(@), 0@l (9) =8q,  (35)

by the use of the local generator P(g) and the canonicity
condition (5).

Hereafter, in this subsection, the quantities without the ex-
plicit g dependence are those defined at ¢ + §g, such as |¢;) =
lpi(g + 8q)). The moving HF equation (6) is iteratively solved
using the imaginary-time method [29] which is efficient in
the coordinate-space representation. Each single-particle wave
function is evolved as |(p(n)) — |<p("+1)) |g0(")) + |8(p("))
where

80"} = —e{hi: — 1" 0(@)} ], (36)

with a small real parameter € > 0. h(}'f% is the single-
particle Hamiltonian calculated with the density /™ =
> |<P(n) ¢ |. Here we approximate Q(q + 8¢) in Eq. (6)
by Q(g), provided that 8¢ is small enough. The Lagrange
multiplier A is determined by the constraint (34). In the first
order in €, A is given by

2 = (eTrl{Q(9), 0(}p™ D!
x(8g = TrQ@)P™1 + €Trl{ ()i} 6]) 37)

at each iteration. Here, the traces are calculated as

Tri{Q(9). 0@} = 2D (Q;(@)1p™1Q(q))
J

+2 (o @) 5" lei(@)
ij
x (@)1 Qi(9)), (38)
=Y {Q;@I0p"1p;(q))
J

+ > @i @10p™10(q)) + cc.,

J

Tr[{Q(q),0}p™]

(39)

with O =1 and A% Note |Q;(q)) = C(¢)|Q;(q)) with
C‘(q) =1—>".1¢i(¢)){¢i(g)]. In actual calculations, we also
have constraints on the center of mass and the direction of the
principal axis. These additional constraints are easily taken
into account by extending Eqgs. (36) and (37).

According to Eq. (6), in principle, we should use O(g + 8¢)
in Eq. (36) instead of O(g), namely the generator at the
same point g + 8. The prescription given in Sec. IIC3
actually approximates the generator O(q + 8g) by the one
at the previous point Q(g). The approximation significantly
reduces the computational task. This approximation turns
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out to be very good as far as d¢ is small enough. After
moving the state from [y (g)) to | (g + §¢q)) with small §q,
the self-consistency can be checked in the following way. At
| (g + 8q)) we calculate the generator Q(q + 84) by solving
the moving RPA equations. Replacing O(q) by Q(g + 8¢) in
Eq. (36) and changing the constraint condition Eq. (34) to
(Vg +89)10(q + 89)|¥ (g + 8q)) = 0, the self-consistency
between |Y/(g +8¢)) and Q(q + 8q) is guaranteed if the
further imaginary-time evolution of Eq. (36) keeps the state
| (g + 8q)) invariant. This is confirmed for the present case.
The validity is also confirmed by the fact that the final result
is invariant with respect to change of the step size §q.

4. Summary of the numerical algorithm

We choose the HF ground state as the starting point of the
collective path, |/ (¢ = 0)). The HF ground state is always the
solution of Eq. (6) with dV/dg = 0, at which the moving
RPA equation becomes identical to the conventional RPA
equation. Therefore, without knowing the generator Q(q), the
starting point |{(¢ = 0)) can be determined. The procedure
to construct the collective path is given as follows:

(1) Calculate the HF ground state, |Y(g = 0)).

(2) Solve the RPA equation to obtain Q(q =0)and 13(q =
0).

(3) When [¥(q)), O(g), and P(q) are provided, solve the
moving HF equation to obtain the state |Y(q + 8q)),
according to the method described in Sec. II C 3.

(4) Solve the moving RPA equation to obtain the gen-
erators, (g + 8q) and P(g + 8q), according to the
method described in Sec. I1C 2.

(5) Repeat steps 3 and 4 to determine the collective path.

For step 4 above, we choose the inertial mass M(q) = 1.
Then, the weak canonicity condition (5) determines the scale
of g as

2 Qi @A@) = B@))yin; Onj(@) = 1. (40)
mnij
The scale transformation from g to R is performed by changing
the inertial mass according to Egs. (19) and (22).

5. Algorithm for fully consistent solutions

Since ®Be is one of the simplest cases, we also try another
method to get the fully self-consistent solutions of the P(g),
Q(q), and |Y(g)) that simultaneously satisfy Egs. (6), (7),
and (8). For ®Be, the conventional constrained calculation on
00 may produce approximate solutions, |w(°)(q)). Thus, we
adopt | ?(q)) as the initial trial wave functions, and start the
following iteration procedure:

(i) Solve Eqs. (7) and (8) to obtain (Q(q),P(q)), by
selecting the quadrupole mode Q».
(ii) Use this Q(q) to solve the moving HF equation (6)
with the constraint (¥ (q)| Q(q)h/f(q)) =0.
(iii) Put the obtained state |(q)) into Eqgs. (7) and (8),
then go back to step (i).

We also use the initial trial states prepared by the CHF
calculation with constraint on the relative distance R. Although
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the initial states [ @ (q)) are different from those obtained
with the Q5 operator, after the iteration of (i)—(iii) converges,
thgy reeAlch the same self-consistent solutions, |[¥(g)) and
(0(9). B(9)).

It should be noted again that the prescription in Sec. I C 3 is
significantly easier than the present iteration (i)—(iii). At every
point g, the self-consistency requires us to solve the moving
RPA equations many times to determine the self-consistent
state |Y(g)). We have confirmed that the solution of these
iteration procedures (i)—(iii) is practically identical to the one
obtained with the algorithm in Sec. II C 3.

III. NUMERICAL RESULTS

In this work the BKN energy density functional is adopted
as a test for the numerical application of the ASCC method.
The BKN energy density functional is rather schematic, thus
we should take the following results in a qualitative sense.

A. Results of the RPA calculation at the ground state

If the frequency w is positive (w® > 0) for Eq. (13), we may
construct theAnormgl-mode excitation operator Qf(¢) from the
generators (Q(q), P(q)) as

(q)

Q') = | 57 0(@) — ——=P(9). (41)

v()

For a Hermitian one-body operator D, defined by Eq. (4) with
replacement of Q,;(q) — D,j, the transition matrix element
is given by

(@ D10) = (0I[(q), D]|0)

fZ/dr P,(F) D; (7). (42)

We assume that, for the coordinate representation of the
operator such as P;(7¥) or D(¥), the hole components are always
projected out according to Eq. (27). The collective character
of the state |w) can be identified by choosing the one-body
operator D. For instance, the translational motion along z
axis is identified by a sizable transition matrix element of
the center-of-mass operator, D=4A" Z,f zx. For the relative
motion of two « particles, we may choose the mass quadrupole
operator (Sec. IIT A 2).

1. Translational motion of a single o particle

First, we show results for the single « particle. In this case,
the model space is a sphere of radius R = 7 fm with various
mesh sizes & = 0.5-1.4 fm. Note that the ground state of the
system is a trivial solution of the ASCC equation (6). We can
clearly identify the three translational modes for x, y, and z
directions, degenerated in energy at weom < 1 MeV. Using
smaller mesh size, the eigenfrequency of the translational
motion approaches to zero. There are no low-lying excited
states in the o particle because of its compact and doubly
closed characters. The calculated energy of the lowest excited
state is larger than 20 MeV.
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FIG. 1. Calculated translational mass of the « particle in units of
the nucleon’s mass m.

Using Egs. (19) and (22) with R as the center of mass,
we calculate the inertial mass of the translational motion of
the o particle. Figure 1 shows the results calculated with
different mesh size i of the 3D grid. Since this is the trivial
center-of-mass motion of the total system, this should equal the
total mass, M = Am with A = 4. As the mesh size decreases,
the total mass certainly converges to the value of 4m. In the
following, we adopt the mesh size 7 = 0.8 fm.

2. Relative motion of two « particles in *Be

Figure 2 shows the calculated eigenfrequencies for the
ground state of ®Be and the two well separated «’s at distance
R =7.2 fm. Since the ground state of ®Be is deformed,
there appear the rotational modes of excitation as the zero
modes, in addition to the three independent modes of the
translational motion. Because of the axial symmetry of the
ground state, the rotation about the symmetry axis (z axis)
does not appear. In Fig. 2 the calculation produces two

%Be ot+a
5 _ o JO—
Rot - Q
— v Rot-Q,.
S i | 2-1 ]
é} 10 : Trans - Y ——
— B Trans - X ——
3 \
\ Trans - Z
5F Y b
0

R=354fm R=7.20fm

FIG. 2. Calculated eigenfrequencies for the ground state of Be
(left column) and the two well-separated «’s at distance R = 7.2 fm
(right column). The three modes of translational motion and two
modes of rotational motion are shown by thin lines, while the thick
line indicates the K = 0 quadrupole oscillation. The translational
motions along the x and the y directions are degenerate in energy,
and the same for the rotational motions.
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FIG. 3. The density distribution p(r) for *Be in the upper panels
and the transition density 8o(7) of the lowest mode of excitation in
the lower panels. The left panels show those at the ground state and
the right panels show those at R = 7.2 fm. Those on the y-z plane
are plotted.

rotational modes of excitation around 2.8 MeV with large
transition matrix element of the K = 1 quadrupole operator,
0ri1 = [ r*You ()Y (F)Y(F)dF. The finite energy of these
rotational modes comes from the finite mesh size discretizing
the space. Besides these five zero modes, the lowest mode of
excitation turns out to have a sizable transition strength of the
K =0 quadrupole operator Oy = frzYzo(f)lﬁT(F)l/A/(?)dF.
This mode corresponds to the elongation of ®Be. The transition
density is given by

80(F) = (Y FYT)N0) = (0|[Q, ¥ )T )]I0)
f ZP(rm(r) (43)

The left panels of Fig. 3 show the density profile of *Be and
the transition density §p(r) corresponding to the lowest RPA
normal mode. We can see an elongated structure along the z
direction in the ground state. The lowest mode of excitation
corresponds to the change of its elongation (8 vibration).

We also perform the same calculation for the state in which
two « particles are located far away, at the relative distance
R = 7.2 fm. In the right panel of Fig. 3, we clearly see that the
two « particles are well separated, and the quadrupole mode in
fact corresponds to the translational motion of the « particles
in opposite directions; namely, the relative motion of two «’s.
The excitation energy almost vanishes for this normal mode
(Fig. 2).

B. Results of the ASCC method

In Sec. IIT A 2, we show that the the lowest quadrupole mode
of excitation at the ground state of *Be may change its character
and lead to the relative motion of two «’s at the asymptotic
region. We adopt this mode as the generators (Q(q), 13(61)) of
the collective variables (g, p), then we construct the collective
path.

PHYSICAL REVIEW C 94, 054618 (2016)
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FIG. 4. Potential energy as a function of the relative distance R.
The solid (blue) line corresponds to V(R) on the ASCC collective
path, while the dashed (red) line shows 4¢%/R + 2E, for reference.

1. Collective path, potential, and inertial mass

We successfully derive the collective path {|v¥(gq)); g =
0,6q,28q, ...} connecting the ground state of 8Be into the
well-separated two « particles. The inertial mass M (q) is taken
as unity and the collective potential is calculated according to
Eq. (9). Then, according to Sec. II B, the collective coordinate
q is mapped onto the relative distance R = (¢(q)|1§|1p(q)>
with Eq. (18). Figure 4 shows the obtained potential energy
along the ASCC collective path. As a reference, we also show
the pure Coulomb potential between two « particles at distance
R, 462 /R +2E,, where E, is the calculated ground state
energy of the isolated « particle. Apparently, it asymptotically
approaches the pure Coulomb potential. As two o’s get closer,
the potential starts to deviate from the Coulomb potential at
R < 6 fm and finally reaches the ground state of ®Be. The
ground state is at R = 3.54 fm, and the top of the Coulomb
barrier is at R = 6.6 fm. Note that the path is determined
self-consistently without any a priori assumption.

With this calculated potential, we may check the self-
consistency of the ASCC potential and the eigenfrequency.
If the collective path perfectly follows the direction defined by
the local generators (O( ), 13(q)) at each point of ¢, the second
derivative of the potential d?V /dg? should coincide with the
eigenfrequency w? of the moving RPA equation. The almost
perfect agreement between these is shown in Fig. 5.

For the region of R < 3.5 fm, there exists some discrepancy
between d2V /dg? and w?. In this region, the ®Be nucleus has
even more compact shapes than the ground state; then, the
coordinates ¢ and R become almost orthogonal to each other,
losing the one-to-one correspondence between them. In other
words, the states [{(g)) change as g gets smaller, but keep

= (w(q)mlw(q)) almost constant. In addition, the moving
RPA frequency w becomes larger than the particle threshold
energy, entering in the continuum. Thus, in this region of R <
3.5 fm, the results somewhat depend on the adopted box size.

Figure 6 shows the obtained inertial mass M(R) as a
function of R for the scattering between two «’s As the two a’s
are far away, the ASCC inertial mass asymptotically produces
the exact reduced mass of 2m. This means that the collective
coordinate g becomes parallel to the relative distance R, even
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FIG. 5. w? in Eq. (13) and 82V /d¢? of the ASCC calculation as
a function of relative distance R.

though we do not assume so. At R < 3.54 fm, the value of
inertial mass M (R) increases. This is due to the decrease of
the factor dR/dq in Eq. (19). Making the system even more
compact than the ground state, M(R) rises up drastically,
which means that the coordinates ¢ and R become almost
orthogonal.

2. Phase shift for a-o scattering

The ASCC calculation provides us the collective Hamil-
tonian along the optimal reaction path. Using this, we
demonstrate the calculation of nuclear phase shift. We should
take this result in a qualitative sense, because of a schematic
nature of the BKN energy density functional.

Using the collective potential V(R) and the inertial mass
M(R) obtained in the ASCC calculation, the nuclear phase
shift for the angular momentum L at incident energy E is
calculated in the WKB approximation as [42,43]

S(E) = /00 k(R)dAR — /OokC(R)dR, 44)
R

0 R.

M(R)/m

3 35 4 45 5 55 6 65 17
R [fm]

FIG. 6. Inertial mass in units of the nucleon’s mass m for the
collective path of @ + « <> ®Be, as a function of the relative distance
R.
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FIG. 7. Nuclear phase shift for the scattering between two «
particles, as a function of incident energy E. The solid lines indicate
the results obtained with the ASCC inertial mass M(R), while the
dashed lines are calculated with the constant reduced mass 2m.

with

A%

2 _ _ _ (
KA(R) = 2M(R){E VIR) =~
45)

4 (L+1)
R 4mR? |’

K2(R) =4miE - =

where k(R) and k.(R) are the wave numbers in the radial
motion with and without the nuclear potential. Ry and R,
are the outer turning points for the potentials V(R) and
4e? /R, respectively, i.e., k(Ry) = k.(R.) = 0. The centrifugal
potential is approximated as (L + 1/2)*>/(2uR?) with the
reduced mass p = 2m and the semiclassical approximation
for L(L 4 1). We assume V(R) = +oo for R < 3 fm in which
the obtained optimal reaction path is almost orthogonal to R.

Figure 7 shows the calculated nuclear phase shifts for the
scattering between two «’s. The dashed line is calculated with
the same potential V(R) but with the constant reduced mass,
M(R) — n = 2m. We can see the prominent increase of the
nuclear phase shift caused by the coordinate-dependent ASCC
inertial mass M(R). We should remark that the energy of the
resonance in SBe is not reproduced with the BKN energy
density functional. In fact, the present calculation leads to
the stable ground state for 8Be: E(®Be) < 2E,. Thus, we
should regard this result as a qualitative one. Nevertheless,
the basic features of phase shifts for the a-« scattering are
roughly reproduced. This demonstrates the usefulness of the
requantization using the ASCC calculation.

C. Comparison with other approaches

We compare the present ASCC results with those obtained
with other approaches: (i) CHF + cranking inertia, (ii) CHF
+ local RPA, and (iii) ATDHF. We adopt the same model
space as the ASCC calculations for these calculations. For
the constraint operators of the CHF calculation in (i) and (ii),
we adopt the K = 0 mass quadrupole operator Qo9 and the
relative distance R.
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1. CHF + cranking inertia

Since ®Be is the simplest system and has a prominent o + o
structure even at the ground state, the collective path can be
approximated by more conventional CHF calculations with a
constraint operator as either Q9 or R. The potential is defined
as Vegp(R) = (I/ICHF(R)|[:I|1/ICHF(R)). For the inertial mass,
Inglis’s cranking formula is widely used. There are two kinds
of cranking formulas: The original formula is derived by the
adiabatic perturbation, which is given for the 1D collective
motion as

NPy o X Lo (R)IB/0R|pi(R))
Mer (R)_Z; en®) —e® 4

where the single-particle states and energies are defined with
respect to hcyr(R) = hyplp] — A(R)O as

henp(R)l9u(R)) = e (R)lgu(R)),

Note that, depending on choice of the constraint operator,
= (020, R), we obtain slightly different |¢;(R)) even at the
same R.

Another formula, which is more frequently used in many
applications and also called the cranking inertial mass, is
derived, by assuming the separable interaction and taking the
adiabatic limit of the RPA inertial mass,

n=1im. @7

ME(R) = %{S“)(R»—‘S“)(R){S(')(R)}-l, (48)

with

3 Hom(R)|RI¢: (R))|?

®©(RY) —
STR= {en(R) — ei(R)}*

(49)

The residual fields induced by the density fluctuation is
neglected in both of these cranking formulas. According to
Ref. [44], we call the former one in Eq. (46) “nonperturbative”
cranking inertia and the latter in Eq. (48) “perturbative” one.
The method of CHF + cranking inertia has been widely used
for many applications, including studies of nuclear structure
[45-53] and fission dynamics [44,54,55].

The obtained potentials with different constraint operators
are shown in Fig. 8. The two constraints Q» and R
give very similar potential surfaces, which is also close to
the ASCC result. On the other hand, the inertial masses
are more sensitive to the difference. In Fig. 9, we show
the perturbative and nonperturbative cranking inertial masses
based on the states obtained with CHF calculations with
different constraint operators. We include all the single-particle
states in the model space for the calculation of Egs. (46)
and (49). They present significant variations, especially in
the region where two «’s stick together into one nucleus.
First of all, they are larger than the ASCC inertia. Second,
the non-perturbative and perturbative cranking inertial masses
are significantly different. For instance, the calculations with
Q1 constraint suggest prominent peak structure in MNP®(R).
However, the peak positions are very different. It should be
noted that the present results should not be generalized to other
energy density functionals, because the BKN energy density
functional has no time-odd mean fields [see Eq. (24)].
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FIG. 8. The collective potential obtained with the CHF calcula-
tion. The solid (blue) and dashed (red) lines indicate the results with
constraints on (O, and R, respectively.

Since there are neither effective mass nor time-odd mean
field in the BKN energy density functional, we expect that
in the asymptotic region the exact translational mass Am can
be reproduced. This turns out to be true for MYP(R), which
reduces to the exact value 2m, while ME(R) approaches 2m
much slower than MYP(R) and might converge to a larger
value. In fact, for a single « particle, the translational mass
is calculated as M? = 4.16m. The same kind of deviation is
presented in the asymptotic value of the reduced mass in Fig. 9.

2. CHF + local RPA

The cranking inertial mass has known weak points: namely,
missing residual correlations and an adiabatic assumption.
The problem becomes particularly serious when the time-odd
mean fields play a role as residual fields. Although the BKN
energy density functional adopted in this paper does not have
the time-odd components, it may be useful to investigate the
significance of the residual effect.

MIC:],P (R CO;IS.)
3.5 Mg r(’Q 20 €0NS.)
M, (R cons.)
\ R : MEr (Qqpcons.) -wereeee
d ASCC

M(R)/m

R [fm]

FIG. 9. Cranking inertial mass based on the CHF state. The solid
and dashed lines indicate the results with constraints on R and on,
respectively. The nonperturbative and perturbative cranking inertial
masses are shown with thin and thick lines, respectively.
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FIG. 10. Inertial mass calculated with the CHF + local RPA
method in units of nucleon’s mass. The solid and dashed lines indicate
the results with constraints on R and on, respectively. The ASCC
result is shown by the thin line for comparison.

In order to take into account the residual effect, we adopt
the method called “CHF 4 local RPA”. This is defined by
replacing I:Imv(q) in the ASCC equations (6), (7), and (8), with
the constrained Hamiltonian, B’ = H — A0, where O is an
adopted constraint operator. In other words, the collective path
is defined by hand, but the inertial mass is defined by the RPA
equations with A’. The calculated inertial mass Mipa(q) for
the motion along the coordinate g, can be mapped onto the
variable R, Mipa(R), assuming a one-to-one correspondence
exists between g and R. This is done exactly in the same way
as the ASCC (Sec. I B). However, the consistency between the
generators, Q(q) and IS(q), and the collective path {|{¥(q))}
is lost. This method of CHF + local RPA has been applied
to studies of nuclear structure with the separable Hamiltonian
[22-25,56,57].

In Fig. 10, we show the result of the local RPA calculation
based on the CHF states. At the ground state (R = 3.54 fm),
since both the CHF + local RPA and the ASCC calculations
reduce to the HF 4+ RPA calculation, they produce identical
inertial masses. Mjp,(R) also converges to the ASCC value
at large R, faster than MX\F(R), and asymptotically gives the
exact reduced mass 2m. Especially, the calculation with the
R constraint produces almost identical results as the ASCC
method, at R > 5 fm.

The self-consistency between the local generators and the
assumed coordinate can be checked by comparing the local
RPA frequency and the second derivative of the potential V (R).
If they are consistent, we expect the relation

dv d°R

, d*V a1
N dR dq?’

S A 50
dgq® ~ dR? Mypy(R) + (50)

It turns out that the last term is negligible. Taking the potential
V(R) of the Oy constrained calculation as an example, this
comparison is shown in Fig. 11. We can see some deviations in
the region of 3.5 < R < 6 fm, although the overall agreement
is not so bad. The deviation indicates that the CHF states
are not exactly on the collective path defined by the local
generators (Q(R ), f’(R)). On the other hand, perfect agreement
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FIG. 11. »” in Eq. (13) and 3%V /d¢? of the CHF + local RPA
calculation.

is seen in the region R > 6 fm. This suggests that, at R >
6 fm, the optimal collective coordinate g obtained with the
ASCC method coincides with the relative distance R and the
quadrupole moment Q5.

Finally, we remark on the necessity of modifying the
constraint operators, such as on and ﬁ, in the CHF cal-
culation. Taking the constraint operator (5 as an example,
on the symmetry axis (z axis), the constraint term —AQZO
results in a external potential proportional to —z>. If we adopt
a large model space, the CHF calculation may lead to an
unphysical solution, namely, the appearance of small density
at the edge of the box. In order to avoid these unphysical
states, we have to screen the operator in the outer region:
020 = [ f(r)r*Yao(®)Y ! (F)P (F)dr with a screening function
f(r) which should be unity in the relevant region and vanish
in the irrelevant region (r > Ry). The function form of f(r)
becomes nontrivial when two nuclei are far away in an
asymptotic region. This kind of complication is not necessary
for the ASCC local generator Q(q), because it vanishes in
a region where all the hole orbits are zero ¢;(¥;q) = 0. In
other words, the ASCC generators are properly “screened”
automatically.

3. ATDHF

The ATDHEF is based on Egs. (6) and (7). Since the second-
order equation (8) is missing, the collective path is not unique.
We follow the prescriptions given in Ref. [58] for practical
calculations. The equation of the collective path is formulated
in a form of the first-order differential equation for | (g)),

Mauant(q) 5 A

a
@IW(Q)) = av/dg [H, Hpnlpn [V (9)), 619}

where ﬁph is the ph and hp parts of the Hamiltonian defined
locally at each g. The single-particle wave functions |¢;(gq))
in the Slater determinant |y (q)) is evolved according to the
following equation:

lpi(g — 89)) = lgi(q))—e{1—p(@)}(hur(g){1—20(q)}hur(q)
+ Tr{v[hur(q). 0(@)I)@i(q)) (52)
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FIG. 12. The potential energy on the ATDHF collective path
derived by Eq. (52), as a function of relative distance R. Initial

fm respectively. The thin (red) line indicates the result of the ASCC
method.

with
_ 8q Maane(q)
dV/dqg

In order to obtain the stable solutions, ¢ is set to be a small real
number. Successive application of Eq. (52) gives the ATDHF
collective path. Solutions with different initial conditions of
[¥(0)) produce different collective paths. The envelope curve
of all these trajectories is regarded as the final solution of the
adiabatic collective path.

The ATDHF inertial mass is given by

Muyant(q) = (YOI [H, Q@NIV (@)™, (59

(53)

with

. v\ . v\
0@q) = <£> Hpn(q) = (£> {hur(@)}ph-
(55)

According to Eq. (19), the mass with respect to the relative
distance R can be calculated as

Maari(R) = Maans(a)( 24 2
atdhf - atdhf 6] dR

dv\? A - -1
_ (d_R) W@ Apn(@). LA AN ()"

(56)

Another, even easier, way of calculating Mygne(R) is simply
inverting Eq. (53). Using Eqs. (19) and (53), we obtain

dg\*> e dV & dV
Myant(R) = | — =

8¢ dqg  SRdR’

For the scattering between two «’s, we prepare two o
particles both at ground states separately, then put them at
different distances of R =4.8, 5.6, 6.4 fm, as the initial
conditions for Eq. (52). The potential surface of the ATDHF
trajectories is plotted in Fig. 12, which shows how the solutions

dR 57)
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FIG. 13. Myans(R) calculated by Egs. (56) and (57) shown with
blue crosses and green dots, respectively. They are based on the same

ATDHF trajectories in Fig. 12. The solid (red) line indicates the
ASCC mass for comparison.

of Eq. (51) with different initial conditions converge to a
common collective path. The converged ATDHF potential
surface is similar to the potentials of CHF and ASCC
calculations. It should be noted that we can obtain these
fall-line trajectories on the potential surface which go only
from high to low energy [58]. It becomes numerically unstable
if we calculate in the opposite direction. Thus, we cannot start
from the HF ground state, and it is difficult to obtain the
solution in a region of R < 3.5 fm, beyond the HF minimum
state.

Figure 13 shows the mass parameters based on the same
trajectories in Fig. 12. The inertial masses calculated with
Egs. (56) and (57) roughly produce the identical results. Near
the HF state of R = 3.54 fm, the inertial mass increases
drastically. This is very different from the result of the former
calculations [15,58], the reason of which is currently under
investigation. We also encounter a difficulty to obtain the
collective path in the asymptotic region at large R. A larger
model space and finer mesh size seems to be needed to obtain
the potential in the asymptotic region and to reproduce the
reduced mass 2m. We should also mention that the saddle point
with dV/dR = 0 is extremely difficult to reach by solving
Eq. (52). In the ASCC method, we do not encounter these
difficulties, and are able to obtain the unique reaction path and
inertial mass.

IV. SUMMARY

We applied the ASCC method to the determination of the
nuclear reaction path, the collective potential, and the col-
lective inertial mass. The 3D coordinate space representation
is adopted for the single-particle wave functions. Using the
imaginary-time method and the finite-amplitude method, the
coupled equations of the ASCC, that consist of the moving HF
equation and the moving RPA equations, are solved iteratively.
The generators are represented in the mixed representation of
the hole orbit and the coordinate grid points, such as Q j(7).

The first application was performed for the simplest case,
the scattering of o + « <> ®Be. The reaction path, the poten-
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tial, and the inertial mass were successfully determined. Even
though the system is too simple to expect significant difference
in the reaction path, a comparison with the cranking inertial
mass demonstrates some advantages of the ASCC method.
In particular, the cranking inertial mass is very sensitive to
the adopted prescription of perturbative or nonperturbative
formulas. The perturbative cranking mass seems not to reduce
to the exact value of the reduced mass at R — oo. For
8Be, the potential does not depend on the choice of the
constraint operator. In contrast, a proper choice of the operator
is important for the inertial mass. The ASCC method is able
to remove these ambiguities and provide improvement of the
cranking formula. The ATDHF theory is an alternative way
to derive the reaction path and inertial mass. However, we
have found that finding the unique converged result of the
ATDHF trajectories is significantly more difficult than the
ASCC method.

The reaction path and the feature of the inertial mass
depend on the reaction system. The calculation for heavier
systems is in progress. With the techniques presented in this
work, it is feasible to perform the calculation of the inertial
mass for different modes of nuclear collective motion, such as
the rotational moment of inertia, and the mass parameter for
different vibrational modes. The lowest mode of excitation

PHYSICAL REVIEW C 94, 054618 (2016)

changes from nucleus to nucleus, and we will investigate
how these nuclear excitation properties influence the reaction
dynamics.

The simple BKN energy density functional should be
replaced by a modern nuclear energy density functional, in
future. The presence of time-odd mean fields would signifi-
cantly affect dynamical behaviors of nuclear systems. Since
the cranking inertia cannot take into account the time-odd
effects, advantages of the ASCC method become even clearer.
The inclusion of the paring correlation is another important
issue. This has been studied in nuclear structure problems [3].
However, for the nuclear reaction studies, some conceptual
problems for the paired systems still remain to be solved. For
instance, the ASCC method for the reaction of two nuclei with
different chemical potentials has not been established yet. This
is also an important subject for future efforts.
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