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Phase transition in hot � hypernuclei within the relativistic Thomas-Fermi approximation
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A self-consistent description for hot � hypernuclei in hypothetical big boxes is developed within the relativistic
Thomas-Fermi approximation in order to investigate directly the liquid-gas phase coexistence in strangeness finite
nuclear systems. We use the relativistic mean-field model for nuclear interactions. The temperature dependence of
� hyperon density, � hyperon radius, excitation energies, specific heat, and the binding energies of � hypernuclei
from 16

� O to 208
� Pb in phase transition region are calculated by using the subtraction procedure in order to separate

the hypernucleus from the surrounding baryon gas. The � central density is very sensitive to the temperature.
The radii of � hyperon at high temperature become very large. In the relativistic Thomas-Fermi approximation
with the subtraction procedure, the properties of hypernuclei are independent of the size of the box in which
the calculation is performed. The level density parameters of hypernuclei in the present work are confirmed to
be almost constant at low temperature. It is also found that the single-� binding energies of � hypernuclei are
largely reduced with increasing temperature.
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I. INTRODUCTION

Theoretical studies of hypernuclei are continuously boosted
by new and upgraded experimental facilities [1–8]. It is gener-
ally believed that from them one could derive various features
of the underlying hyperon interactions [9–16]. They are also
related to the dense stellar matter studies [17,18], as an alter-
native way of obtaining the matter apart from astrophysical
observations and/or quite developed many-body schemes for
infinite strongly interacting systems, for example, the widely
used microscopic Brueckner-Hartree-Fock (BHF) theory
[19].

Lattice QCD calculation should be an ideal tool for
investigating hypernucleus structure since it retains all the
fundamental characters of QCD theory. Indeed, the first
calculation of hypernuclei with baryon number A > 2 has
been performed recently, for 4

�He and 4
��He [20]. However, a

detailed and precise structure description is still beyond its
reach. Few-body calculations in the cluster or shell-model
approach are awaited for not-so-light hypernuclei (A > 10).
Significant progress in the auxiliary field diffusion Monte
Carlo method [21] has been achieved in the calculation
of closed shell � hypernuclei from A = 5 to 91. For a
more feasible way of the systematic study of both light and
heavy hypernuclei, effective models are generally employed.
Among them, many models are for single-� hypernuclei, for
example, the quark mean-field model [22], the relativistic
mean-field (RMF) approach [23,24], the Skyrme-Hartree-
Fock model [16,25,26], the quark-meson coupling model [27],
a relativistic point-coupling model [28], the quark mass
density-dependent model [29], and the density-dependent
RMF theory from relativistic BHF theory [30].

The experiments, (π,K), (e,e′K), and (γ,K), are the
most popular reactions used to produce hypernuclei [31].

*hujinniu@nankai.edu.cn

Recently, the heavy ion collision was suggested as one way to
generate hypernuclei [32,33], such as the high energy Au+Au
collision [34], which can be considered as a liquid-gas phase
transition in hypermatter. The lifetime of hypernuclei in
such reactions are usually very short and the production of
hypernuclei should be strongly dependent on the temperature.
Therefore, it is very interesting to investigate the properties
of hot hypernuclei in the liquid-gas coexistence region. The
matter generated from the collision of relativistic heavy ions
has some probabilities to break up as the nuclear-fragment
and hyperfragment production, which can be described by the
statistical multifragmentation model [35]. This model was also
extended to the study of hypernuclei produced in heavy ion
collisions [36,37].

Accordingly, we want to investigate the hot hypernuclei
from the aspect of the liquid-gas phase coexistence in this
work. Since the hot hypernucleus formed in nucleus-nucleus
collisions is thermodynamically unstable against the emission
of baryons, an external pressure has to be exerted on the hyper-
nucleus to compensate for the tendency of baryon emission.
This pressure is assumed to be exerted by a surrounding gas
representing evaporated baryons, which is in equilibrium with
the hot hypernucleus.

In order to separate the nucleus from the surrounding gas, a
subtraction procedure was first proposed in the Hartree-Fock
framework [38] for a normal nucleus, and then used in the
Thomas-Fermi approach [39]. The subtraction procedure is
based on the existence of two solutions to the equations of
motion of nucleons. One solution corresponds to the nucleon
gas alone (G), and the other to the nuclear liquid phase
in equilibrium with the surrounding gas (NG). The density
profile of the nucleus (L) is then given by subtracting the
gas density from that of the liquid-plus-gas phase. Finally,
the physical quantities of the isolated nucleus obtained using
such subtraction procedure could be independent of the size
of the box in which the calculation is performed. In the past
decades, this subtraction procedure has been widely applied in
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the nonrelativistic Thomas-Fermi approximation with Skyrme
force [40–45].

The relativistic Thomas-Fermi approximation with RMF
Lagrangian has been developed and applied to study var-
ious subjects at the subnuclear densities, such as, droplet
formation [46,47] and nuclear pasta phases [48–50]. This
method is considered to be self-consistent in the treatment
of surface effects and nucleon distributions. The relativistic
Thomas-Fermi approximation was also adopted to describe
finite nuclei [51,52] and nonuniform nuclear matter for super-
nova simulations [53]. In Refs. [51,52], the thermodynamic
properties of finite nuclei were calculated within the relativistic
Thomas-Fermi approximation, and the results obtained were
found to depend on the input freeze-out volume, which was
actually the size of the box for performing the calculation.
Recently, we developed a relativistic Thomas-Fermi model
for the description of hot nuclei by employing the subtraction
procedure, and investigated the temperature dependence of
the symmetry energy of finite nuclei [54]. Actually, the results
obtained from the subtraction procedure are independent of
the size of the box.

In this work, we would like to extend the relativistic
Thomas-Fermi model with the subtraction procedure to
describe the hot � hypernuclei, which are most known
in experiments and theoretical calculations among various
hypernuclei. For the nuclear interaction and �N interaction,
we adopt the RMF model, which has been successfully used
to study various phenomena in nuclear physics [55–57]. The
thermodynamic properties of hot � hypernuclei, such as
excitation energies, specific heat, and level density parameters
of hypernuclei will be investigated.

In Sec. II, we briefly derive the relativistic Thomas-
Fermi approximation using the subtraction procedure for the
description of hot � hypernuclei. In Sec. III, the numerical
results are shown for the properties of � hypernuclei from 16

� O
to 208

� Pb at finite temperature. A summary is given in Sec. IV.

II. RELATIVISTIC THOMAS-FERMI APPROXIMATION
FOR HOT � HYPERNUCLEI

In the RMF model, the baryons (nucleons and hyperons)
interact through the exchange of various mesons. The mesons
considered are the isoscalar-scalar and vector mesons (σ and
ω) and isovector-vector meson (ρ). The baryon Lagrangian
density reads

LRMF =
∑
i=p,n

ψ̄i

[
iγμ∂μ − Mi − gσNσ − gωNγμωμ

− gρN

2
γμτaρ

aμ − eγμ

(1 − τ3)

2
Aμ

]
ψi

+ψ̄�(iγμ∂μ − M� − gσ�σ − gω�γμωμ)ψ�

+1

2
∂μσ∂μσ − 1

2
m2

σ σ 2 − 1

3
g2σ

3 − 1

4
g3σ

4

−1

4
WμνW

μν + 1

2
m2

ωωμωμ + 1

4
c3(ωμωμ)2

−1

4
Ra

μνR
aμν + 1

2
m2

ρρ
a
μρaμ, (1)

where Wμν and Raμν are the antisymmetric field tensors for
ωμ and ρaμ, respectively. gσN,gωN , and gρN are the coupling
constants between σ,ω,ρ, and nucleon, respectively, while gσ�

and gω� are the coupling constants between the σ,ω, and �
hyperon. Here, the tensor coupling between ω and � hyperon is
not taken into account, which just generates the large spin-orbit
splitting of the � hyperon. However, in the Thomas-Fermi
approximation, the single particle level at different spin
states cannot be obtained. Furthermore, such tensor coupling
does not change the total energy of � hypernuclei very
much. Therefore, we ignore this tensor coupling term in
the present work. The electromagnetic coupling constant is
e = √

4π/137. In the RMF approach, meson fields are treated
as classical fields and the field operators are replaced by
their expectation values. For a static system, the nonvanishing
expectation values are σ = 〈σ 〉, ω = 〈ω0〉, and ρ = 〈ρ30〉,
where “0” represents the time component in Dirac space and
“3” represents the third component in isospin space for ρ
meson.

Using the relativistic Thomas-Fermi approximation with
the subtraction procedure [38,39], we study a hot � hyper-
nucleus based on the thermodynamic potential of the isolated
hypernucleus, which is defined by

� = �NG − �G + EC, (2)

where �NG and �G are the baryon thermodynamic potentials
in the liquid phase with the surrounding gas (NG) and the gas
phase alone (G), respectively. We employ the RMF Lagrangian
to obtain the thermodynamic potential �a (a = NG or G),
which can be given as

�a = Ea − T Sa −
∑

i=p,n,�

μiN
a
i . (3)

Here, the energy Ea , entropy Sa , and particle number Na
i in

the phase a are obtained by

Ea =
∫

εa(r)d3r,

Sa =
∫

sa(r)d3r,

Na
i =

∫
na

i (r)d3r, (4)

where εa(r), sa(r), and na
i (r) are the local energy density,

entropy density, and particle number density defined in the
RMF model. The local energy density derived from the
Lagrangian density (1) without Coulomb force is written as

ε(r) =
∑

i=p,n,�

1

π2

∫ ∞

0
dk k2

√
k2 + M∗

i
2(f k

i+ + f k
i−

)

+1

2
(∇σ )2 + 1

2
m2

σ σ 2 + 1

3
g2σ

3 + 1

4
g3σ

4

−1

2
(∇ω)2 − 1

2
m2

ωω2 − 1

4
c3ω

4 + gωNω(np + nn)

+gω�ωn� − 1

2
(∇ρ)2 − 1

2
m2

ρNρ2 + gρ

2
ρ(np − nn),

(5)
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where M∗
i = Mi + gσiσ is the effective baryon mass, and ni is

the number density of species i (i = p,n, or �). The entropy
density is given by

s(r) =
∑

i=p,n,�

1

π2

∫ ∞

0
dk k2

[ − f k
i+ ln f k

i+ − (
1 − f k

i+
)

× ln
(
1−f k

i+
) − f k

i− ln f k
i−−(

1−f k
i−

)
ln

(
1 − f k

i−
)]

.

(6)

Here, f k
i+ and f k

i− are the occupation probabilities of the
particle and antiparticle at momentum k, respectively. Their
detailed form will be determined by a variational principle
self-consistently later. The number density of proton (i = p),
neutron (i = n), or � hyperon (i = �) at position r is given by

ni(r) = 1

π2

∫ ∞

0
dk k2

(
f k

i+ − f k
i−

)
. (7)

The Coulomb energy is calculated from the subtracted proton
density as

EC =
∫ [

e
(
nNG

p − nG
p

)
A0 − 1

2
(∇A0)2

]
d3r, (8)

where A0 is the electrostatic potential.
The equilibrium state of the isolated hypernucleus can be

obtained by minimization of the thermodynamic potential �
defined in Eq. (2). The meson mean fields in the NG phase
satisfy the variational equation

δ�

δφNG
= 0, φNG = σNG, ωNG, ρNG, (9)

which leads to the following equations of motion for meson
mean fields in the NG phase:

−∇2σNG + m2
σ σNG + g2(σNG)2 + g3(σNG)3

= −gσN

(
nNG

s,p + nNG
s,n

) − gσ�nNG
s,� ,

−∇2ωNG + m2
ωωNG + c3(ωNG)3

= gωN

(
nNG

p + nNG
n

) + gω�nNG
� ,

−∇2ρNG + m2
ρρ

NG = gρN

2

(
nNG

p − nNG
n

)
. (10)

The occupation probability f
k,NG
i+ (f k,NG

i− ) of species i (i =
p,n, or �) can be derived from the variational equation,

δ�

δf
k,NG
i±

= 0, (11)

which results in the Fermi-Dirac distribution of particle and
antiparticle for proton or neutron as

f
k,NG
i± =

{
1 + exp

[(√
k2 + (M∗,NG

i )2 + gωNωNG

+gρN

2
τ3ρ

NG + e
τ3 + 1

2
A0 ∓ μi

)/
T

]}−1

, (12)

and the one for � hyperon

f
k,NG
�± = {

1 + exp
[(√

k2 + (
M

∗,NG
�

)2

+gω�ωNG ∓ μ�

)/
T

]}−1
. (13)

Similarly, we obtain the equations of motion for meson mean
fields in the G phase,

−∇2σG + m2
σ σG + g2(σG)2 + g3(σG)3

= −gσN

(
nG

s,p + nG
s,n

) − gσ�nG
s,�,

−∇2ωG + m2
ωωG + c3(ωG)3

= gωN

(
nG

p + nG
n

) + gω�nG
�,

−∇2ρG + m2
ρρ

G = gρN

2

(
nG

p − nG
n

)
, (14)

and the occupation probability in the G phase for proton or
neutron,

f
k,G
i± =

{
1 + exp

[(√
k2 + (

M
∗,G
i

)2 + gωNωG

+gρN

2
τ3ρ

G + e
τ3 + 1

2
A0 ∓ μi

)/
T

]}−1

, (15)

and the one for � hyperon,

f
k,G
�± = {

1 + exp
[(√

k2 + (
M

∗,G
�

)2

+gω�ωG ∓ μ�

)/
T

]}−1
. (16)

In the equations for meson mean fields, na
s,i and na

i denote,
respectively, the scalar and number densities of species i (i =
p,n, or �) in the a (a = NG or G) phase [54]. By minimizing
� with respect to the electrostatic potential A0, we obtain the
Poisson equation for A0 as

− ∇2A0 = e
(
nNG

p − nG
p

)
. (17)

The inclusion of the Coulomb energy in � leads to a coupling
between the two sets of equations for the NG and G phases.
Therefore, the coupled equations (10), (14), and (17) should
be solved simultaneously at given temperature T and chemical
potentials μp,μn, and μ�.

For a hypernucleus with Np protons, Nn neutrons, and
N� hyperons at temperature T , the proton, neutron, and �
hyperon chemical potentials μp , μn, and μ� can be determined
from given Np, Nn, and N�. Once the chemical potentials are
known, the occupation probabilities and density distributions
can be obtained easily. In practice, we solve self-consistently
the coupled equations (10), (14), and (17) under the constraints
of given Np,Nn, and N�. After getting the solutions for the
NG and G phases, we can extract the properties of the hot
hypernucleus based on the subtraction procedure. The proton,
neutron, and � hyperon numbers, Np,Nn, and N�, are given
by

Ni = NNG
i − NG

i =
∫

ni(r)d3r, i = p, n,�, (18)

where ni(r) = nNG
i (r) − nG

i (r) is the local density of the iso-
lated hypernucleus, which decreases to zero at large distances.
Therefore, physical quantities of the isolated hypernucleus
could be independent of the size of the box in which the
calculation is done. The total energy including Coulomb
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contributions for the hot hypernucleus is given by

E = ENG − EG + EC, (19)

where ENG and EG are the baryon energies without Coulomb
interaction in the NG and G phases, which are calculated
from Eq. (4). The Coulomb energy EC is given by Eq. (8).
The entropy and other extensive quantities of the isolated
hypernucleus can be calculated by subtracting the contribution
of the G phase from the one of the NG phase.

The excitation energy of hot hypernuclei is a very important
thermodynamic quantity. For a hypernucleus at temperature T ,
its excitation energy is defined as

E∗(T ) = E(T ) − E(T = 0). (20)

The center-of-mass correction of the � hypernucleus is
taken into account by a conventional phenomenological
way [24],

Ec.m. = −3

4
× 41(Nn + Np + N�)−1/3 MeV. (21)

III. RESULTS AND DISCUSSIONS

The properties of hot � hypernuclei are investigated within the
relativistic Thomas-Fermi approximation using the subtraction
procedure in this section. For the nuclear interaction, we adopt
the RMF model with TM1 parametrization [58], which was
determined by the ground-state properties of finite nuclei and
properties of nuclear matter from relativistic BHF theory. It
was successfully applied to calculate the equation of state for
supernova simulations and characters of neutron stars [59,60].
As for the meson-� hyperon couplings, it is well known that
the properties of � hypernuclei are very sensitive to the ratios
of the meson-� hyperon couplings to the meson-nucleon
couplings Rσ = gσ�/gσN and Rω = gω�/gωN . We take the
relative ω coupling as Rω = 2/3 from the naive quark counting
and the relative σ coupling as Rσ = 0.621 given in Ref. [23].
With this choice, the experimental � binding energies of
single-� hypernuclei can be reproduced very well in the RMF
model [23].

The coupled equations (10), (14), and (17) are solved
self-consistently with given baryon numbers of � hypernuclei,
Nn,Np, and N� from Eq. (18) in a spherical box with
radius R. In this section, we take two single-� hypernuclei,
40
� Ca and 208

� Pb, as numerical examples to investigate the
properties of hot hypernuclei within relativistic Thomas-Fermi
approximation. In the subtraction procedure, the properties of
hot hypernuclei should be independent of the size of the box,
when the box radius R is generally taken to be sufficiently
large. In Fig. 1, the density distributions of the � hyperon
from 208

� Pb for G and NG phases at T = 8 MeV with different
box sizes, R = 16,18, and 20 fm are shown in order to check if
the results depend on the size of the box. At the central region
of the hypernucleus, these distributions are identical, while
they have different behaviors approaching the box boundary.
However, the behaviors of the G phase at boundary are in
accordance with the one of the NG phase, which will generate
their subtraction, i.e., the densities of the L phase, to be
independent of the size of the box.

FIG. 1. The density distributions of the � hyperon for 208
� Pb at

T = 8 MeV obtained with different box sizes R = 16,18, and 20 fm.
The density distributions from the gas phase (G) and the liquid-plus-
gas phase (NG) are shown in the top and bottom panels, respectively.

In Figs. 2 and 3, the density distributions of � hyperon,
neutron, and proton for 40

� Ca and 208
� Pb at T = 0,4, and

8 MeV from left panels to right panels are presented, which are
obtained with the box radius, R = 20 fm. From top to bottom,
the results of the liquid-plus-gas phase (NG), gas phase (G),
and subtracted liquid phase (L) are displayed, respectively.

FIG. 2. The density distributions of � hyperon (left panels),
neutron (middle panels), and proton (right panels) for 40

� Ca at
T = 0,4, and 8 MeV obtained using the TM1 parametrization. The
density distributions from liquid-plus-gas (NG), gas phase (G), and
subtracted liquid phase (L) are shown in the top, middle, and bottom
panels, respectively.
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FIG. 3. Same quantities as Fig. 2, but for 208
� Pb.

The � hyperon density distributions are multiplied by 10 and
20 in 40

� Ca and 208
� Pb, respectively, to adopt the same scales

of neutron and proton in these two figures. First, we can see
that subtracted � densities in the isolated hypernucleus (L)
vanish at large distances. Therefore, the physical quantities
of the hypernucleus will be independent of the size of the
box. The � densities of the G phase are found to be exactly
zero at zero temperature, while these densities are finite but
very small at low temperature (T = 4 MeV). As temperature
increases, the � hyperon densities of the G phase increase
obviously. On the other hand, the � densities at the center of
the hypernucleus are reduced largely and the nuclear surface
becomes more diffuse with increasing T as shown in the top
and bottom panels. The � hyperon density in the center region
at T = 8 MeV is just about 30% of the value at T = 0 MeV.
It is easier to be influenced by the temperature for a single-�
hyperon compared with a large nucleus composed of many
protons and neutrons whose center densities are less sensitive
to the temperature as shown in Figs. 1 and 2 in Ref. [54].
Moreover, the � density at the center of 40

� Ca is about 5 times
of the one of 208

� Pb. This is because the � density in a single-�
hypernucleus is inversely proportional to the baryon number,
n� ∝ 1

A
, if we consider the hypernucleus as a liquid drop. For

the neutron and proton densities in 40
� Ca and 208

� Pb, they were
almost not changed by the � hyperon compared with the ones
of 39Ca and 207Pb without the � hyperon as shown in Ref. [54].
This is because that the magnitude of single � hyperon density
is very small, just 5%∼10% of nucleons. It will not change the
solutions of Eqs. (10) and (14) so much in the cases of nuclei
with and without the � hyperon.

In Fig. 4, we display the root-mean-square (rms) radii
of neutrons, protons, and � hyperon, Rn,Rp, and R�, as a
function of the temperature T for 40

� Ca (left panel) and 208
� Pb

FIG. 4. The rms radii of neutrons, protons, and � hyperon as a
function of temperature T for 40

� Ca and 208
� Pb.

(right panel), which are defined as

Ri =
√∫

d3rr2ni(r)∫
d3rni(r)

, i = n,p,�. (22)

It is shown that Rn and Rp slowly increase with temperature
due to the diffusion of nuclear densities at high temperature.
However, the radii of the � hyperon at low temperature are
much smaller than the ones of neutrons and protons, while
they are very close at high temperature. This is because the �
density distribution becomes more diffuse at high temperature
and is more easily influenced by temperature as discussed
above.

The scalar and vector potentials of the � hyperon in 40
� Ca

and 208
� Pb at T = 0,4, and 8 MeV are shown in Fig. 5, which

are defined as U�
S = gσ�σ and U�

V = gω�ω. The magnitudes
of the scalar and vector potentials reduce with temperature
significantly. Especially, at higher temperature, this tendency
becomes more obvious. These potentials in the center regions
of hypernuclei at T = 8 MeV are reduced by 20% compared

FIG. 5. The scalar and vector �N potentials as a function of
hypernuclei radius at T = 0,4, and 8 MeV. The results of 40

� Ca and
208
� Pb are shown in the left and right panels, respectively.
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FIG. 6. The caloric curves, i.e., the temperature T as functions
of the excitation energy per particle E∗/A for 40Ca, 40

� Ca, 208Pb, and
208
� Pb.

to the cases at T = 0 MeV. The attractive scalar potential is
slightly larger than the repulsive vector potential, and their
differences at the center of hypernuclei are about 15–25 MeV,
which result in the bound states of � hypernuclei.

The excitation energies of hot � hypernuclei can be
calculated from Eq. (20). The temperature T as functions of the
excitation energy per particle E∗/A (caloric curve) are plotted
in Fig. 6 for 40Ca, 40

� Ca, 208Pb, and 208
� Pb. We can see that E∗/A

increases slowly at low temperature, while it rises more rapidly
as T increases. The excitation energy of � hypernuclei is larger
than the one of normal nuclei with the same baryon number.
This is mainly because the single-� hyperon is more easily
excited than a nucleon which has more correlation with other
nucleons considering a nucleus as a collective mode. By the
same reason, the excitation energy of heavy nuclei is smaller
than that of light nuclei at same temperature. We also find that
there exists a limiting temperature Tlim for a hot hypernucleus,
which is strongly dependent on the interaction and the size of
the box. Generally, the limiting temperature is above 8 MeV in
the Thomas-Fermi calculations [39,54]. Therefore, the results
of hot � hypernuclei in the present work are only shown up to
T ∼ 8 MeV.

The specific heat Cv per particle is a very useful thermody-
namic quantity for a hot nucleus, which is defined at a fixed

FIG. 7. The specific heat Cv as a function of temperature for 208
� Pb

calculated with different box sizes R = 15 and 20 fm (left panel) and
those for 40

� Ca and 208
� Pb with R = 20 fm (right panel).

TABLE I. The properties of 40
� Ca at different temperatures.

T (MeV) R� ρ�(0) E∗/A B� S/2T E∗/T 2 S2/4E∗

(fm) (10−2fm−3) (MeV) (MeV)

0.0 2.43 1.06 0.00 22.19 − − −
2.0 2.59 0.95 0.38 20.72 3.82 3.83 3.81
4.0 2.97 0.73 1.49 17.12 3.78 3.75 3.81
6.0 3.38 0.55 3.18 13.01 3.64 3.53 3.75
8.0 3.84 0.39 5.33 9.15 3.51 3.33 3.68

volume as

Cv = d(E∗(T )/A)

dT

∣∣∣∣
V

. (23)

We show in Fig. 7 the specific heat as functions of temperature
for 40

� Ca and 208
� Pb. In Ref. [52], the specific heat was

studied with relativistic Thomas-Fermi approximation for
hot nuclei, by introducing a freeze-out volume to treat the
density diffusing in the surface of nuclei at finite temperature.
Therefore, the specific heat was strongly dependent on the
freeze-out volume. When the subtraction procedure is used to
isolate the � hypernucleus from the surrounding baryon gas,
the properties of hot hypernucleus are independent of the size
of the box. In the left panel of Fig. 7, the specific heat of 208

� Pb is
shown with different box sizes R = 15 fm and R = 20 fm. We
can find that they are identical until T = 8 MeV. The results
of specific heat for 40

� Ca and 208
� Pb are compared in the right

panel. It is shown that Cv of 40
� Ca is larger than the one of

208
� Pb. This is because the caloric curve of 40

� Ca is stiffer. It
is demonstrated that light hypernuclei are more easily excited
than heavy one.

The properties of single-� hypernuclei, � hyperon radii,
center density of � hyperon, excitation energy per particle,
single-� binding energy, and the level density parameter
for 40

� Ca and 208
� Pb at different temperatures are listed in

Tables I and II, respectively. In the low-temperature Fermi gas
approximation, the level density parameter a, which is related
to the density of state of an excited state, can be expressed
as S/2T ,E∗/T 2, or S2/4E∗ [38], where E∗ is the excitation
energies from Eq. (20). In our calculation, the level density
parameters with different definitions in single-� hypernuclei
are almost temperature independent for T � 4 MeV. Their
magnitudes are also consistent with each other. The level
density parameter for the light nucleus is smaller than the
heavy one.

TABLE II. The properties of 208
� Pb at different temperatures.

T R� ρ�(0) E∗/A B� S/2T E∗/T 2 S2/4E∗

(MeV) (fm) (10−2fm−3) (MeV) (MeV)

0.0 3.98 0.20 0.00 27.41 − − −
2.0 4.44 0.15 0.31 25.03 16.14 15.97 16.30
4.0 4.99 0.11 1.17 21.13 15.55 15.19 15.93
6.0 5.52 0.084 2.56 17.03 15.19 14.78 15.61
8.0 6.10 0.064 4.52 13.27 15.03 14.69 15.39
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FIG. 8. The single-� binding energies from 16
� O to 208

� Pb at
different temperatures T = 0,2,4,6, and 8 MeV and compared with
the experimental data for 1s states at zero temperature [31].

To distinguish the excitation energy in Eq. (20), we would
like to use the � binding energy instead of � excitation
energy in this paper, although the � hyperon may also occupy
an excited state. The single-� binding energy is a very
important property of � hypernuclei, which is obtained by
the subtraction of the binding energy of � hypernucleus from
its core energy without hyperon. In Fig. 8, we present the
single-� binding energies of some typical spherical single-�
hypernuclei at different temperatures from 16

� O to 208
� Pb and

compare them with the experimental data in term of � 1s states
at zero temperature [31]. It is seen that the single-� binding
energies decrease with temperature. At high temperature,
such reduction becomes faster. At T = 0 MeV, the single-�
binding energy can be measured at different spin states. The
experimental value of the 1s state of 208

� Pb is 26.3 ± 0.8
MeV [31]. In the present study, we use the relativistic Thomas-
Fermi approximation to describe the hypernucleus and we do
not solve the Dirac equation for the nucleon and � hyperon.
Therefore, the single-� binding energies in this approximation
cannot be distinguished from different spin states. The �
binding energy of 208

� Pb obtained in the present calculation
at T = 0 MeV is 27.41 MeV, which is consistent with the
experiment data. For the light hypernuclei, like 16

� O, our results
of � binding energies are slightly overestimated in comparison
with experimental data.

IV. CONCLUSION

The relativistic Thomas-Fermi approximation has been
applied to the investigation of hot single-� hypernuclei

using the RMF model for the interaction of baryons. The
subtraction procedure has been employed in order to separate
the hypernucleus from the surrounding baryon gas. With
such treatment, the properties of hot � hypernucleus are
independent of the size of the box in which the calculation
is performed. The nucleon and � hyperon interact via the
exchange of the σ and ω mesons, whose coupling constants
are determined by experimental � binding energies in the
RMF model.

We have studied two single-� hypernuclei, 40
� Ca and 208

� Pb,
as numerical examples in this work. At high density, the �
gas density becomes visible and increases with temperature.
On the other hand, the � density at the center of � hyper-
nuclei is reduced largely with temperature. The temperature
dependence of � densities is more remarkable than that of
the proton and neutron, since one hyperon is more easily
excited than nucleus which are compounded of many nucleons.
Furthermore, the magnitudes of � densities at the center of
hypernuclei are almost inverse to the baryon numbers. The
rms radius of � hyperon is clearly different from those of the
proton and neutron at zero temperature. However, it increases
rapidly with temperature and becomes comparable with the
radii of proton and neutron, which is due to the diffusion
of � distribution at high temperature. The scalar and vector
potentials of � hyperon have been found to be reduced with
temperature so that the � binding energies become small at
high temperature. The specific heat defined as the derivation
of excitation energy with respect to temperature was found
to be independent of the size of the box by employing the
subtraction procedure, which is different from introducing the
freeze-out volume to consider the temperature effect. Finally
we also gave the single-� binding energies from 16

� O to 208
� Pb

at different temperatures. The binding energies are consistent
with the results obtained in the RMF model at zero temperature
for heavy hypernuclei. As temperature increases, the � binding
energies decrease significantly.

We have systematically studied the properties of hot
single-� hypernuclei above mediate mass. There are also some
experimental data for light single-� hypernuclei, double-�
hypernuclei, and � hypernuclei. Further work is required
to investigate the properties of various hypernuclei at finite
temperature.
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