
PHYSICAL REVIEW C 94, 054614 (2016)

Dynamics of the tri-nuclear system at spontaneous fission of 252Cf
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To describe the dynamics of ternary fission of 252Cf an equation of motion of the tri-nuclear system was obtained
and it was solved numerically. The fission of the 70Ni +50Ca +132Sn channel was chosen as one of the more
probable channels of true ternary fission of 252Cf. The collinearity of ternary fission was checked by analyzing the
results of the equation of motion. The results show that if initially all nuclei are placed collinearly (potential energy
of this position is the smallest) and the component of the middle fragment’s initial velocity which is perpendicular
to this line is zero, then ternary fission is collinear, otherwise noncollinear ternary fission takes place.

DOI: 10.1103/PhysRevC.94.054614

I. INTRODUCTION

The interest to study ternary fission appeared [1] after
the discovery of binary fission of heavy nuclei by various
authors. Ternary fission is one of the oldest problems of the
nuclear reaction but still it has topicality. Diehl and Greiner
[2] tried to explain ternary fission within the framework of
the liquid drop model. They mainly calculated the potential
energy for the prolate and oblate configurations of the ternary
system. Also, within the three-center shell model, Degheidy
and Maruhn [3] generalized the phenomenological shell model
based on the harmonic oscillator potential to systems with
three clusters. They showed that the centers of nuclei may be
in arbitrary geometrical configurations and nuclei may have
different masses. The experimental work [4] was dedicated
to the study of ternary fission of the 252Cf nucleus with an
eight �E × E particle telescope. In this experiment, mainly,
light charged particles (like He, Be, B, etc.) were observed in
coincidence with γ emission.

The experimental group FOBOS (in the Flerov Laboratory
of Nuclear Reactions of the Joint Institute for Nuclear
Research, Dubna, Russia) made an effort to study the unusual
mode of ternary fission: collinear cluster tripartition [5–7].
Studies of the spontaneous fission products of 252Cf in
coincidence with the emitted neutrons have been performed
in two missing-mass experiments [5,7]. These experiments
demonstrated a new mode for the ternary fission process as
a collinear cluster tripartition (CCT). At first, in the CCT
mode, the masses of nuclei are comparable, and the nuclei
are especially in clusters, i.e., with a magic number of mass
(or charge). Next, the collinearity of the momenta of the ternary
fission fragments is proved by the fact that the two detectors
registering Sn-like and Ni-like fragments are placed on the
opposite sides from the fissioning source 252Cf such that the
angle between them is 180◦. The probability of the yield of Ni
and Sn nuclei observed was approximately 103 times less then
the one of binary fission. The authors of Refs. [8,9] concluded
that the middle fragment is a calcium nucleus. This mode of

*nasirov@jinr.ru

ternary fission differs from the usual ternary fission which is
binary fission with the emission of light fragments (He, Li, Be,
etc.) as the third (middle) nucleus in the perpendicular plane
to the fission axis.

Moreover some theoretical works dedicated to this kind
of ternary fission have been published [8–16]. In Ref. [12]
the ternary fission of 252Cf was studied through the potential
energy surfaces for two different arrangements in a collinear
configuration, and the authors concluded that true ternary
fission (with almost equal fragment mass) is energetically
possible due to the minima in the fragmentation potential
energy and high Q values. Also, in this method it is shown
that collinear geometry with the lightest fragment between
two heavier nuclei is expected to give the highest probabilities
in the decay.

In our previous works [9,15], we studied the possible
channels of true ternary fission. In Ref. [7] it was shown that
a more possible channel of ternary fission in the 252Cf(sf)
reaction is 70Ni +50Ca +132Sn which was theoretically proven
in Ref. [9]. Our experience from the previous works [9,16]
leads to the interesting question, how does a tri-nuclear system
evaluate during its decay? Because in those works it was not
proven that the momenta of fission products are collinear. In
the present work we decided to study the dynamical change
of the relative distance between nuclei and their velocities.
So, the main aim of the current work is to study the dynamics
of fission of the 70Ni +50Ca +132Sn system; in other words, to
check whether ternary fission is collinear.

Certainly, to get information about dynamics, an equation
of motion should be solved. Results of solution of the equation
of motion depend on the initial conditions. The dependance
of the result on the initial condition is studied in detail to find
the collinear flying of the ternary fission products. Thus from
results it will be easy to know what initial condition leads to
collinear fission.

II. MODEL

The theoretical model is based on the formation of the
tri-nuclear system (TNS). The TNS is a system that has three
interacting nuclei [9,16], and its interaction is studied on
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FIG. 1. Point (Rk) and relative (Rij ) vectors of the tri-nuclear
system. The point O (origin) corresponds to the center of mass.

the basis of the dinuclear system model [17–19]. The stage
proceeding to formation of the TNS is not studied. It is assumed
that the system is formed, and any ternary fission of heavy
nuclei passes through the TNS stage.

The main task is obtaining the classical Lagrange equations
of motion, and solving them. First of all, the Lagrangian is
L = T − V , where T = 1

2

∑3
i=1 miṘ

2
i is the kinetic energy

of the system and V is the total interaction potential between
fragments. The following system of equations can be written
from Fig. 1:

R12 = R1 − R2,

R13 = R3 − R1, (1)

R23 = R3 − R2,

where Rk (k = 1,2,3) are point vectors of nuclei and the
magnitude of a vector Rij is the relative distance between
the ith and j th nuclei.

It is clear that any kind of fission process occurs in one
plane, i.e., it can be chosen to be the two-dimensional space
where fission fragments move. So any Ri vector can be
described only with x and y components (Rix and Riy) in
the Cartesian system. Correspondingly, velocities are defined
as υix = Ṙix and υiy = Ṙiy , therefore, the kinetic energy can
be written as

T = 1

2

3∑
i=1

mi

(
υ2

ix + υ2
iy

)
. (2)

A. Lagrange equation of motion

In the framework of the classical Lagrange formalism, three
equations of motion for the x variable and three for the y
variable can be obtained:

d

dt

∂T

∂υix

− ∂T

∂Rix

= − ∂V

∂Rix

,

d

dt

∂T

∂υiy

− ∂T

∂Riy

= − ∂V

∂Riy

.

It is clear that the kinetic energy does not depend on a
distance Ri , i.e., ∂T

∂Rix
= ∂T

∂Riy
= 0. Therefore,

miυ̇ix = − ∂V

∂Rix

, (3)

miυ̇iy = − ∂V

∂Riy

. (4)

The magnitude of an Rij vector is Rij =
√

R2
ijx + R2

ijy .

Potential energy V depends only on relative distance Rij (or
Rik). So

∂V

∂Rix

= ∂V

∂Rijx

∂Rijx

∂Rix

+ ∂V

∂Rikx

∂Rikx

∂Rix

= ∂V

∂Rij

∂Rij

∂Rijx

∂Rijx

∂Rix

+ ∂V

∂Rik

∂Rik

∂Rikx

∂Rikx

∂Rix

. (5)

It can be noted that Rij = Rji and Rik = Rki . If Eq. (3) is
written for each nucleus, then using Eq. (5) the following
equations will be obtained:

m1υ̇1x = −R12x

R12

∂V

∂R12
+ R13x

R13

∂V

∂R13
,

m2υ̇2x = R12x

R12

∂V

∂R12
+ R23x

R23

∂V

∂R23
,

m3υ̇3x = −R23x

R23

∂V

∂R23
− R13x

R13

∂V

∂R13
. (6)

The relation between Ri (or Rix) and Rij (or Rijx) is found
from the system of equations (1). Three symmetric equations
can be obtained for the y component:

m1υ̇1y = −R12y

R12

∂V

∂R12
+ R13y

R13

∂V

∂R13
,

m2υ̇2y = R12y

R12

∂V

∂R12
+ R23y

R23

∂V

∂R23
,

m3υ̇3y = −R23y

R23

∂V

∂R23
− R13y

R13

∂V

∂R13
. (7)

Taking into account the conservation law of linear mo-
mentum

∑3
i=1 miυix = 0 (since Pc.m. = 0 for the spontaneous

fission of 252Cf) one of the equations in formulas (6) and (7)
can be skipped. It means that υ3x and R3x are found as

υ3x = −m1υ1x + m2υ2x

m3
,

R3x = −m1R1x + m2R2x

m3
. (8)

Because the origin is placed at the center of mass, there is
no “const” term in the definition of R3x . Equations for the y
components are similar to the last equation.

B. Derivative of total interaction potential

It is clear from the Eqs. (6)–(8) that the dynamics of motion
strongly depends on the derivative of the total interaction
potential. The total interaction potential consists of two parts:
Coulomb and nuclear

V = VC + Vnuc. (9)
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There are three interacting nuclei, so there are three terms on
each part. To calculate the nuclear part, the double folding
procedure is used:

VC(R12,R23,R13) = e2
3∑

i<j

ZiZj

Rij

, (10)

Vnuc(R12,R23,R13) =
∫ 3∑

i<j

ρi(ri)fij (ri,rj )ρj (rj ) dr. (11)

The following formulas are necessary to calculate the nuclear
part:

fij (ri,rj ) = C

[
fin + (fex − fin)

ρ0 − (ρi + ρj )

ρ0

]
,

ρi(ri) = ρ0

1 + exp
[

ri−R0i

a

] ,

r1(R12) =
√

r2 + R2
12 − 2rR12 cos θ,

r2 = r,

r3(R12,R23,R13) =
√

r2 + R2
23 − 2rR23 cos α,

cos α = cos θ cos β + sin θ sin β sin φ,

cos β = R2
12 + R2

23 − R2
13

2R12R23
.

Here, ri is the radial distance of the ith nucleus (see Fig. 1);
r , θ , and φ are variables of the spherical coordinate system;
R0i = r0A

1/3 is the radius of the ith spherical nucleus;
r0 = 1.16 fm is the radius parameter; ρ0 = 0.17 fm−3

is the density parameter; a = 0.54 fm is the diffuseness
parameter; C = 300 MeV fm3, fin = 0.09, and fex = −2.59
are constants of the interaction potential; and fij is the
effective nuclear-nuclear force, which is taken from Ref. [20].

By formula (9) the derivative of the total interaction
potential is found with the two terms

∂V

∂Rij

= −e2 ZiZj

R2
ij

+ ∂Vnuc

∂Rij

,

∂Vnuc

∂Rij

=
∫

(F12 + F23 + F13)dr,

F12 = ρ2

[
f12 − ρ1

ρ0
C(fex − fin)

]
∂ρ1

∂Rij

,

F23 = ρ2

[
f23 − ρ3

ρ0
C(fex − fin)

]
∂ρ3

∂Rij

,

F13 = ρ3

[
f13 − ρ1

ρ0
C(fex − fin)

]
∂ρ1

∂Rij

+ ρ1

[
f13 − ρ3

ρ0
C(fex − fin)

]
∂ρ3

∂Rij

,

∂ρ1

∂Rij

= ρ1(ρ1 − ρ0)

aρ0

∂r1

∂Rij

,

∂ρ3

∂Rij

= ρ3(ρ3 − ρ0)

aρ0

∂r3

∂Rij

.

Derivatives ∂r1
∂Rij

and ∂r3
∂Rij

are calculated as follows:

∂r1

∂R12
= R12 − r cos θ

r1
,

∂r1

∂R23
= ∂r1

∂R13
= 0,

∂r3

∂R12
= (R23 cos β − R12)h(r),

∂r3

∂R23
= R23 − r cos α

r3
− (R23 − R12 cos β)h(r),

∂r3

∂R13
= R13h(r),

where h(r) = r

R12r3
(cos θ − cot β sin θ sin φ). Be reminded

that the integration (11) is provided in the (x ′,y ′,z′) system,
and if φ = π/2 then θ = α + β (see Fig. 1).

III. RESULTS OF CALCULATION

As mentioned above the channel for spontaneous ternary
fission of the 252Cf nucleus is chosen as 70Ni +50Ca +132Sn.
70Ni is the first nucleus (placed left side), 132Sn is the second
nucleus (placed right side), and 50Ca is the third one (placed
in the middle) in Fig. 1. The collinearity of the momenta of
the tripartition is determined by the dynamics of the middle
fragment 50Ca since the heavier fragment 132Sn is separated

FIG. 2. Total interaction potential as the function of R3x and R3y

when R12 = 20 fm.
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FIG. 3. Contour plot of Fig. 2.

first and then the middle fragment separates from 70Ni. This
sequence of ternary fission was discussed in the Ref. [9] and
it is confirmed by the solution of dynamical equations in this
work.

It is interesting to discuss how the total interaction potential
looks as a function of R3x and R3y . It is shown in Figs. 2–7
for different values of R12 (relative distance between Ni and
Sn nuclei). The origin (which is not shown) corresponds to the
center of mass. There is a local minimum at point R3x = −2.9
fm and R3y = 0 fm (see Figs. 2 and 4). By increasing R12 the
minimum goes to the left (to the side of the Ni nucleus), but
starting from R12 = 22 fm this minimum point is transferred
to a saddle point.

In the first case it is considered that initially all nuclei are
placed in one line, which means R1y(t = 0) = R2y(t = 0) =

FIG. 4. Same as Fig. 2, but for R12 = 21 fm.

FIG. 5. Same as Fig. 3, but for R12 = 21 fm.

R3y(t = 0) = 0, since the energy of the collinear configuration
in the prescission state is the smallest, and x coordinates of that
nuclei (or relative distance between nuclei) correspond to the
local minimum in Fig. 2, i.e., R1x(t = 0) = −12.3 fm, R2x(t =
0) = 7.7 fm, and R3x(t = 0) = −2.9 fm. Both components (x
and y) of initial velocities of the three nuclei are zero. In
other words, formation of fragments of the TNS is so slow that
fragments have zero (or too small) velocities. Nevertheless, the
assumption that all initial velocities are zero means that there
is no net force which acts on the nuclei in the equilibrium
state. Results of calculation of the equations of motion (6)
and (7) [together with Eq. (8)] with the initial conditions
mentioned above are shown in Fig. 8. It is shown that from the
beginning, the Sn nucleus is going to break up from the Ni+Ca
system, and then at t ≈ 13.5 × 10−22 s the Ni+Ca system has
decayed. Moreover an important result has been obtained that
the third nucleus (Ca) almost does not change its coordinate,
because its velocity is about zero. It means that detecting the
middle nucleus (Ca) is almost impossible in an experiment.
This conclusion proves the assumption made in our previous

FIG. 6. Same as Fig. 3 but for R12 = 22 fm.
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FIG. 7. Same as Fig. 3 but for R12 = 34 fm.

paper [9]. Only this condition leads to collinear fission of the
tri-nuclear system.

In the second case, the velocities of all nuclei are zero,
but the middle nucleus (Ca) is placed a little bit upper, i.e.,
R3y(t = 0) = 0.5 fm, R1x(t = 0) = −12.3 fm, R2x(t = 0) =
7.7 fm, R3x(t = 0) = −2.9 fm, and and R1y(t = 0) = R2y(t =
0) = 0. Results of the calculation are shown in Fig. 9. It is
clear from the figure that the deviation of the location of the
calcium nucleus at 0.5 fm on the y axis from the origin is
enough to get noncollinear fission. Moreover, the sequence of
the noncollinear fission is similar to the one of the collinear
fission: at first Sn is separated from Ni+Ca, then the Ni+Ca
system is broken up. It is interesting that the decay time of the
tri-nuclear system is t ≈ 13.2 × 10−22 s, which is almost the
same as the time of collinear ternary fission.

FIG. 8. x component of coordinates (upper) and velocities
(lower) of three nuclei as functions of time.

FIG. 9. Trajectories of three decaying nuclei when R3y(t = 0) =
0.5 fm and the same initial velocities as in Fig. 8.

In the third case, the initial location of all the nuclei
are the same as in the first case, i.e., R1y(t = 0) = R2y(t =
0) = R3y(t = 0) = 0, R1x(t = 0) = −12.3 fm, R2x(t = 0) =
7.7 fm, and R3x(t = 0) = −2.9 fm. But the initial velocity of
the middle fragment is v3y(t = 0) = 0.1 cm/ns, and the other
initial velocities are zero: v1x(t = 0) = v2x(t = 0) = v3x(t =
0) = v1y(t = 0) = v2y(t = 0) = 0. Figure 10 shows that if the
y component of the initial velocity of the Ca nucleus is not zero,
ternary fission will be noncollinear. Also, it should be noted
that in this case the decay time of the TNS is t ≈ 13.4 × 10−22

s, which is almost the same as the time in the previous cases.
Comparing Figs. 9 and 10, we see that the final paths of all
the fragments are similar in spite of differences in the initial
conditions of the second and third cases.

From the figures it can be concluded that there is collinear
fission only when all three nuclei are located in one line (Riy =
0) and there is not a y component of the initial velocity of the
middle fragment (v3y = 0).

FIG. 10. Trajectories of three decaying nuclei when v3y(t = 0) =
0.1 cm/ns and the same initial coordinates as in Fig. 8.
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IV. SUMMARY

We conclude that if in the prescission stage all nuclei
are placed collinearly which corresponds to the minimum
in the potential energy surface and there is no the net force
on the third nucleus (Ca) on the y axis (or y component if
its initial velocity is zero), then the tri-nuclear system can
be broken up collinearly. This theoretical result proves the
experimental results of the collinear cluster tripartition in
Ref. [7]. The experiment shows that collinear ternary fission
can be observed. Therefore, in the framework of the TNS
model the initial condition which leads to collinear fission has
a place in nature.

From the comparison of the potential energy surfaces in
the Figs. 2–7 it can be concluded that as R12 (relative distance
between Ni and Sn nuclei) increases, the minimum at the point
when R3x = −2.9 fm and R3y = 0 fm in Fig. 2 disappears, and
instead of this minimum the saddle point emerges (see Fig. 7).
It means the TNS with a value of R12 higher then 22 fm is an
unstable system.

Moreover, from Figs. 9 and 10 it can be concluded that
noncollinear ternary fission occurs in the following initial
conditions: the deviation in y axis of location from the origin

of the middle (Ca) nucleus or the difference from zero of the
y component of the velocity of that nucleus.

Nevertheless, it is interesting that in all cases the decay
time of the TNS has nearly the same value. It means that time
does not depend on the initial conditions. This is because of
the sequence of the fission: first, the Sn nucleus is separated
from the Ni+Ca system, and then Ni is decayed from the Ca
nucleus.

Because the collinearity of the ternary fission depends on
initial conditions, the probability (or weight) of each initial
condition’s population is an open question which will be
studied in future investigations.
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