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Asymptotic normalization coefficients for 7Be + p → 8B from the peripheral 7Be(d,n)8B reaction
and their astrophysical application
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The proton transfer 7Be(d,n)8B reaction at the energy of 4.5 MeV (center of mass) has been analyzed within
the modified distorted-wave Born approximation. New estimates and their uncertainties are obtained for values
of the asymptotic normalization coefficients for p + 7Be → 8B, the astrophysical S17(0) factor, and the s-wave
p + 7Be scattering lengths.
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I. INTRODUCTION

The radiative capture 7Be(p,γ )8B reaction rate given in
terms of the extremely low energy astrophysical S factor is one
of the main input data for calculations of the solar-neutrino
flux [1–6]. At the stellar temperature T6 ∼ 15 K, this rate
determines how much the 7Be and 8B branches of the pp
chain contribute to the hydrogen burning. In the standard solar
model, the predicted flux of neutrinos is determined by the
relation [1]

φν ∼ S̃−2.5
11

˜S33
−0.3 ˜S34

0.8[
1 + 3.47 ˜S17τ̃
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]
. (1)

Here S̃ij = Sij (E)/Sij (0) and ˜τe7 = τe7(E)/τe7(0), where
Sij (E) is the extremely low energy astrophysical S factor for
the reactions of the pp chain induced by collisions of the nuclei
with mass numbers i and j , τe7(E) is the 7Be lifetime with
respect to the electron capture 7Be + e− → 7Li + νe reaction,
and E is the relative kinetic energy of the colliding particles.
It is seen that the flux of neutrinos depends noticeably on
the β decay of 8B determined in turn by the accuracy of the
astrophysical S factors of the 7Be(p,γ )8B reaction at so-far
experimentally inaccessible solar energies (E � 25 keV),
including E = 0.

It is known that the uncertainty in extrapolation of the
astrophysical S factors to the Gamow energy EG = 18 keV
obtained at the stellar temperature T6 = 15 K (Sun) [7] affects
significantly the predicted flux of solar 8B neutrinos [6,8].

Despite the impressive improvements in our understanding
the nuclear-astrophysical 7Be(p, γ )8B reaction made in a
period of 10 consecutive years, some ambiguities connected
with both the extrapolation of the astrophysical S factors to the
solar energy region and the theoretical prediction for S17(E)
still exist and can influence the prediction of the standard
solar model [6]. For example, the analysis of the precisely
measured astrophysical S factors for the 7Be(p, γ )8B reaction
and their extrapolation performed by different authors from
the observed energy regions to extremely low experimentally
inaccessible energies gives values of S17(0) with a spread
exceeding noticeably the experimental ones (see the recent
reviews [8,9] and references therein as well as Ref. [10]). As
regards the theoretical microscopic calculations of S17(0), they
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also show considerable spread connected with the method used
(see, for example, Refs. [11–13] and the available references
therein). It should be noted that a considerable sensitivity of
the calculated value of S17(0) is observed in Refs. [11–13] to
the used effective nucleon-nucleon (NN) potential. Moreover,
as is evident from these works, a correlation has been revealed
between the asymptotic normalization coefficients (ANC)
calculated for p + 7Be → 8B, which determine the amplitude
of the tail of the radial 8B nucleus bound wave function in the
(7Be +p) channel [14], and the calculated S17(0).

Taking into account this fact, in the past few years several
works have been performed to determine the ANC for p +
7Be → 8B and the S17(0) with an accuracy as high as possible.
In Ref. [10], the “indirectly determined” value of ANCs for
7Be +p → 8B were obtained by means of the analysis of
the precisely measured experimental astrophysical S factors
[Sexp

17 (E)] performed within the modified two-body potential
approach (MTBPA) [15], where S17(E) for the direct radiative
capture 7Be(p, γ )8B reaction is expressed in terms of ANC for
p + 7Be → 8B. Then the derived ANC was used for extrap-
olation of the corresponding astrophysical S factors to solar
energies. In Ref. [16] (see also Refs. [17,18]), the ANC values
for p + 7Be → 8B were obtained from analysis of the pe-
ripheral proton transfer 10B(7Be ,8B)9Be and 14N(7Be ,8B)13C
reactions. The analysis was performed within the modified
distorted-wave Born approximation (DWBA) restricting by
the first order of the perturbation theory over the Coulomb
polarization potential (�V C

f ) in the transition operator and
assuming that its contribution to the total transition operator is
small. But the ANC values proposed in Ref. [16] may not have
sufficient accuracy because of the aforementioned assumption
made for the transition operators [19,20]. Nevertheless, in
Ref. [16] the obtained ANC values were then used for the
estimation of S17(0), which also differs noticeably from that
recommended in Refs. [8,10,21]. As noted in Refs. [10,20], one
of the main reasons of the observed discrepancy is connected
with underestimated values of the ANCs suggested in Ref. [16]
as compared with that obtained in Refs. [10,20].

This disagreement initiated a number of the new mea-
surements of other kinds of peripheral nuclear processes
to obtain an additional information about the ANC values
for 7Be +p → 8B and their astrophysical application. Par-
ticularly, the analysis of the experimental differential cross
sections for the peripheral proton transfer 7Be(d,n)8B reaction,
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measured in inverse kinematics at the energies 5.8 [22] and
4.5 MeV [23] in the center-of-mass system (denoted by
Ei everywhere below), was performed in Refs. [22–24]. In
Refs. [22–24], the analysis was carried out within the standard
DWBA and the three-body approach with the effects of
breakup of the deuteron in the field of the target treated by
means of the continuum-discretized coupled-channel method
(CDCCM). There the calculated cross sections are expressed
in terms of the spectroscopic factors for the 8B nucleus in
the (7Be +p) configuration. Besides, in Ref. [22], for the
transferred proton only the 1p3/2 configuration was taken into
account. However, in Refs. [22–24] the extracted spectroscopic
factors, used for obtaining the ANC values, may not be
accurate enough. This is connected with the fact that the
calculated single-particle cross sections, as will be shown
below, become very sensitive to the adopted values of the
geometric parameters of the Woods-Saxon potential used for
calculation of the bound- 8B[= (7Be +p)] state wave func-
tion [25]. The calculations of the 7Be(d,n)8B reaction [22,23]
done in Ref. [26] within the strict Faddeev-type three-body
(n, p, and 7Be) equations should be noted. In Ref. [26], the
realistic Bonn and several parametrization for the core-nucleon
potentials were used as np and nucleon-core potentials,
respectively. Nevertheless, the spectroscopic factors for single-
component states of the nuclei were assumed to be unity. In this
approximation, the ANC values for 7Be +p → 8B become
model dependent on the geometric parameters of the used
potential. One notes that the potential used in Ref. [26] for
the bound (7Be +p) state has the Woods-Saxon form with
the central and spin-orbit parts for which the standard values
for the geometric parameters (ro = 1.25 fm and a = 0.65 fm)
were taken.

The results of the analysis of the experimental differential
cross sections [22] of the 7Be(d,n)8B reaction obtained in
Ref. [27] within the modified DWBA [28–30], where the
differential cross section is expressed in terms of the ANC
but not in terms of the spectroscopic factors, should also
be noted. In Ref. [27], the ANC values for 7Be +p → 8B
were obtained by using the optical potentials recommended in
Ref. [22] for the entrance and exit channels, but contribution of
the compound nucleus evaluated in Ref. [22] and the coupled
channels effects were not taken into account. So, it should
be noted that, first, the experimental data of Ref. [22] in the
main peak region of the angular distribution have fairly large
errors not only in the absolute values of the differential cross
sections but also in the angle resolution. Second, as is shown in
Ref. [23], calculations with the optical parameters of Ref. [22]
for the entrance channel, which are also used in Ref. [27],
reproduce the corresponding experimental scattering data only
in a narrow angular interval of the forward hemisphere.
Therefore, the ANC values of Ref. [27] also may not have
enough accuracy for the astrophysical application.

It is therefore of great interest to apply the modified DWBA
for the analysis of the experimental data of the 7Be(d,n)8B
reaction measured in Ref. [23] since they are more peripheral
and more precise than the data of Ref. [22].

In the present work, the reanalysis of the 7Be(d,n)8B
reaction at energy Ei = 4.5 MeV [23] is performed within the
modified DWBA [28–30] to obtain the “indirectly determined”

values of the ANC for 7Be +p → 8B, which were then used
for estimation of the S17(0). Here, we quantitatively show that
the 7Be(d,n)8B reaction measured in Ref. [23] is practically
peripheral in the main peak region of the angular distribution.
Therefore, the uncertainties, which are connected both with
the ambiguities of choice of the geometric parameters (radius
ro and diffuseness a) of the Woods-Saxon potential used for
calculating of the bound-state wave functions and with choice
of the parameter set of optical potentials, are reduced to the
physically acceptable limit, being within the errors of the
analyzed experimental differential cross sections.

II. ANALYSIS OF THE 7Be(d,n)8B REACTION

A. The basic formulas of the modified DWBA

Here we present only the main idea and the essential
formulas of the modified DWBA [29,30] specialized for the
7Be(d,n)8B reaction.

Let us write lB(jB) for the orbital (total) angular momentum
of the proton in the 8B nucleus and ld (jd ) for the proton in the
deuteron. For the 7Be(d,n)8B reaction, the value of lB is taken
to be equal to 1 and the values of jB are taken to be equal to
1/2 and 3/2, while the values ld and jd are taken equal to 0
and 1/2 for s wave and to 2 and 3/2 for d wave, respectively.

In the strict three-body (7Be , p, and n) approach, the
transition operator for the amplitude of the 7Be(d,n)8B
reaction, which is sandwiched between the products of the
corresponding optical and bound-state wave functions in the
initial and final states, has the form [31,32]

V TB = �V N
f + �V N

f G�Vi. (2)

Here G is the operator of the three-body (7Be , p, and n) Green
function, which takes into account all possible subsequent
elastic rescatterings of the nucleus 7Be, p, and n in the
intermediate state, �V N

f = V N
pn + V N

nBe − V N
f , �Vi = V N

nBe +
VpBe − Vi , where Vij = V N

ij + V C
ij , V N

ij (V C
ij ) is the nuclear

(Coulomb) potential between the center of mass of particles
i and j , which does not depend on the coordinates of the
constituent nucleus, Vi and V N

f are the optical Coulomb-
nuclear and pure nuclear potentials in the initial and final
states, respectively. The first (V N

pn) and second (V N
nBe) terms

entering the first term of the right-hand side of (2) correspond
to the mechanisms described by the pole and triangle diagrams
in Figs. 1(a) and 1(b), respectively, where in the latter diagram
the core-core nuclear scattering is taken into account in the
Born approximation for the amplitude of the four-ray vertex.
The last term in the right-hand side of (2) corresponds to the
more complex mechanisms than the pole and triangle ones.

FIG. 1. Diagrams describing transfer of the proton p and taking
into account possible subsequent Coulomb-nuclear rescattering of
particles (7Be, p, and n) in the intermediate state.
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This term is described by a sum of nine diagrams obtained
from the basic diagrams presented in Figs. 1(a) and 1(b) by
means of all possible elastic rescatterings the nucleus 7Be,
p, and n from each other in the intermediate state. One of
the nine diagrams corresponding to the term V N

nBeGVpBe is
plotted in Fig. 1(c). This term corresponds to the mechanism
of subsequent rescattering of 7Be on the proton and neutron
virtually emitted by deuteron in the intermediate state.

Nevertheless, if the reaction under consideration is periph-
eral, then its dominating mechanism, at least in the main
peak of the angular distribution, corresponds to the pole
diagram Fig. 1(a) [33]. In this case, the contribution of the
remnant V N

nBe − V N
f from the first term in the right-hand

side of Eq. (2) is assumed fairly small and that of the
second term (�V N

f G�Vi) in V TB (2) can be ignored since
its contribution is a higher order of smallness than the
remnant V N

nBe − V N
f term. Then the single-particle DWBA

cross section corresponding to the main mechanism can
be calculated within the finite-range DWBA in the “post”-
approximation with the DWUCK5 code. Besides, in this case,
the influence of ambiguity of the optical model parameters
on the calculated single-particle DWBA cross section should
be small, at least not exceeding the experimental errors.
In this case, the largest uncertainty in the single-particle
DWBA cross section comes from its strong dependence on
the geometric parameters (radius r0 and diffuseness a) of the
Woods-Saxon potential used for calculating the single-particle
8B[=(7Be +p)] bound-state wave function. It is known that

this dependence enters the single-particle DWBA cross section
mainly through the corresponding single-particle ANC [25].
It will be demonstrated below that the reaction 7Be(d,n)8B
at Ei = 4.5 MeV is peripheral, so the single-particle ANCs
for the shell-model bound wave functions of the residual
nucleus 8B, entering the calculated single-particle DWBA
cross section, are the free parameters.

Only the s wave is taken into account for the deuteron
wave function in our calculations. This approximation is
justified by the fact that the reaction under consideration has
the peripheral character at least in the main peak region of
the angular distribution. Therefore, in this angle region, the
dominant contribution to the DWBA cross sections comes
from the surface and outer regions of the colliding nuclei. In
this interaction region, contribution of the d-wave component
of the deuteron wave function to the calculated DWBA cross
sections is strongly suppressed and can be ignored as compared
to that for the s wave [14,34] since the amplitude of the
“tail” determined by the corresponding ANC of the d wave
is very small (Cd; 3/2 = 2.29 × 10−2 fm−1/2 [14]). Besides,
the additional suppression of this contribution occurs due to
the kinematic factor of (κdrnp)−ld arising at ld = 2 in the
integrand for the matrix element since κdrnp � 1 for the
peripheral reaction. Here κd is the wave number of deuteron
and rnp is a relative distance between proton and neutron
(see below).

Then, according to Refs. [28–30], within the modified
DWBA, we can write the differential cross section in the form

dσ

d

= C2

B; 3/2C
2
d; 1/2[R3/2 1/2(Ei,θ ; bB;3/2,bd; 1/2) + λR1/2 1/2(Ei,θ ; bB;1/2,bd; 1/2)], (3)

RjBjd
(Ei,θ ; bB; jB

,bd; 1/2) = σ DW
jBjd

(Ei,θ ; bB; jB
,bd; 1/2)

b2
d; 1/2b

2
B; jB

, (4)

where Cd; jd
(jd = 1/2) and CB; jB

(jB = 1/2 and 3/2) are
the ANCs for p + n → d and 7Be +p → 8B, respectively,
λ = (CB; 1/2/CB: 3/2)2, Ei is the relative kinetic energy of the
colliding particles and θ is the scattering angle in center of
mass. In Eqs. (3) and (4), bB; jB

is the single-particle ANCs
for the shell-model wave function for the bound (7Be +p)
state, which determine the amplitude of its tail [14]; bd; jd

is the amplitude of the tail of the s-wave deuteron wave
function of relative motion of the neutron and proton in
the deuteron (jd = 1/2); and σ DW

jBjd
(Ei,θ ; bB; jB

,bd; 1/2) is the
single-particle DWBA cross section. For independent testing,
the single-particle DWBA cross section has been calculated
also using the LOLA codes [35] restricted only by the first-order
perturbation term over �V C

f in the transition operator. Both
calculations gave practically the same results since �V C

f = 0.

One notes that the spectroscopic factor (Z1/2
B; jB

), which is a
norm of the radial overlap function of the bound-state 8B wave
function in the (7Be +p) channel, is related to the ANC CB; jB

by the equation [14]

CB;jB
= Z

1/2
B; jB

bB; jB
. (5)

The same relation holds for the ANC Cd;jd
and the spectro-

scopic factor Zd; jd
. By inserting these relations into Eqs. (3)

and (4), the differential cross section can be expressed in terms
of the product of ZB; jB

Zd; jd
used in the conventional DWBA

(see, for example, Ref. [24]). Thus, the conventional DWBA
and the modified DWBA differed from each other only by a
choice of the form of parametrization for the differential cross
section. However, for the reaction under consideration the
modified DWBA should be used. Only in this case, the problem
of the ambiguity, connected with the strong dependence of the
calculated cross section on the geometric parameters of the
adopted potentials, is removed by inclusion of the information
about the ANCs for 7Be +p → 8B and p + n → d. As it will
be shown below, the latter reduces this ambiguity to minimum,
at least, within the experimental errors for the cross-section
data.

In (3), the ANC CB; 3/2, the single-particle ANCs bB; jB

(jB = 1/2 and 3/2) and the parameter bd; 1/2 are un-
known, whereas the values of the ANC C2

d; 1/2(= 0.774 ±
0.018 fm−1 [14,34]) for p + n → d and λ(= 0.125 [16,36])
7Be +p → 8B are known. One notes that the “experimental”
value of the ANC C2

d; 1/2 is in excellent agreement with that
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calculated by different forms of the realistic NN potential
where its value was found insensitive to the used form of
the potential (see Ref. [14] for example). This circumstance
makes it possible to calculate the deuteron wave function by
using the Woods-Saxon potential.

To make the dependence of the RjB 1/2(Ei,θ ; bB; jB
,bd; 1/2)

function on bB; jB
more transparent, we have restricted only

by the main term (V N
np) in the right-hand side of (2) and

used the zero-range version of DWBA for the V N
np potential

with fixed optical model parameters in the initial and final
states. Note that this consideration is also valid for the
finite range of DWBA. In the radial integral for the matrix
element [32] in the RjB 1/2(Ei,θ ; bB; jB

,bd; 1/2) function we
split the space of interaction of the colliding particles into two
parts separated by the channel radius Rch [25]: the interior part
(0 � R � Rch), where nuclear forces between the colliding
nuclei are important, and the exterior part (Rch � R < ∞),
where the interaction between the colliding nuclei is governed
by Coulomb forces only. The exterior part of the radial integral
for the matrix element in the RjB 1/2(Ei,θ ; bB; jB

,bd; 1/2)
function does not contain explicitly the free parameter bB; jB

,
since for R > Rch the bound- [(7Be + p)] state wave function
ϕB; jB

(R) (= ϕB; jB
(R; bB; jB

) [25]) can be approximated by
its asymptotic behavior [14]. Consequently, parametrization
of the differential cross section in the form (3) allows
us to fix the contribution from the exterior region in a
model-independent way, if it is dominant for the peripheral
reaction and if the ANCs CB; jB

(jB = 1/2 and 3/2) are
known. In that case, the contribution from the interior part
of the radial matrix element to the RjB 1/2(Ei,θ ; bB; jB

,bd; 1/2)
function, which depends on bB; jB

through the fraction
ϕB; jB

(R; bB; jB
)/bB; jB

,bd; 1/2 [25,32], exactly determines the
dependence of the RjB 1/2(Ei,θ ; bB; jB

,bd; 1/2) function on
bB; jB

. It should be noted that this fraction is convolved with
the radial optical wave functions in the initial and final states
in the integrand of the radial integral for the interior part
of the matrix element. The contribution from the interior
part to the dσ/d
 cross section is determined by the free
parameters bB; jB

and the spectroscopic factors ZB; jB
through

the product of Z
1/2
B; jB

ϕB; jB
(R; bB; jB

), which is really model
dependent due to the unknown free parameters bB; jB

. As is

seen from here and will be demonstrated below, at the fixed
available “indirectly determined” values of the ANCs CB;jB

and Cd;jd
(see Table IV), ambiguity of single-particle ANC

values bB; jB
leads to the large uncertainty in the absolute

values of the spectroscopic ZB; jB
factors. Besides, as a rule,

this inaccuracy for ZB; jB
can also grow because of optical

potentials ambiguities arising mainly in the interior part of
the matrix element. Apparently, the analogous situation may
occur for the other nucleon transfer reactions induced by
a deuteron, including the reactions systematically studied
in Ref. [37] taking into account the deuteron’s breakup in
the field of the target. It should be noted that for small
relative distances between colliding light nuclei, which are
responsible for the low partial-wave amplitudes corresponding
to the processes proceeding inside nuclei, the optical model
potentials cannot, generally speaking, reflect the true nature
of many-particle nuclear interactions [30]. Therefore, the
dependence on the single-particle ANCs and optical model
potentials in the interior part of the matrix element can be one
of the main reasons of the strong dependence of empirical
(“experimental”) values of the spectroscopic factors ZB; jB

extracted from different forms of the DWBA analysis (see
Refs. [20,24]).

Nevertheless, if the 7Be(d,n)8B reaction is peripheral in
the angular region near the main peak the contribution of
the internal part into the RjB 1/2(Ei,θ ; bB; jB

,bd; 1/2) must be
strongly suppressed. In this case, Eq. (3) can be used for
determination of the square ANCs C2

B; jB
, since, in the external

part of the matrix element, the optical potential ambiguity and
the dependence of the RjB 1/2(Ei,θ ; bB; jB

,bd; 1/2) function on
bB; jB

can be reduced to minimum. To this end, according to
Ref. [28], at the fixed values of C2

d; 1/2, λ and optical model pa-
rameters for the initial and final states, obviously the peripheral
character for the 7Be(d,n)8B reaction is conditioned by

RjB 1/2(Ei,θ ; bB; jB
,bd; 1/2) = f (Ei,θ ), (6)

where the left-hand side of Eq. (6) should not depend on
bB; jB

and bd; 1/2 for each fixed energy Ei and scattering angle
θ belonging to the main peak. Then, from (3) and (6), the
following condition:

C2
B;3/2 = dσ/d


C2
d; 1/2[R3/2 1/2(Ei,θ ; bB;3/2,bd; 1/2) + λR1/2 1/2(Ei,θ ; bB;1/2,bd; 1/2)]

= const (7)

must be fulfilled for each fixed energy Ei , θ , and the function
of RjB

(Ei,θ ; bB; lBjB
,bd; 1/2) from (6).

Thus, introduction of the conditions (6) and (7) into the
DWBA analysis guarantees the correct absolute normalization
of the peripheral reaction cross section and supports the
assumption about the dominance of the peripheral character
of the proton transfer within (or near) the main peak of
the angular distribution, which is mainly determined by
the true peripheral partial-wave amplitudes at l � 1 [19].
Therefore, fulfillment (or weak violation within the errors
of the experimental differential cross section dσ exp/d
) of
the conditions (6) and (7) makes it possible to obtain the

experimental (“indirectly determined”) value of squared ANC
(Cexp

B jB
)2 for 7Be +p → 8B using the dσ exp/d
, measured in

the main peak of the angular distribution, for dσ/d
 and the
value of C2

d; 1/2 [14,34].

B. Asymptotic normalization coefficients for 7Be + p → 8B

To determine the ANC values for 7Be +p → 8B, the
experimental differential cross sections measured in inverse
kinematics for the 7Be(d,n)8B reaction at the energy of
Ei = 4.5 MeV [23] were reanalyzed by the modified DWBA.
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TABLE I. Parameters of the optical potentials corresponding to the entrance (a) and exit (b) channels for the 7Be(d,n)8B reaction at the
energies Ed = 5.79 and 7.46 MeV in the laboratory system.

Ed , Set Channel V , rV , aV , 4WD(W ), rD(rW ), aD(aW ), Vso, rso, aso,
(MeV) (MeV) (fm) (fm) (MeV) (fm) (fm) (MeV) (fm) (fm)

5.79 1 a 72.0 1.05 0.95 (30.00) (0.84) (0.85) 12.8 1.05 0.94
b 28.0 1.64 1.05 121.2 1.94 0.11 4.9 1.64 0.27

2 a 67.0 1.35 0.93 18.00 2.48 0.30 16.0 0.86 0.25
b 47.1 1.31 0.66 33.52 1.26 0.48

3 a 66.2 1.35 0.93 17.43 2.43 0.30 16.0 0.86 0.25
b 35.8 1.51 0.43 25.98 1.84 0.51 5.8 1.18 0.51

4 a 64.0 1.35 0.90 18.68 2.37 0.30 12.0 0.86 0.25
b 35.8 1.51 0.43 25.98 1.84 0.51 5.8 1.18 0.51

7.46 1a a 65.0 1.35 0.89 19.16 2.34 0.30 12.0 0.86 0.25
b 48.19 1.20 0.72 30.32 1.43 0.66 5.2 1.13 0.77

2a a 64.0 1.35 0.90 18.68 2.37 0.30 12.0 0.86 0.25
b 48.2 1.13 0.72 45.32 1.43 0.66 6.2 1.13 0.77

3a a 64.0 1.35 0.90 18.68 2.37 0.30 12.0 0.86 0.25
b 42.4 1.35 0.55 37.56 1.35 0.75 5.0 1.35 0.55

Four sets of the optical potentials listed in Table I were used.
These were obtained from the global parametrization given in
Refs. [38–42] and a χ2 minimization analysis by means of the
best fits to the experimental d + 7Li, n + 9Be, and n + 11B
scattering angular distributions in the forward hemisphere at
the corresponding projectile energies. This method for fitting
provides an equally good reproduction of the experimental
angular distribution within the main peak region, as will be
shown below. As an illustration, for sets 2–4 of the optical
potentials, Fig. 2(a) shows the results of comparison between
the calculated angular distributions and the experimental data
for elastic d + 7Li scattering taken from Ref. [39] (closed
triangles) at most near corresponding energies. As is seen
from this figure, the used sets reproduce well the corresponding
experimental angular distributions up to ∼90◦. A similar result
is obtained for set 1 of Table I. Besides, in Fig. 2(a), the result
of calculation (dash-dotted line), obtained with the optical
potentials for the set S1 recommended in Ref. [23], and its
comparison with the experimental data [23] (open circle) are
presented for the elastic d + 7Be scattering at Ei = 4.5 MeV.
One can see that the optical potentials recommended in
Ref. [23] describe well the experimental data only in the
narrow angle range of the forward hemisphere. We note
that the deuteron groups corresponding to the ground and
first excited states were not resolved in the experiment.
Moreover, a comparison of behavior of the experimental
angular distributions of the elastic deuteron scattering on
the nuclei 7Be and 7Li shows the overestimation of values
of the elastic cross section in the angular range 55–75◦ in
Ref. [23]. It may be the result of the underestimation of the
cross section of the inelastic scattering with the formation
of the 427-keV excitation level in 7Be in the angle range
mentioned above. Indeed, as can be seen from Fig. 5 of
Ref. [39], at the elastic deuteron scattering on the nucleus
7Li, the first minimum of the angular distribution is smoothly
displaced towards small angles increasing the relative energy
(approximately from 80◦ at 4 MeV to 70◦ at 5 MeV). The
value of the differential cross section for the 7Be(d,do)7Be

data at 4.5 MeV [23] changes by ∼2.4 times between the
scattering angles 60–75◦ (i.e., on the left slope of the expected
first minimum of the angular distribution), still not reaching
the minimum, whereas, at the same energy (from the data
averaged on energy at 4 and 5 MeV [39]), the differential
cross section for 7Li(d,do)7Li scattering changes only by

FIG. 2. Fit of the elastic d + 7Li and d + 7Be scattering cross
sections by using different sets of optical potentials. In (a), the
solid, dashed, and dotted lines correspond to sets 4, 3, and 2,
whereas the dash-dotted line corresponds to set S1 from Ref. [23];
experimental data for the elastic d + 7Li scattering at Ed = 6 MeV
(closed triangles) and for the d + 7Be scattering Ed = 5.79 MeV
(open circles) are taken from Refs. [39] and [23], respectively. In
(b), the solid and dashed lines correspond to sets 1a and 2a of the
present work, and the dash-dotted and dotted lines correspond to
sets 1 and 2 recommended in Ref. [22]; experimental data (open and
close points) for the elastic d + 7Li scattering [39] at Ed = 7.0 and
8.0 MeV, respectively.
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∼1.3 times, reaching the first minimum at an angle ∼75◦.
It should be noticed that the position of the first minimum
depends very smoothly on the mass number at the fixed energy
(see, for example, Ref. [42]), and therefore the trend of the
angular distribution and position of the first minimum for
deuteron scattering on 7Li and 7Be nuclei should be similar.
For specification of the cross section behavior in the region of
the first minimum of angular distribution, which is an essential
criterion for the realistic OMP selection, the experiment with
a smaller energy dispersion of the 7Be beam is needed. Taking
into account the above-stated considerations, we do not include
the OMPs recommended in Ref. [23] for the analysis of the
7Be(d, n)8B reaction performed below.

For calculation of the shell-model two-body bound-
[8B(7Be +p) and d(n + p)] state wave functions the Woods-
Saxon potential is used with varying the geometric parameters
within the physically acceptable limit by means of adjusting
the well depth to the experimental binding energy (0.137 MeV
for the nucleus 8B and 2.225 MeV for the deuteron d) for
each of the geometric parameters. At first, we have tested the
validity of the condition (6) for the first six experimental points
of the angular distribution of the reaction presented in Ref. [23]
and for all sets of the optical potentials of Table I. This test
is done by changing the geometric parameters ro and a of
the Woods-Saxon potential, used for calculation of the bound-
(n + p) and (7Be +p) state wave functions, in wide physically
acceptable ranges (ro = 1.10–1.40 fm and a = 0.50–0.75 fm)
with respect to their “standard” values (ro = 1.25 fm and
a = 0.65 fm). Such variation of the ro and a results in
changing the single-particle ANCs (bB; jB

= bB; jB
(ro, a) and

bd; 1/2 = bd; 1/2(ro, a) [25]) with jB = 1/2 and 3/2 within the
intervals of 0.615 � bB; 3/2 � 0.795 fm−1/2, 0.596 � bB; 1/2 �
0.782 fm−1/2, and 0.900 � bd; 1/2 � 0.984 fm−1/2.

Figure 3 shows a plot of the R3/2 1/2(Ei,θ ; bB; 3/2,bd; 1/2)
dependence only on the single-particle bB; 3/2 and the fixed
value of bd; 1/2 = bd; 1/2(ro,a) = 0.942 fm−1/2 at r0 = 1.3 fm
and a = 0.65 fm for the potential of the set 3 in Table I within
the aforementioned interval for three angles θ (θ = 16.58◦,
25.2◦, and 34.23◦) within the main peak. The width of the
band for these curves is the result of the weak “residual” (ro,a)
dependence of R3/2 1/2(Ei,θ ; bB; 3/2,bd; 1/2) on the parameters
ro and a (up to ±1%) for bB; 3/2(ro,a) = const [25]. The same
dependence is also observed for jB = 1/2 and other values
of bd; 1/2. For example, the arithmetic averaged values of the
R3/2 1/2(Ei,θ ; bB; 3/2,bd; 1/2) andR1/2 1/2(Ei,θ ; bB; 1/2,bd; 1/2)
obtained in the intervals for bB; jB

(jB = 1/2 and 3/2) and
bd; 1/2 mentioned above are equal to 63.31 ± 0.28 and 94.00 ±
0.64 mb fm/sr at θ = 16.58◦ and equal to 35.93 ± 0.71 and
54.16 ± 0.91 mb fm/sr, respectively, at θ = 29.6◦. Here, the
pointed-out uncertainties are the averaged square errors, which
involve those arising due to the observed weak dependence of
these calculated functions with changing of bB; jB

and bd; 1/2

as well as the extremely weak “residual” (ro,a) dependence
of R3/2 1/2(Ei,θ ; bB; jB

,bd; 1/2) at bB; jB
= const and bd; 1/2 =

const. It is seen that at fixed values of θ within the main peak
region the averaged values of the RjB 1/2(Ei,θ ; bB; jB

,bd; 1/2)
functions do not depend practically on the free parameters
bB; jB

and bd; 1/2. Over these intervals for the free parameters
the condition (6) is fulfilled within up to about ±0.7% for

FIG. 3. The dependence of R3/2 1/2(Ei,θ ; bB; 3/2,bd; 1/2) on the
single-particle bB; 3/2 at bd; 1/2 = 0.942 fm−1/2 and the different
angles θ for the energy of Ei = 4.5 MeV and with potential
parameters of set 3 in Table I. In (a), (b), and (c), the calculated
R3/2 1/2(Ei,θ ; bB; 3/2,bd; 1/2) function is plotted for θ = 16.58◦, 25.2◦,
and 34.23◦, respectively. The width of the bands for fixed values of
bB; 3/2 corresponds to variation of the parameters ro and a of the
adopted Woods-Saxon potential within the intervals from ro = 1.10
to 1.40 fm and a = 0.50 to 0.75 fm.

jB = 3/2 and up to about ±2.0% for jB = 1/2, whereas
σ DW

ld lB
(Ei,θ ; bB;jB

,bd; 1/2) entering (4) is a rapidly varying
function of bB; jB

(jB = 1/2 and 3/2) and bd; 1/2. The same
situation is observed for the other considered values of θ and
the sets of the optical potentials from Table I.

We also performed calculations of the DWBA cross
sections (3) at forward angles for different values of the cutoff
radius Rcut [lower limit in radial integration over the distance
(R) between centers of masses of the colliding particles]
to check in an independent manner the peripheral character
of the 7Be(d,n)8B reaction at the energy Ei = 4.5 MeV.
Calculations have been done for all sets of the optical
potentials of Table I and the Woods-Saxon potential for the
bound state of 8B with the standard geometric parameters
(ro = 1.25 fm and a = 0.65 fm) and the Thomas spin-orbital
term. The dependence of the DWBA cross sections on the
Rcut, dσ

d

(Rcut) is shown in Fig. 4(a) for set 3. It shows that

the contribution of the region with R � Rcut � 5.0 fm into
the calculated DWBA cross section is strongly suppressed and
makes from 1% up to 5% in the region of the main peak of the
angular distribution, which does not exceed the experimental
errors. The same result is obtained for sets 1, 2, and 4. The
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FIG. 4. Angular distributions depending on different cutoff radii (Rcut) for Ei = 4.5 MeV (a) and Ei = 5.8 MeV (b) calculated in DWBA
with potential parameters of sets 3 and 1a (Table I), respectively. The solid, dotted, and dashed lines are the differential cross sections calculated
for the cutoff radius Rcut = 0.0, 4.0, and 5.0 fm, respectively.

bound-state wave functions rϕB; jB
(r) (jB = 3/2) of the 8B

nucleus in the (7Be +p) channel calculated for different values
of the geometric parameters reach their asymptotic behavior
bB, 3/2W−ηB ;3/2(2κr) for r � 5.0 fm, where W−ηB ;3/2(x) is the
Whittaker function, ηB is the Coulomb parameter for the
8B = (7Be +p) bound state, and κ = √

2μp7Beε in which ε

is the binding energy of 8B in (7Be +p) channel. Figure 5
demonstrates the dependence of the bound-state wave function
rϕB; jB

(r) (jB = 3/2) on the geometric parameters ro and a of
the Woods-Saxon potential.

Testing condition (6) and calculating the DWBA cross
sections (3) at the first four experimental points of the angular
distribution also were done for different values of the cutoff
radius Rcut for the 7Be(d,n)8B reaction at the energy Ei =
5.8 MeV [22]. The calculations were performed for the sets
1a, 2a, and 3a of the optical potentials obtained by fitting
the experimental scattering data closest to the kinematics
of Ref. [22] in the same way as done above. The results

FIG. 5. The radial behavior of the single-particle 8B[= (7Be +p)]
bound-state wave function rϕB; jB

(r) with jB = 3/2 calculated for
the Woods-Saxon potential with different sets of (ro, a) pairs and
bB, 3/2: (1.00 fm; 0.50 fm) and 0.6200 fm−1/2 (the dashed line),
(1.25 fm; 0.65 fm) and 0.7679 fm−1/2 (the solid line), and (1.40 fm;
0.80 fm) and 0.7960 fm−1/2 (the dashed-dotted line). The Coulomb
radius rC = 1.30 fm. The dotted line is the tail bB, 3/2W−ηB ;3/2(2κr) of
the bound-state wave function rϕlBjB

(r) with bB, 3/2 = 0.7679 fm−1/2

(ro = 1.25 fm and a = 0.65 fm).

are presented in Table I. Figure 2(b) shows the results of
comparison of the angular distributions calculated for sets
1a and 2a (solid and dashed lines, respectively) with the
experimental data for elastic d + 7Li scattering taken from
Ref. [39] (open circles and closed triangles for Ed = 7.0
and 8.0 MeV, respectively). As seen from the figure, the
used sets reproduce well the corresponding experimental
angular distributions up to ∼90◦, whereas the optical potentials
recommended in Ref. [22] provide poor fits to the experimental
data [see dash-dotted and dotted lines in Fig. 2(b)]. The same
situation is observed for set 3a. But the calculations performed
for all of the considered sets of the optical potentials show
that the condition (6) is fulfilled within from ±10% up to
±14% relative the central values ofRjB 1/2(Ei,θ ; bB; jB

,bd; 1/2)
functions over the above-mentioned intervals for bB; 3/2 and
bB; 1/2 for each angle θ inside the main peak region. The same
situation was observed in Ref. [27] where the optical potentials
from Ref. [22] were used. The dependence of the DWBA cross
sections on Rcut at the forward angles is shown in Fig. 4(b)
for set 1a. As is seen from the figure, the contribution of the
region with R � Rcut � 5.0 fm to the calculated DWBA cross
section is noticeable and occurs to be from 17% up to 23% in
the region of the main peak of the angular distribution. The
same result is obtained for the sets 2a and 3a.

It follows from here that the 7Be(d,n)8B reaction at the
energy Ei = 5.8 MeV is not purely peripheral due to the fact
that the contribution of the interior part of the matrix element
into theRjB 1/2(Ei,θ ; bB; jB

,bd; 1/2) function is significant. One
notes once more that the strong dependence of this function
on bB; jB

and bd; 1/2 is associated mainly with the interior
part of the matrix element and is determined by the bound
state ϕB; jB

(r; bB; jB
) and ϕd; 1/2(r; bd; 1/2) wave functions.

For illustration, we present in Fig. 5 the changing of the
ϕB; jB

(r; bB; 3/2) wave function for three fixed values of bB; 3/2

(bB; 3/2 = 0.620; 0.768 and 0.796 fm−1/2). For these values of
bB; 3/2 the calculated wave functions change noticeably in the
interior region, whereas the observed discrepancy grows from
3 to 8% as the relative distance between the “valence” proton
and the center mass of the core (7Be) decreases from 3.0 to
0.2 fm (see the insert in Fig. 5).

Therefore, in reality, one should take into account the
effect of a node at short distance in the bound-state wave
function which is due to Pauli antisymmetrization. Besides,
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as mentioned above, the additional difficulty, connected with
uncertainties of the optical model potentials in the interior part
of the matrix element for description of the elastic scattering
of lightest particles on light nuclei [25,37,43] can be faced.
The facts mentioned above can apparently be one of the
reasons why the value of the spectroscopic factor for 8B
in the (7Be +p) configuration, extracted in Ref. [24] from
the 7Be(d,n)8B analysis at the energy Ei = 5.8 MeV with
using different sets of the input data, has a large spread
(about 30%). Therefore, the analysis of the experimental
data of Ref. [22] performed within the modified DWBA in
Ref. [27] and in the present work as well as that performed
in Ref. [24] cannot allow one to obtain the reliable ANC
values. In contrast to this case, the 7Be(d,n)8B reaction at
the energy Ei = 4.5 MeV is predominantly peripheral in the
main peak region of the angular distribution. At this case,
the influence of the effects connected with the true structure of
many-particle wave functions of the nuclei (deuteron, 7Be, and
8B), exhibited mainly in the interior part of the matrix element,
can be ignored. So, in the surface and outer regions of the
nucleus, the wave functions of the relative motion at the initial
and final states can be described by the optical model, and
the bound- [(7Be +p)] state wave function by the one-particle
shell-model wave function reducing their uncertainties to a
minimum. Consequently, the experimental data of Ref. [23]
are used for obtaining the “indirectly determined” values of
the ANCs for 7Be +p → 8B.

The condition (7) was used for each θ from the main peak
region of the angular distribution as only in such a case is the
absolute value of the differential cross section defined by the
ANC. For illustration, we present in Fig. 6 the results of calcu-
lation of the ratio in the right-hand side of the expression (7),
where instead of the calculated differential cross section
the corresponding experimental cross sections are taken.
The calculations were performed for θ = 16.6◦ and 29.6◦ and
the sets 2 and 3 of the optical potentials. Here, it was taken into
account the fact that the ratio R̃ = bB; 1/2(ro, a)/bB; 3/2(ro, a)
practically does not depend on variation of the free ro and
a parameters of the Woods-Saxon potential (ro ranging from
1.10–1.40 fm and a in the range of 0.50–0.75 fm). The value
of R̃ is equal to 0.9742 ± 0.0065. It is seen from the figure
that the C2

B values are weakly dependent on the bB; 3/2 value.
However, the values of the spectroscopic factor ZB determined
by the relation ZB = 1.006C2

B/b2
B; 3/2, which can be obtained

from (5) with use of the aforementioned values for R̃ and λ,
change strongly [Fig. 6(a)]. We found that the same dependen-
cies for C2

B and ZB occur for all other considered scattering
angles and the sets of the optical potentials from Table I.

To increase the accuracy of the ANC values required
for their astrophysical application, the contribution of the
compound (9B∗) nucleus (CN), the d-component of the bound
-state wave functions of deuteron, the remnant V N

nBe − V N
f

in the first term in the right-hand side of Eq. (2), and
coupled-channel effects (CCE) connected with the elastic and
inelastic d + 7Be scattering should be taken into account. The
CN and CCE contribution were calculated as in Refs. [22,23]
and Refs. [44,45], respectively, whereas the estimation of
contribution of the remnant V N

nBe − V N
f was done by using

the FRESCO code [46].

FIG. 6. Values of the spectroscopic factors ZB (a) and the squared
ANC C2

B (b) as a function of the single-particle bB; 3/2 obtained
using the modified DWBA 7Be(d,n)8B analysis at the energy Ei =
4.5 MeV and bd, 1/2 = 0.942 fm−1/2 for the different fixed angles
θ and the sets of the optical potentials. Data denoted by ◦ and �
(• and �) correspond to the experimental points θ of 16.6◦ and 29.6◦,
respectively, for set 3(2).

Influence of the CN contribution �CN on the ANC
values extracted for each θ from the main peak re-
gion has been determined using the results of work [23],
where �CN = 2|dσCN/d
 − dσ/d
|/(dσCNd
 + dσ/d
)
in which dσCN/d
 is the CN cross section. The contribution
of �CN increases with increase of θ in the main peak region,
which leads to a decrease of the ANC values, obtained from
the relation (7). For example, it is by 0.8% at θ = 8.2◦ and
by 2.9% at θ = 34.2◦ for set 1 and by 1.0% at θ = 8.2◦ and
by 3.1% at θ = 34.2◦ for set 3. The same results practically
occur for other sets of the used optical potentials. As a whole,
the CN contribution to the cross sections [23] in the main peak
region is quite small and, consequently, it results in barely
changing the extracted ANC values. As for the contribution
of the d-component of the bound-state wave functions for the
deuteron to the calculated single-particle cross section, the
calculation shows that this contribution within the main peak
region is negligibly small since it changes the ANC values
extracted from the main peak region only within 0.2–0.3%.

The influence of the V N
nBe − V N

f remnant on the ANC
values obtained without taking into account this remnant
was estimated. However, so far as is known to us, at the
energy of the neutron corresponding to the kinematic of the
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FIG. 7. The coupling scheme used in calculations of the cross
section for the 7Be(d,n)7Be reaction by the coupled reaction channels
method.

considered reaction, there are no data for the n7Be and n7Li
scatterings. Therefore, for the core-core interaction (V N

nBe)
entering the four-ray vertex of the diagram Fig. 1(b), the
optical potentials adopted for the exit channel of the analyzed
reaction are used, as in Ref. [24]. The result shows that
taking into account the V N

nBe − V N
f remnant changes the ANC

values within 1%–5% with respect to those obtained without
taking into account the remnant for six considered angles θ
from the region of the main peak. This result is apparently
not accidental and can be explained by the fact that the
peripheral reaction at Ei = 4.5 MeV is first governed by the
nearest to the physical (−1 � cos θ � 1) region singularity at
cos θ = ξ of the reaction amplitude [47]. Second, the dominant
role played by the singularity cos θ = ξ is the result of the
peripheral nature of the considered reaction at least near
the main peak of the angular distribution. For an illustration
of this fact, the calculated singularities [48] of the reaction
amplitude at Ei = 4.5 MeV corresponding to the pole and
triangle diagrams plotted in Figs. 1(a) and 1(b) are located
at cos θ = ξ = 1.29 and cos θ = ξ� = −7.71, respectively.
Study of the analytical properties of the amplitudes connected
with the second term in V TB over the variable cos θ [48]
shows that their singularities are located essentially farther
from the right and left boundaries of the physical region for
cos θ than those of ξ and ξ�, respectively. It is seen from
here that the singularities of the amplitudes corresponding
to the triangle diagram Fig. 1(b) and the types of diagram
plotted in Fig. 1(c) are located far from the physical region of
changing the variable cos θ within the main peak, whereas the
singularity at cos θ = ξ is nearest to the right part (cos θ = 1)
of the boundary of the physical region −1 � cos θ � 1 and,
therefore, it must namely determine both the behavior of the
cross section and its absolute value in the main peak.

The CCE contributions to the DWBA cross sections for
each experimental point of θ from the main peak region has
been determined using the FRESCO computational code [46],
similarly as in Ref. [44]. The coupling between the ground
(E∗ = 0.0; Jπ = 3/2−) and first excited (E∗ = 0.429 MeV;
Jπ = 1/2−) states of the 7Be nucleus was calculated with
the collective form factor of the rotational model for the
quadrupole transition, as in Ref. [45] (see the coupling scheme
in Fig. 7). The spectroscopic amplitudes Aj are taken from
Ref. [22] (Aj = Z

1/2
j ). As mentioned above, the optical

potentials adopted for the exit channel are used for the core-
core interaction. The deformation length δ2 is taken equal to
2.0 fm, which results in a change of the deformation parameter
δ2(= β2RBe, where RBe = ro71/3) from 1.02 to 1.04 depending

TABLE II. Coupling channel effects for the 7Be(d,n)8B reaction
at Ei = 4.5 MeV in the forward hemisphere calculated for each set
of the optical potential used. Differential cross sections are given in
mb/sr. Figures in brackets are the ratio �CCE of the differential cross
section calculated without the CCE contribution to that calculated
with the CCE contribution.

θ dσCCE/d
(�CCE)

(deg.) Set 1 Set 2 Set 3 Set 4

1.00 47.6(1.029) 49.7(0.977) 49.0(1.017) 50.8(1.057)
8.20 45.4(1.026) 47.3(0.974) 46.6(0.965) 48.2(1.052)
16.60 38.4(1.047) 39.8(0.964) 38.9(0.960) 39.9(1.038)
20.90 33.4(1.006) 34.3(0.968) 33.3(0.956) 34.0(1.027)
25.20 27.8(0.996) 28.3(0.958) 27.2(0.951) 27.6(1.014)
29.60 22.1(0.983) 22.3(0.951) 21.2(0.944) 21.3(0.995)
34.20 16.7(0.967) 16.8(0.941) 15.7(0.935) 15.6(0.969)

on the parameter radius ro for the real parts of the used optical
potentials. The averaged value of the β2 is equal to 1.03,
which is in a good agreement with the value of 1.00 obtained
in Ref. [49] from the analysis of α + 7Li scattering. The
results are presented in Table II for all sets of the used optical
potentials. The coupled-channel differential cross sections and
the ratio �CCE of the differential cross section calculated
without the CCE contribution to that calculated with the CCE
contribution are given in the forward hemisphere. As seen from
Table II, for all used sets of the optical parameters the effect
of contribution of the CCE on the calculated cross section
increases as the scattering angle increases, which results in
changing the extracted ANC values from 0.6% to 5%.

Thus, the detailed study of the peripheral character of
the considered reaction makes it possible to extract the
values of ANCs C2

B; 3/2 and C2
B[= C2

B; 3/2(1 + λ)] by using
the experimental differential cross sections and values of the
function RjB

in the right-hand side of the relation (7) for the
different scattering angles from the forward hemisphere. At
this, to improve an accuracy of the extracted ANC values,
the contribution of the compound nucleus, the V N

nBe − V N
j

remnant, and the CCE should be taken into account.
The squared ANC C2

B for 7Be +p → 8B obtained for
each experimental θ point, corresponding to the sets 1–4, are
presented in Figs. 8(a)–8(d), respectively. The uncertainties
pointed out in this figure correspond to the averaged square er-
rors found from Eq. (7), which includes both the experimental
errors in the dσ exp/d
 and the above-mentioned uncertainty
of the ANC for p + n → d (experimental parts) as well as
the mentioned uncertainties in the Rj (Ei,θ ; bB; j ) functions.
The solid line and the width of the band present the results
for the weighted mean values and their uncertainties [50],
respectively. It is seen from Fig. 8 that the right-hand side
of relation (7) practically does not depend on the angle θ
although absolute values of the experimental cross sections
depend noticeably on the angle θ and change by up to the
factor 2.6 with θ changing from 8.2◦ to 34.2◦.

The weighted means and their uncertainties for the squared
ANCs derived for each set of the optical potential are presented
in lines 1–8 of Table III. There the first figures in brackets
are experimental uncertainties, which are derived from the
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FIG. 8. The values of the squared ANC C2
B for 7Be +p → 8B

for each of the experimental θ . Data in (a)–(d) are obtained from the
analysis of the experimental differential cross sections of Refs. [23]
at Ei = 4.5 MeV and sets 1–4 of the optical potentials, respectively.
The solid lines present the results for the weighted mean values. The
widths of the bands are the corresponding weighed uncertainties.

averaged square errors of the above-mentioned experimental
parts for each point θ in Fig. 8. The second figures in brackets
are theoretical uncertainties associated with the uncertainties
in the Rj (Ei,θ ; bB; j ) functions for each point θ in Fig. 8. In
the second, third, and fourth columns of this table, the results
obtained with taking into account the CN [but without the
remnant V N

nBe − V N
f terms (RT)], RT, and CCE contributions

are given, respectively. The RT and CCE contributions on the
ANC values, as seen in Table III, change the ANC values

from 3.1% to 6.8% and from 0.6% to 4.6%, respectively, with
respect to each other in dependence of a set of the optical
parameters, which do not exceed the experimental errors for
the dσ exp/d
 [23]. The final averaged values of the squared
ANCs derived from the ANCs given in lines 1–8 of Table III
are also presented in the 9th and 10th lines of Table III. As is
seen from Table III, the RT and CCE contributions change the
final ANC values about 0.5% and 1.5%, respectively.

The ANC value recommended in the present work
is C2

B = 0.613 ± 0.030 (exp) ± 0.052(th) fm−1 or C2
B =

0.613 ± 0.060 fm−1 with the overall uncertainty, which
are also listed in the second and third lines of Table IV
together with those obtained by the other authors in
Refs. [10,13,16,20,24,51–54]. The overall uncertainty for the
recommended ANCs is about 10%. As is seen in Table IV,
the weighted mean of C2

B , obtained in the present work, is
in excellent agreement with that of Ref. [10], which was
derived from the independent analysis of the experimental
7Be(p,γ )8B astrophysical S factors at extremely low energies.
However, the obtained value for C2

B differs noticeably from that
recommended in Refs. [16,24,51,52]. As we discussed above,
the ANC value of Ref. [16] is model dependent [9,19,20,55]
on account of using the first order over the �V C

f potential.
The ANC value of Ref. [24] and the discussed theoretical
uncertainty of it, which can easily be obtained using the S17(0)
value derived in Ref. [24] (see Table IV) and its relation with
the ANC given there, is also model dependent because of
the fairly large ambiguity for the spectroscopic factors. The
results of Refs. [51,52] were obtained from the 7Be(p,γ )8B
R-matrix analysis, where the direct part of the amplitude is
expressed in terms of the channel reduced width and is also
determined in a model-dependent way. In reality, the ANC
obtained in Refs. [51,52] can have the uncertainty arising due
to an ambiguity in values determined by fitting all the other
free parameters used. In addition, as seen in Table IV, the
ANCs obtained by us also differ noticeably from the values
of C2

B derived in Refs. [20,53] from the 208Pb(8B,p7Be)208Pb
breakup reaction. In Ref. [20], this process is analyzed, as
noted above, within the strict three-body model based on the
CDCCM in which all nuclear and Coulomb interactions are

TABLE III. The weighted mean values of the squared ANCs for 7Be + p → 8B obtained without and with the V N
nBe − V N

f remnant terms
(RT) as well as with the CCE contribution for each of the sets 1–4 of the optical potentials at Ei = 4.5 MeV. Figures in brackets are experimental
and theoretical uncertainty, respectively. The values in the even lines correspond to the ANC values with jB = 3/2.

C2
B , C2

B; 3/2 fm−1

Set Without RT With RT With CCE

1 0.598(±0.037; ±0.034) 0.623(±0.038; ±0.034) 0.627(±0.038; ±0.038)
0.525(±0.032; ±0.030) 0.545(±0.033; ±0.030) 0.549(±0.033; ±0.030)

2 0.596(±0.034; ±0.029) 0.575(±0.033; ±0.028) 0.555(±0.032; ±0.028)
0.521(±0.030; ±0.025) 0.503(±0.029; ±0.025) 0.486(±0.028; ±0.025)

3 0.705(±0.041; ±0.030) 0.727(±0.042; ±0.031) 0.694(±0.040; ±0.032)
0.617(±0.036; ±0.026) 0.636(±0.037; ±0.027) 0.607(±0.035; ±0.028)

4 0.609(±0.037; ±0.023) 0.569(±0.034; ±0.021) 0.582(±0.035; ±0.024)
0.533(±0.032; ±0.020) 0.498(±0.030; ±0.018) 0.509(±0.031; ±0.021)

Averaged 0.625(±0.037; ±0.039) 0.622(±0.037; ±0.046) 0.613(±0.030; ±0.052)
Mean 0.547(±0.032; ±0.034) 0.544(±0.032; ±0.040) 0.536(±0.026; ±0.046)
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exactly taken into account in the all-order perturbation theory
in the transition operator. Nevertheless, first, the cross section
of the considered breakup process is expressed in terms of
the spectroscopic factor ZB (denoted by α in Ref. [20]),
which is really model dependent. Second, in Ref. [20], the
dependence on channel spin is ignored in the effective p-7Be
interaction for the single-particle wave function of 8B and the
overestimated value of λ (= 0.159) was used (see above and
Refs. [16,36]). Therefore, under such assumptions, the ZB

extracted in Ref. [20], which was used in Eq. (5) together with
the single-particle ANC for the adopted potential, becomes
strongly model dependent. For example, the values of ωI =√

ZB; I /ZB , in terms of which the calculated single-particle
cross section (σ ) is parameterized (see Eq. (45) in Ref. [20]),
are taken equal to 0.397 and 0.918 for I = 1 and 2, respec-
tively, where I is a channel spin. But they are equal to 0.497
and 0.868 for I = 1 and 2 for Barker’s spectroscopic factors
(ZB; I=1 = 0.251 and ZB; I=2 = 0.765) [56]. Apparently, all
these facts are the possible reasons why the ANC derived in
Ref. [20] is underestimated in comparison with that obtained
in the present work. In Ref. [53], the consideration is restricted
only by the Coulomb interactions in the first-order perturbation
theory in the transition operator. However, as demonstrated
in Ref. [24], this assumption is not correct and leads to
the underestimated value of the ANC obtained. Besides, in
Ref. [53], the three-body Coulomb postdecay acceleration
effects in the final state of the Coulomb breakup reaction is not
taken into account. As shown quantitatively in Ref. [57], the
influence of these effects grows as the relative kinetic energy
E of the breakup fragments decreases, especially at extremely
low energies. But our result for ANC obtained for jB = 3/2
is in good agreement with that of Ref. [54] derived from the
58Ni(8B ,p7Be)58Ni analysis for the 1p3/2 proton orbital in 8B.
Besides, the result of Ref. [13], obtained within the three-body
microscopic approach for the Minnesota (MN) form of the NN
potential, is also in a good agreement with that of the present
work. It follows from here that the microscopic three-body
(α3He p) cluster calculation performed in Ref. [13] for MN
potential correctly reproduces the normalization of the tail of
the radial overlap function of the 8B in the (7Be +p) channel.

The weighted means for C2
B presented in Table III for

sets 1–4 of the optical potentials and the corresponding
averaged values of the RjB

(Ei,θ ; bB; jB
) functions were used

in the expressions (3) and (4) for calculating the differential
cross sections for the 7Be(d,n)8B reaction at Ei = 4.5 MeV.
The results of calculations and their comparison with the
experimental data [23] are displayed in Fig. 9. As seen from
this figure, the calculated cross section is in a good agreement
with the experimental data in the main peak region of the
angular distribution for all sets of the optical potentials.

III. APPLICATION FOR THE NUCLEAR
ASTROPHYSICAL REACTION AND THE

EFFECTIVE-RANGE EXPANSION

A. S17(E) for 7Be( p,γ )8B reaction at solar energies

The ANC value for p + 7Be → 8B presented in the last
line of Table III was used for calculation of the astrophysical

S factor of the 7Be(p,γ )8B reaction at zero energy by using
the formula [15]

S17(0) = 37.26C2
B (eV b). (8)

The obtained value of S17(0) is presented in Table IV along
with the results obtained within the other methods by other
authors. As is seen from Table IV, the S17(0) value obtained in
the present work is in a good agreement with that of Ref. [10]
and of Ref. [13] obtained for the MN potential as well as
with S17(0) = 23.27 eV b, which can be obtained from the
interpolating formula S17(E) = 23.27–40.53E + 327.30E2

derived by us from the polynomial formula (43) of Ref. [58]
for Barker’s potential and the above-mentioned values of the
spectroscopic factors [56]. At the same time, our result differ
from those of Refs. [16,20,21,23,24,51,52,55]. The following
should be noted. In Refs. [16,20,23,24,51,52] the value S17(0)
was obtained by using the underestimated value of the ANC
in respect to that derived in the present work. In Ref. [20], to
obtain the value of S17(0) the relation between S17(0)/C2

B and
the s-wave 7Be +p scattering length [59] (see also below)
was used, in which the scattering lengths for I = 1 and 2
were calculated with the Barker’s potential. The ANCs were
extracted there by using another form of the p-7Be potential by
ignoring its I dependence, and, therefore, these calculations
were not self-consistent. In Refs. [21,55], for obtaining the
S17(0) value, the procedure of the artificial fitting the highly
precise experimental data measured there to the astrophysical
S factors calculated in Ref. [13] was applied. Therefore,
the results of Refs. [21,55] obtained for S17(0) are model
dependent since the results of Ref. [13] presented also in
Table IV appreciably depend on the form of the used NN
potentials. The result of the solar fusion II [8], which was
compiled also from the results of Refs. [21,55], differs also
noticeably from that obtained in the present work. Besides,
as seen from Table IV, there is the discrepancy between
our result for S17(0) and those of Refs. [53,60–63] obtained
from the 8B Coulomb breakup analysis. Apparently, one of
the possible reasons of this discrepancy is the fact that,
in Refs. [53,60–63], first order over �V

(C)
f is used in the

transition operator [20] and the above-mentioned three-body
Coulomb postdecay acceleration effects in the final state [57]
are not taken into account. Nevertheless, our result for S17(0)
obtained only with taking into account the value of ANC for
jB = 3/2, which is equal to 20.0 ± 2.0 eV b, is in excellent
agreement with the result of Ref. [54]. The latter has also been
obtained with taking into account only the 1p3/2 orbital proton
contribution in the 8B nucleus.

The results of extrapolation of the astrophysical S factors
at extremely low energies, including close to the Gamov peak,
S17(20 keV), S17(50 keV), and S17(120 keV), which can be
obtained within the MTBPA [15] by using the ANC values
of the present work, are equal to 22.0 ± 2.5, 21.2 ± 2.5, and
20.4 ± 2.0 eV b, respectively.

We note that the ratio S17(E)/S17(0) obtained from the
results of the present work is equal to 0.97, 0.93, and 0.89 at
E = 20, 50, and 120 keV, respectively. The same results for the
ratio can be obtained using the rational expression proposed
in Ref. [64]. It follows from here that the ratio S17(E)/S17(0)
obtained using the results of the present work and that of
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TABLE IV. The squared ANC (C2
B = C2

B; 1/2 + C2
B; 3/2) for 7Be + p → 8B and the astrophysical S factor [S17(0)] for the direct radiative

capture 7Be(p,γ )8B reaction.

Method C2
B (fm−1) S17(0) (eV b) Refs.

MDWBA The
7Be(d,n)8B 0.613 ± 0.030 (th) ± 0.052(exp) 22.8 ± 1.1 (exp) ± 1.9(th) present

0.613 ± 0.060a 22.8 ± 2.2a work

MTBPA
7Be(p,γ )8B 0.628 ± 0.017 23.40 ± 0.63 [10]

MDWBA
10B(7Be ,8B)9Be
14N(7Be ,8B)13C 0.465 ± 0.041 18.2 ± 1.8 [16]

Breakup
208Pb(8B ,p7Be)208Pb 0.548 21.7+0.37

−0.24 (th) ± 0.50(exp) [20]

CDCCM
7Be(d,n)8B 0.545+0.036

−0.034 (th) ± 0.070(exp) 20.96+1.4
−1.3 (th) ± 2.7(exp) [24]

R-matrix
7Be(p,γ )8B 0.518b 19.4b [51]

0.491 17.3 ± 3.0 [52]

Coulomb breakup
A(8B ,p7Be)A 0.450 ± 0.072 17.4 ± 1.5 [53]
58Ni(8B ,p7Be)58Ni 0.547 ± 0.027b 20.8 ± 1.1b [54]

Microscopic three- 0.812 29.45c [13]
body (α3He p) model 0.668 24.65d [13]

CDCCM DWBA
7Be(d,n)8B 20.7 ± 2.4 [23]
Phenomenological 21.2 ± 0.7 [55]

way 21.4 ± 0.6 (th) ± 0.5(exp) [21]

Coulomb breakup
208Pb(8B ,p7Be)208Pb 20.6 ± 1.2e±1.0f [60]

18.6 ± 1.2e±1.0f [61,62]
20.6 ± 0.8g±1.2h [63]

Solar fusion II 20.8 ± 0.7e± 1.4f [8]

aThe overall uncertainty.
bFor the p3/2 state.
cThe V2 potential.
dThe MN potential.
eThe exp. error.
fThe th. error.
gThe stat. error.
hThe sys. error.

Ref. [64] reproduce correctly the energy dependence of the
S17(E) at solar energies (E � 120 keV).

Thus, the C2
B value and the values of S17(E) at the solar

energies (E = 0, 20, and 50 keV) derived in the present work
with the uncertainty about 10% confirm the independent results
of Ref. [10] obtained with the uncertainty about 3%. Therefore,
these can be considered as the “best” values obtained by the
indirect method so far. The S17(E) obtained in the present
work and in Ref. [10] could also be used as the main input
data in Eq. (1) for the correct estimation of the solar neutrino
flux [1,8]. Nevertheless, more precise data are needed for such
an estimation of the boron neutrino flux. As shown in our paper,
the experimental errors dominate in the ANC values extracted
from analysis of the 7Be(d,n)8B reaction at 4.5 MeV (center

of mass). Moreover, this reaction becomes less peripheral at
the larger energies. So, it would be expedient to carry out
new precise measurements of the 7Be(d,n)8B reaction and the
d + 7Be scattering at other near-barrier energies of radioactive
7Be [less than 4.5 MeV (center of mass)] and as close to
forward-scattering angles as possible.

B. s-wave p + 7Be scattering length and the slope of S17(0)

It is now of interest to apply the ANCs and S17(0)
derived by us above for obtaining information about ex-
perimental values of the s-wave p + 7Be scattering length
a(I )

o and their average one āo [59] (I = 1 and 2). To this
end, we determine the squared ANC values in other spin
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FIG. 9. Angular distribution of the differential cross section
for the 7Be(d,n)8B reaction at Ei = 4.5 MeV together with the
theoretical calculations performed for the different sets of the optical
parameters from Table I using the corresponding weighted mean of
the ANC value from Table II. The experimental data are taken from
Ref. [23].

coupling modes by using the relation C2
B; I = [CB; jB=3/2 +

(−1)ICB; jB=1/2]2/2 [14] and the averaged values of the C2
B; jB

derived in the present work. They are equal to C2
B; I=1 =

0.104 ± 0.010 fm−1 and C2
B; I=2 = 0.509 ± 0.050 fm−1,

which results in S
(I )
17 (0)/C2

B;I = 3.685 × 10−5 and 3.727 ×
10−5 MeV b fm obtained from (8) for I = 1 and 2, respectively.
From here and formulas (27) and (28) of Ref. [59], we
obtain a

(I )
0 ≈ 23.2 and 14.8 fm for the s-wave scattering

length for I = 1 and 2, respectively, as well as the slope of
S17(0) near E = 0 as s

(I )
1 = S17

(I )′(0)/S17
(I )(0) ≈ −2.2 and

−2.0 MeV−1 for I = 1 and 2, respectively. Using the values
found for the scattering lengths at I = 1 and 2 in the formulas
(29) and (30) of Ref. [59], we can obtain the values of the
average scattering length āo and then the value of the slope
s1 = S ′

17(0)/S17(0). They are equal to be āo ≈ 16.2 fm and
s1 ≈ −2.1 MeV−1. These results for s

(I )
1 and s1 are close

to those of s
(1)
1 = −1.65 MeV−1, s

(1)
1 = −1.77 MeV−1, and

s1 = −1.74 MeV−1, which can be obtained from the above-
mentioned polynomial approximation, as well as to those of
s1 = −1.86, −1.92, and −1.97 MeV−1 for the MN Volkov
(V2) potentials [65], respectively. The slope of S17(0) near E =
0 determined in the present work becomes slightly steeper than
that predicted in Refs. [59,65]. But, as is seen here, the s1 values

of Refs. [59,65] depend noticeably on the input potential. The
values of a

(I )
0 (I = 1 and 2) and āo obtained in the present work

differ significantly from those derived in Refs. [20,59,66]. We
note that the magnitudes of a

(I )
0 and āo defined from the corre-

sponding expressions of Ref. [59] are very sensitive to those
of the ratios S

(I )
17 (0)/C2

B; I and S17(0)/C2
B , where S17(0) =

∑
I=1,2 S

(I )
17 (0) = ∑

jB=1/2,3/2 S
(jB )
17 (0) and C2

B = ∑
I=1,2 C2

B; I .
The calculations showed that a small change of the ratios
results in considerable change for a

(I )
0 and āo. For example,

the values of a
(I )
0 = 25 and −8 fm at I = 1 and 2 as well

as of āo = −2.8 fm obtained in Ref. [20] give the values
of S

(I )
17 (0)/C2

B; I = 3.677 × 10−5 and 3.840 × 10−5 MeV b
fm for I = 1 and 2, respectively, and S17(0)/C2

B = 3.813 ×
10−5 MeV b fm. A similar situation occurs in the other
above-mentioned works.

It follows that one of the main reasons of the observed
discrepancy between the results of the present work and other
works for the s-wave p + 7Be scattering lengths and the slope
of S17(E) near E = 0 is the difference between the values of the
ANCs and S17(0) derived by other authors and those obtained
in the present work. From our point of view, our results for
the s-wave p + 7Be scattering lengths and the slope of S17(E)
near E = 0 are more reliable because they are derived with
the minimum ambiguity connected with the ANC and S17(0)
values.

IV. CONCLUSION

The scrupulous analysis of the 7Be(d,n)8B reaction data
at Ei = 4.5 and 5.8 MeV is performed within the modified
DWBA. It is demonstrated that the peripheral character
of this reaction in the main peak region of the angular
distributions occurs only for Ei = 4.5 MeV [23]. Therefore,
the experimental differential cross sections of the reaction
under consideration measured in Ref. [23] can be used as
a source of determination of the squared ANC values C2

B for
p + 7Be → 8B. A new value for the ANC was obtained, which
is in agreement with that recommended in Refs. [10,54] and
differs strongly from the value, which is deduced within the
modified DWBA in Ref. [16] from the analysis of the other
proton transfer reactions.

The value of the ANC from this work was used to estimate
the astrophysical S factor at E = 0 and the value of S17(0)
equal to 22.8 ± 2.2 eV b was obtained. Its averaged value is
in excellent agreement with that recommended in Ref. [10],
which nevertheless differs noticeably from that recommended
in Refs. [8,16,21,23,51,52,55] and obtained by other authors
from the data of the Coulomb breakup of 8B into the proton
and the 7Be nucleus in the field of different multi-charged ions.
Also, the new estimation is obtained for the s-wave scattering
length for the p + 7Be scattering and the slope of S17(0) near
E = 0.
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Data Tables 96, 824 (2010).

[52] F. C. Barker, Nucl. Phys. A 588, 693 (1995).
[53] L. Trache, F. Carstoiu, C. A. Gagliardi, and R. E. Tribble,

Phys. Rev. Lett. 87, 271102 (2001).
[54] T. L. Belyaeva, E. F. Aguilera, E. Martinez-Quiroz, A. M. Moro,

and J. J. Kolata, Phys. Rev. C 80, 064617 (2009).
[55] L. T. Baby, C. Bordeanu, G. Goldring et al., Phys. Rev. Lett. 90,

022501 (2003); Phys. Rev. C 67, 065805 (2003).
[56] F. C. Barker, Aust. J. Phys. 33, 177 (1980); Phys. Rev. C 28,

1407 (1983).
[57] E. O. Alt, B. F. Irgaziev, and A. M. Mukhamedzhanov, Phys.

Rev. Lett. 90, 122701 (2003).
[58] D. Baye and E. Brainis, Phys. Rev. C 61, 025801 (2000).
[59] D. Baye, Phys. Rev. C 62, 065803 (2000).
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