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Within this work we present a consistent approach to quadrupole-octupole collective vibrations coupled with the
rotational motion. A realistic collective Hamiltonian with variable mass-parameter tensor and potential obtained
through the macroscopic-microscopic Strutinsky-like method with particle-number-projected BCS (Bardeen–
Cooper–Schrieffer) approach in full vibrational and rotational, nine-dimensional collective space is diagonalized
in the basis of projected harmonic oscillator eigensolutions. This orthogonal basis of zero-, one-, two-, and
three-phonon oscillator-like functions in vibrational part, coupled with the corresponding Wigner function is, in
addition, symmetrized with respect to the so-called symmetrization group, appropriate to the collective space of
the model. In the present model it is D4 group acting in the body-fixed frame. This symmetrization procedure
is applied in order to provide the uniqueness of the Hamiltonian eigensolutions with respect to the laboratory
coordinate system. The symmetrization is obtained using the projection onto the irreducible representation
technique. The model generates the quadrupole ground-state spectrum as well as the lowest negative-parity
spectrum in 156Gd nucleus. The interband and intraband B(E1) and B(E2) reduced transition probabilities are
also calculated within those bands and compared with the recent experimental results for this nucleus. Such
a collective approach is helpful in searching for the fingerprints of the possible high-rank symmetries (e.g.,
octahedral and tetrahedral) in nuclear collective bands.
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I. INTRODUCTION

The concept of the shape of the nucleus has existed since the
beginning of the theory of the atomic nucleus, even if, on many
points, it stays in contradiction to the well-established concepts
of quantum mechanics. The verification of the deformation of
nuclear surface is done mainly by investigating the behavior
of experimental observables such as rotational spectra of
quadrupole or octupole deformed nuclei [1,2], the transition
probabilities, magnetic moments, and some properties of K
isomers [3,4]. In this paper we focus our attention mainly on
the low-energy quadrupole and octupole shape vibrations as
the results of collective coherent motions of substantial number
of nucleons.

There are few articles speaking about a possibility of
existing the nonaxial octupole stable configurations, i.e.,
Refs. [5–9]. The problem of nuclear shape vibrations has
been investigated by several authors in Refs. [10,11], using
the Bohr Hamiltonian [12–14], the Interacting Boson Model
(IBM) [15,16], or the analytic collective model (AQOA) [17].
Also the new approach based on cluster Hamiltonian are shown
in Ref. [18]. The main issue of all those approaches is to
search for stable nuclear configurations as well as the strengths
of electromagnetic transitions between collective states. The
quadrupole and octupole deformation parameters are usually
treated as collective variables.

The approach proposed in the present paper assumes that
the shape of the collective potential included in the collective
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Hamiltonian is obtained within the so-called macroscopic-
microscopic total energy calculations using the Strutinsky
method with the Woods-Saxon mean field [7,19].

The nuclear surface is described in terms of spherical
harmonics, limited to the dipole (λ = 1), quadrupole (λ = 2),
and octupole (λ = 3) parts. This shape parametrization offers
a series of advantages in certain nuclear structure theory
developments. For the present study, it enables exact treatment
of the uniqueness of quantum solutions transformed from the
laboratory to the intrinsic (body fixed) reference frame.

However, this problem is well fixed for the pure quadrupole
shape vibrations in the textbooks (see, e.g., Ref. [20]), and
it requires significant modifications if only some vibrational
modes, selected from among a full set of octupole degrees of
freedom, are switched on. The detailed study of chosen modes
in terms of the intrinsic symmetry-group-theory formalism
[21], known as the determination of the symmetrization group,
is presented in Ref. [22] and references therein. The formalism
of the intrinsic group allows us to unambiguously determine
the minimal subdomain of the intrinsic collective manifold
(cf. deformation parameters and Euler angles) in which the
transformation of wave functions and physical operators
between the intrinsic and laboratory frame is one to one.
The collective Hamiltonian is diagonalized in the space of
symmetrized basis functions. This permits us to calculate
the reduced probabilities of electric dipole and quadrupole
transitions. The systematic knowledge of electromagnetic-
reduced transition probabilities B(Eλ) is essential to discover
a possibility of existing the high-rank symmetries of collective
states which has not been yet widely discussed. A symmetry,
among other physical effects, is a crucial factor determining
the structure of wave functions and thus strongly affects the
transition probabilities B(Eλ).
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The paper is organized as follows: Section II gives the
details of the nuclear shape parametrization. Section III defines
the conditions for the uniqueness of intrinsic Hamiltonian
eigensolutions in the laboratory frame. In Sec. IV we define
the vibrational part of a collective Hamiltonian. Section V
is devoted to construction of the so-called generalized rotor
Hamiltonian which is a part of the total Hamiltonian. The
generalization consists in using in its construction the angular-
momentum operators in powers higher than two. This allows
for obtaining higher than dihedral (D2) symmetries of nonaxial
rotor. In Sec. V A we construct the basis for a diagonalization
of the full Hamiltonian. The aim of Sec. VI is to show
the importance of the center-of-mass motion generated by
the octupole modes and connected with this induced dipole
deformations. In Secs. VII and VII B we give details of the
collective potential construction as well as several examples
of its two-dimensional cuts. Finally, in Sec. VIII we calculate
the B(E1) and B(E2) reduced transition probabilities for the
ground-state and the lowest-negative-parity bands with the
presence of octupole vibrations.

II. COLLECTIVE QUADRUPOLE-OCTUPOLE SPACE
IN INTRINSIC FRAME

Since our efforts are mainly focused on an investigation of
the possibility of existing spatial symmetries possessing two-
and three-dimensional irreducible representations, the intrinsic
collective variables are chosen to be the components of the
irreducible tensor αλμ. This tensor has well-defined properties
with regard to the group-theory formalism. The latter allows us
to describe the shape of the nuclear surface in the body-fixed
reference frame within standard multipole expansion of {θ,ϕ}
angles.

The main goal is to expand the nuclear surface in the
intrinsic reference frame in terms of the orthogonal basis set
of the spherical harmonics {Yλμ}, which are also spherical
tensors,

R(ϑ,ϕ) = R0c(α)

⎡
⎣1 +

λmax∑
λ=1

λ∑
μ=−λ

(α�
λμ)Yλμ(ϑ,ϕ)

⎤
⎦, (1)

where α ≡ {αλμ} and the function c(α) are obtained from
the nuclear volume conservation condition. As shown in
Sec. VI, the dipole α10 and α1±1 variables, determined from
the condition that the center of mass of the nuclear body is
fixed in the beginning of the coordinate system, are dependent
on {α2ν,α3μ} variables.

Let us keep in mind that for any spherical tensor defined in
the SO(3) manifold, the following relation is true:

α�
λμ = (−1)ναλ−μ. (2)

Such an expansion, reproducing an infinite number of physi-
cally important nuclear shapes, has been successfully used for
a long time, e.g., in Refs. [23–25].

Since the collective space spanned by two quadrupole
variables, α20, α22 = α2−2, with the three conditions

α21 = α2−1 = 0, (3)

determines a body-fixed frame, the full octupole {α3ν},ν =
0,1,2,3 complex tensor together with Euler angles from the 12-
dimensional collective-variable space. Obviously, this is not
the principal axes frame but it allows for using the traditional
picture of quadrupole collective motion. The determination of
the Hamiltonian matrix elements or any physical constituents,
with a reasonable accuracy, makes a problem quite serious in
such a multidimensional space. In order to efficiently deal,
e.g., with time-consuming multidimensional integrals and, at
the same time, investigate effective contributions from all
octupole modes, one can lower the dimensionality of space
by putting all {α3ν} to be real numbers. This implies, by
virtue of Eq. (2), that α3μ and α3−μ are mutually dependent,
which obviously leads to the reduction of dimensionality of
the model to nine dimensions (including Euler angles). As it
turns out, the calculations of desired matrix elements within
the space of Euler angles can be done totally analytically.
Finally, the independent collective variables used in the present
study are (α20,α22,{Re(α3ν)}) with ν index running over the
positive integers only, i.e., ν = {0,1,2,3}, describing the axial,
nonaxial quadrupole vibrational modes and the four real
octupole modes, respectively. Now, we can rewrite Eq. (1)
to the following form:

R(ϑ,ϕ) = R0c(α)

⎡
⎣1 + α10Y10(ϑ,ϕ) + α20Y20(ϑ,ϕ)2

+α11Re(Y11(ϑ,ϕ)) + 2α22Re(Y22(ϑ,ϕ))

+α30Y30(ϑ,ϕ) + 2
3∑

μ=1

α3μRe(Y3μ(ϑ,ϕ))

⎤
⎦. (4)

One should realize that the price for such a reduction of
collective space is the appearance of three additional to Eq. (3)
conditions on the α3μ tensor

Im(α3μ) = 0, (5)

which should be conserved during the collective motion.
Conditions (5) together with (3) imply that the differentials
of the scalars of β2

λ type for both the quadrupole (λ =
2) and octupole (λ = 3) collective spaces can be written
as dβ2

2 = dα2
20 + 2dα2

22 and dβ2
3 = dα2

30 + 2dα2
31 + 2dα2

32 +
2dα2

33. Therefore, the metric tensors associated with these
quadrupole and octupole spaces are given, respectively, as
g(2)

νν = diag(1,2) and g(3)
μμ = diag(1,2,2,2).

III. UNIQUENESS OF PHYSICAL STATES

In this section we address the problem of the uniqueness of
collective eigensolutions in the laboratory coordinate system
in which a nucleus is observed and measured. The vibrational-
rotational collective approach presented here, because of the
particular choice of collective variables, defines the collective
Hamiltonian and thus also its eigensolutions in the body-fixed
frame.

The transformation from the intrinsic to the laboratory
frame is necessary to calculate, for example, the reduced
transition probabilities. However, due to conditions (3) and
(5) imposed onto the intrinsic quadrupole α2ν and octupole
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α3μ variables, respectively, such a transformation turns out to
be generally not reversible and, by consequence, not unique.
In what follows, we show the method, based on the intrinsic
group formalism, that ensures this uniqueness. This method is
called symmetrization.

A. Intrinsic groups

As we have already mentioned, with regard to conditions (3)
and (5), the vibrational-rotational Hamiltonian, its eigenvec-
tors, and other quantum observables should be symmetrized,
since they are all the function of quadrupole and octupole
variables. In other words, they have to be invariant with respect
to the symmetrization group of the model, Ḡs . As shown in
Ref. [22], in the case of (α20,α22,{a3ν}), ν = {0,1,2,3} space,
this intrinsic group acting in the body-fixed frame is formed
by the following eight symmetry operations (proper rotations)
ḡ: {I,C2x,C2y,C2z,C4y,C

−1
4y ,C2c,C2d}, where Cni denotes the

rotation about the body-fixed axis marked with index i by
the 2π/n angle and I is the unity operation. The axes c
and d are skew with respect to the OX,OY,OZ axes, see
Ref. [26]. Such a set of transformations is recognized as the
D4 group with the main OY axis. This group is a subgroup of
the already-mentioned octahedral group Oh.

Studying any transformation ḡ of an object defined in the
body-fixed frame, we should remember that its axes move
together with the object, contrary to the transformations in
the laboratory frame, where the coordinate system axes are
fixed in the space. It implies that the intrinsic transformations
act on both the αλμ variables and Euler angles �, keeping
the body untouched in the laboratory system. Mathematically,
such action of an arbitrary rotation ḡ belonging to the intrinsic
group, ḡ ∈ ¯SO(3) is given as:

(
αlab

λμ

)′ = ḡαlab
λμ = αlab

λμ, (6)

(αλμ)′ = ḡαλμ =
∑
μ′

Dλ
μ′μ(g−1)αλμ′, (7)

�′ = ḡ� = �g. (8)

In the function space of intrinsic variables αλμ and Euler angles
�, any action ḡ is performed in the following way:

ḡψ(αλμ,�) = ψ(ḡαλμ,ḡ−1�),

ḡ RJ
MK(�) = RJ

MK(�g−1)

= √
2J + 1

J∑
K=−J

DJ
κK (g) DJ∗

MK(�), (9)

where RJ
MK(�) ≡ √

2J + 1 DJ∗
MK(�) denote the standard nor-

malized complex conjugated set of Wigner functions playing
usually a role of basis states to diagonalize the rotational
Hamiltonians defined in the intrinsic frame [27].

Since the formalism of intrinsic groups is not widely
applied, let us introduce some of its formal properties as
proposed in Ref. [21].

Let LG be a linear space containing all possible vectors SG

obtained as formal sums of the elements g of the group G with

the combination coefficients c(g) ∈ C,

SG =
∑
g∈G

c(g)g. (10)

The addition and multiplication group operations are defined
adequately to the nature of the group elements. The elements of
the intrinsic group Ḡ induced by G is regarded as the collection
of operators ḡ which act on elements SG ∈ LG in the following
way:

∀SG ∈ LG, ḡSG = SGg. (11)

The elements ḡ of the intrinsic group are scalars with respect
to operations g ∈ G. It implies that the action ḡ ∈ Ḡ does not
affect the tensor objects defined in G [see the first equation in
Eq. (8)]. The latter is equivalent to the fact that the intrinsic
and laboratory frames are independent; the operations from
the intrinsic and laboratory groups commute, i.e., [Ḡ,G] = 0.

The groups Ḡ and G are anti-isomorphic, i.e., there exists
the one-to-one correspondence φG : Ḡ → G satisfying, for
all ḡ ∈ Ḡ, the relation

φG(ḡ) = g,

φG(ḡ1ḡ2) = g2 g1. (12)

The last property of Eq. (12) defines the superposition pattern
of intrinsic group elements which turns to be opposite with
respect to the elements of G. It allows us, in addition, to
apply the already-known properties of the laboratory group,
as irreducible representations, Clebsch-Gordan coupling coef-
ficients, and others to the corresponding intrinsic groups. The
above overall consideration leads also to the generalization of
the well-known fact that the commutation relations between
the angular-momentum operators expressed in the laboratory
and body-fixed frames have opposite signs, see, for example,
Ref. [28].

B. Symmetrization procedure

Since physical observables, particularly the reduced transi-
tion probabilities which we are interested in here, are measured
with respect to the laboratory coordinate system, we have to
define the relation between the tensor operators T̂ lab

λμ and ˆ̄Tλμ

expressed in laboratory and intrinsic frames, respectively:

T̂ lab
λμ =

λ∑
ν=−λ

Dλ∗
μν(�) ˆ̄Tλν. (13)

If the above is used for collective variables of nuclear shape,
i.e., T̂λμ ≡ αλμ, then it reads

αlab
λμ =

λ∑
ν=−λ

Dλ∗
μν(�)ᾱλν

fk(αλμ,�) = 0, {k = 1,2, . . . Nf }, (14)

where fk are the additional conditions imposed on the intrinsic
variables while Nf is the number of all conditions defining a
model of collective variables. Among those conditions, three of
them should determine the orientation of both intrinsic versus
laboratory frame or, in other words, Euler angles �.
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In the presence of the conditions {fk}, the transformation
(14) is, in general, nonreversible. It means that, for one given
set of laboratory variables, {αlab

λν } usually may correspond to
several sets of intrinsic variables {ᾱλμ,�}. Since, by virtue of
Eq. (14), any αlab

λν is a function of the set {(ᾱλμ,�)}, it may
happen that

αlab
λν ({αλμ,�}) = αlab

λν ({α′
λμ,�′}), (15)

where, by definition, ({αλμ,�}) 	= ({α′
λμ,�′}).

One can therefore conclude that there may exist several
subdomains of intrinsic αλμ space which produce the same
nuclear shapes but they are, however, rotated with respect
to the laboratory coordinate system. Such a feature of ᾱ-
type variables has its consequences for the eigensolutions
of the collective Hamiltonians breaking the uniqueness, one
of the fundamental properties of the physical solution in the
laboratory frame. Traditionally, in order to restore the above-
mentioned uniqueness of quantum solutions, one first must
find a kind of “minimal subdomain” of intrinsic α’s which,
by multiple applying all transformations of a given intrinsic
group, fully covers the entire domain. The intrinsic symmetry
group of those properties is referred to as symmetrization group
Ḡs . All the transformations ḡ of this group should satisfy the
condition

αlab
λν (ḡαλν,ḡ

−1�)) = αlab
λν (αλν,�). (16)

This group has been already found for the ensemble of
({α2ν},{α3μ},{�}) with various conditions fk introduced in
Eq. (14). For a detailed study of the symmetrization prob-
lem, see Refs. [29–32]. The symmetrization condition for
collective states, say, �(α,�), comes directly from properties
(8) and (15), namely requiring that �(α,�) = �(α′,�′) and
�(α′,�′) = �(ḡα,ḡ−1�), and we conclude by means of
Eq. (9) that for all ḡ ∈ Ḡs

ḡ�(α,�) = +1�(α,�). (17)

The relation (17), rendering the uniqueness of quantum
solutions in the laboratory frame, says that each quantum
state as the eigensolution of the collective Hamiltonian should
necessarily be invariant with regard to the scalar representation
of the Ḡs symmetrization group.

One should, however, clearly distinguish between the
symmetry group of the intrinsic Hamiltonian, as it is usually
associated with the shape of the nuclear body and the
symmetrization group Ḡs . Each of those two types of groups
influences different aspects of the collective model. As we
remember, in the Bohr Hamiltonian model, the vibrational
and rotational sub-Hamiltonians are octahedrally Ōh invariant
in the intrinsic frame. This, of course, is not the only symmetry
group of possible transformations of which the Hamiltonian is
invariant. The full symmetry of the Hamiltonian is discussed
in a more formal way in Ref. [33].

If, for example, one wishes to transform the SO(3)-
symmetric laboratory Hamiltonian of a five-dimensional har-
monic oscillator to the intrinsic coordinates, the transformation
(14) should be applied. The latter reduces the number of
independent intrinsic vibrational variables due to the accom-
panying additional conditions. By consequence, the laboratory
symmetry SO(3) of the laboratory Hamiltonian reduces to

the intrinsic octahedral symmetry which only accidentally
is identical to the symmetrization group. In this context,
the symmetrization group Ḡs can be treated as the maximal
symmetry group of the Hamiltonian, which is possible to be
constructed out of the actual intrinsic variables of α and � type
and transforming all of them at the same time. On the other
hand, the latter may be treated as the set of transformations
which have to be satisfied to allow the intrinsic Hamiltonian
eigensolutions to be interpreted as physical solutions in the
laboratory frame.

IV. QUADRUPOLE + OCTUPOLE COLLECTIVE
HAMILTONIAN

A traditional way of constructing a consistent vibrational-
rotational collective approaches accounts on defining the
collective Hamiltonian with respect to the laboratory co-
ordinate system using the laboratory collective variables,
e.g., αlab

λμ and, next, transforming it to the body-fixed frame.
A standard kinetic energy term in the well-known Bohr
Hamiltonian approach (see Ref. [12] and references therein),
which is obtained from a simple five-dimensional harmonic-
oscillator Hamiltonian in αlab

2μ,μ = {−2,−1,0,1,2} variables
transformed to the intrinsic frame, scatters out into four terms.
Three of these terms correspond to the energy of surface
vibrations towards the quadrupole β and γ modes while the
fourth one describe the rotational energy of the body expressed
in terms of Euler angles.

The procedure according to this scheme, i.e., starting from
the 12-dimensional quadrupole-octupole laboratory Hamilto-
nian, was a subject of studies presented in Ref. [34] which
results in a consistent form of quadrupole-octupole collective
Hamiltonian in the body-fixed frame. Such a Hamiltonian,
unfortunately, cannot be efficiently applied in practice. A
similar study but for pure octupole degrees of freedom has
been done in Ref. [35].

Contrarily to the above-outlined concept, we construct
the collective vibrational-rotational Hamiltonian already in
the intrinsic frame applying the so-called adiabatic approx-
imation, which allows the separation of the vibrational and
rotational motions. Such separation is, in general, possible
due to substantially different (by 2–3 orders of magnitude)
energy scales of both the vibrational and rotational collective
modes.

We therefore propose, to some extent, an even more sim-
plified approach in which quadrupole and octupole vibrational
modes are totally decoupled in the kinetic-energy term. Such
an approximation seems to be justified since the values of the
mass-tensor components, responsible for this coupling, are,
on average, about one order of magnitude smaller than the
smallest value of the octupole mass-tensor components in the
vicinity of the ground-state point.

The full six-dimensional vibrational collective space, as
defined in Sec. II, for the mass parameter functions can be
then treated as the tensor product of the quadrupole two-
dimensional and octupole four-dimensional subspaces. This
allows for evaluating the quadrupole and octupole kinetic-
energy terms independently.
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Let us recall that, in general, the quadrupole-octupole
coupling mass tensor components are, in general, functions of
all six collective variables {α2ν,α3μ}. Neglecting this coupling,
we determine two independent mass tensors: first, for pure
quadrupole motion admitting that the octupole deformation
is fixed to zero and, second, corresponding to the octupole
motion, for which the quadrupole configuration corresponds
to the ground-state point. Such approximations make the
calculations of the mass tensor feasible, accelerating numerical
calculations by a factor equal to the number of mesh points
of the quadrupole subspace {α20,α22} for a fixed octupole
configuration. Now we come to the definition of the collective
Hamiltonian in question. A realistic and quantized quadrupole-
octupole-vibrational collective Hamiltonian with varying mass
parameters and moments of inertia can be defined as

Hcoll(α2,α3,�) = −�
2

2

⎧⎨
⎩ 1√|B2|

2∑
νν ′=0

∂

∂α2ν

√
|B2|

[
B−1

2

]νν ′ ∂

∂α2ν ′

+ 1√|B3|
3∑

μμ′=0

∂

∂α3μ

√
|B3|

[
B−1

3

]μμ′ ∂

∂α3μ′

⎫⎬
⎭

+ Ĥrot(�) + V̂ (α2,α3), (18)

where α2 and α3 describe symbolically the subspaces
of the quadrupole and octupole collective variables with
metrics; B2(α2), B3(α3) denote the quadrupole and oc-
tupole microscopic mass tensor, respectively; and |B2| =
detB2(α2), |B3| = detB3(α3). Those microscopic symmetric
mass tensors are determined using a commonly used cranking
approximation [36], which has been widely used in the nuclear
structure physics. Its covariant (λν,λν ′) component for λ = 2
or λ = 3 and indices μ > 0 is given by the formula

Bλν,λν ′({αλμ})

=
∑
kl

〈φk| ∂Ĥsp

∂αλν
|φl〉 〈φl| ∂Ĥsp

∂αλν′ |φk〉
(Ek + El)3

(uk vl + vk ul)
2, (19)

where the double sum runs over the full set of BCS
(Bardeen–Cooper–Schrieffer) quasiparticle (qp) (including
time-reversed) states obtained from the eigensolutions of the
chosen mean-field Hamiltonian Ĥsp and using a pairing ap-
proach. Quantities vn are the occupation probability amplitude
of the nth qp state while un is obtained through the relation
u2

n = 1 − v2
n. Quantities Ek and El in the denominator of

Eq. (19) are the quasiparticle energies of kth and lth states.
Nowadays, the potential energy of a nucleus in collective

variable space is usually obtained within various elaborate
self-consistent microscopic approaches. In this work, an
effective approximation to generate the collective potential in
the six-dimensional space of {α2,α3} variables is still a widely
applied macroscopic-microscopic model. This model, for a
reasonable choice of predefined mean-field potential, pairing
interaction and the smooth liquid-drop energy formula, is
able to produce reliable estimates of potential energy surfaces
V̂ (α2ν,α3μ). Within these studies we use the Woods-Saxon
potential [37] with the so-called universal set of parameters
[19] (refitted to the newer single particle data in Ref. [38])

which delivers the single-particle energies and eigenstates for
a given mean-field deformation. Both those quantities are the
starting point to the calculations of quantum shell and pairing
energies and mass parameters via Eq. (19).

The shell-energy correction arising due to the shell structure
of single nucleons is calculated using the traditional Strutinsky
approach of sixth order [39–41]. In turn, for the pairing
energy, the particle number projected BCS approach [42,43]
is applied. Finally, the leading liquid-drop energy term is
developed here by the Lublin-Strasbourg Drop formula (LSD)
[44] which permits us to successfully reproduce fission barriers
of actinide nuclei, see, e.g., Ref. [45]. For more details of
the macroscopic-microscopic model used here, please refer to
Sec. V A.

V. ROTATIONAL HAMILTONIAN

As we have already mentioned, due to significantly differing
energy scales of the vibrational and rotational modes, they
are assumed here to be entirely decoupled. As a result, the
rotational term ˆHrot(�) depends only on the Euler angles
and the static shape of the nucleus, here corresponding to
the ground state. Since, as discussed in Sec. III B, also the
rotational Hamiltonian term has to be scalar with respect to the
symmetrization group Ḡs , it is convenient to construct it out of
the irreducible tensors of the Ḡs symmetry group as done, e.g.,
in Refs. [31,46]. Such tensors with respect to the ¯SO(3) group
can be built from the angular-momentum tensor components
defined in the body-fixed frame Ĵ±1 = ∓ 1√

2
(Ĵx ∓ iĴy), Ĵ0 =

Ĵz in the following way:

T̂λμ(n; λ2 = 2,λ3 = 3,. . . . ,λn−1 = (n − 1))

≡ [
(((Ĵ ⊗ Ĵ )λ2

⊗ Ĵ )
λ3

⊗ ... ⊗ Ĵ )
λn−1

]
λμ

, (20)

where n is the rank of the resulting tensor, λk for k =
2,3, . . . ,n − 1 are the multipolarities of the tensors arising
within the intermediate couplings, while λ is the multipolarity
of the resulting tensor. The coupling of tensors of multi-
polarity λ = 1 in Eq. (20) is obtained within the standard
expression containing the SO(3) Clebsch-Gordan coefficients
(1,μ; 1,μ′|λ2μ2)

(Ĵ ⊗ Ĵ )λμ =
1∑

μ=−1

1∑
μ′=−1

(1μ1μ′|λμ)Ĵ1μ Ĵ1μ′ . (21)

The way of constructing the irreducible tensors (20) is not
unique due to the fact that the set of intermediate tensors
{λ2,λ3, . . .} can be chosen arbitrarily, remembering only that
the “triangle rule” λk − 1 � λk+1 � λk + 1, for k = 1,2, . . . n,
has to be satisfied.

It turns out, however, that for the construction of the
physically relevant generalized rotor Hamiltonians, only the
tensors for which n = λ are important. The exception is single
term T00(n = 2), which is indispensable to reproduce the crude
energies of the rotational spectrum.

In this context, the word “generalized” means that we
go beyond with the properties of the standard D̄2-symmetric
triaxial rotors.
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The rotor Hamiltonian Ĥrot of given symmetry Ḡ and
multipolarity λ can be therefore constructed with the help
of the irreducible tensor operators with n = λ as their linear
combination over λ and μ indices and the term T00(n = 2) as

Ĥrot =
λmax∑
λ=0

λ∑
μ=−λ

cλμ T̂λμ + c00T00(n = 2). (22)

The upper limit of multipolarities λmax is, in principle,
arbitrary. Requiring the invariance of the Ĥrot in Eq. (22)
with respect to a given symmetry Ḡ and ḡ ∈ Ḡ, the coupling
constants cλμ have to fulfill the following system of equations:∑

μ

cλμ

[
δμν − Dλ∗

νμ(g)
] = 0, ν = {−λ, . . . , + λ}, (23)

where Dλ∗
νμ(g) denotes the complex conjugated Wigner func-

tion of group element g. Quantities cλμ are generally complex
numbers, except for C00, which is always real and depends
on the scalars of the ¯SO(3) group, i.e., the square of the
angular-momentum value I 2.

The hermiticity condition Ĥrot = Ĥ†
rot applied to (22) leads

to the condition

cλ−μ = (−1)μc∗
λμ, (24)

reducing the number of independent coefficients cλμ. In the
case of the traditional quadratic, triaxial rotor Hamiltonian of
dihedral symmetry D2, the coupling constants c00, c20, and c22

are independent and defined by the moments of inertia as

c00 = − 1√
12

(
1

Ix

+ 1

Iy

+ 1

Iz

)
,

c20 = 1√
6

(
1

Iz

− 1

2Ix

− 1

2Iy

)
, (25)

c22 = 1

4

(
1

Ix

− 1

Iy

)
,

where Ix, Iy, Iz are the microscopic nuclear moments of inertia
with respect to the OX,OY , and OZ axes, respectively. These
moments, similarly to the mass parameters in Eq. (19), are
obtained within the cranking approximation [36] using the
Woods-Saxon mean-field and the projected BCS model, as
discussed in Sec. IV.

If the D̄4-symmetric rotor Hamiltonian is needed, as
Ĥrot(�) in Eq. (18), then one should solve Eq. (23) to determine
the coupling constants cλμ entering Eq. (22). Solving Eq. (23)
for the lowest value of multipolarity λ = 2, we get the relation
between c20 and c22 which may be estimated by formula

c22 ≈ c20/0.8165, (26)

valid for an arbitrary c20. Its value has been adjusted to ensure
the energy distance of the lowest rotational states in the ground-
state band to be comparable with their experimental values in
the 156Gd nucleus.

Let us calculate the matrix elements of the Hamiltonian
(22) in the orthonormal basis of complex conjugated Wigner

functions

f J
MK (�) = √

2J + 1
J∑

K=−J

DJ∗
MK (�). (27)

The reduced matrix elements of the tensors T̂λμ are expressed
as

〈J ||T̂λ(n; {λ}n)||J 〉
= F (J,λn−1,λn)〈J |∣∣T̂λn−1 (n − 1; {λ}n−1)

∣∣|J 〉〈J ||Î ||J 〉,
(28)

and transformed into normal matrix element by means of the
Wigner-Eckart theorem to the form

〈J ′M ′|T̂λμ(n; {λ}n)|JM〉 = 〈J ′||T̂λ(n; {λ}n)||J 〉
× (JMλμ|J ′M ′)/

√
2J ′ + 1.

The scalar function F in Eq. (28), for arbitrary values of K,K ′,
and μ, is given as

F (J,λn−1,λn) = √
2J + 1 (JJλ0|JJ ))−1

×
1∑

μ′=0

(λn−1μ
′1−μ′|λ0)(JJ−μ′λn−1μ

′|JJ )

× (JJ1 − μ′|JJ − μ′). (29)

As an example, let us write down explicitly the reduced matrix
elements of the tensors T̂λμ(n; {λ}n) of the lowest ranks:

n = 1, 〈J ||Ĵ ||J 〉 =
√

J (J + 1)(2J + 1)

n = 2, 〈J ||T̂λ(2)||J 〉 = F (J,1,λ)〈J ||Ĵ ||J 〉2

n = 3, 〈J ||T̂λ(3,λ2)||J 〉 = F (J,1,λ2)F (J,λ2,λ)

×〈J ||Ĵ ||J 〉3. (30)

As we deduce from Eq. (31), the matrix elements of Eq. (28)
are defined in a recursive way.

A. Construction of the collective basis

In the previous section, we apply the adiabatic approx-
imation which leads to separation of the vibrational and
rotational motions. Following this idea, the basis in which the
Hamiltonian (18) is diagonalized contains the symmetrized
with respect to intrinsic D̄4 group harmonic-oscillator eigen-
solutions coupled with an appropriate Wigner function. The
latter carries out the spin dependence of the full vibrational-
rotational basis state. Let us note that only real parts of complex
α3μ collective variables are considered in this work. The
kth, k = 1,2, . . ., initial (before symmetrization) function used
to generate the orthogonal vibrational-rotational basis state,
depending on spin J and its projections M and K , is chosen as

�
(±)
k;JMK(α2,α3,�)

= un20 (η20,α20 − ˚α20)un22 (
√

2η22,α22

− ˚α22)un30 (η30,±α30 − ˚α30)un31 (
√

2η31,±α31 − ˚α31)

× un32 (
√

2η32,±α32 − ˚α32)un33 (
√

2η33,

±α33 − ˚α33)RJ
MK(�), (31)

054322-6



CONSISTENT QUADRUPOLE-OCTUPOLE COLLECTIVE MODEL PHYSICAL REVIEW C 94, 054322 (2016)

with RJ
MK(�) given by (27) and um denoting the m-phonon

normalized one-dimensional oscillator eigensolution of
shifted collective argument αλμ − ˚αλμ,

um(η,α̊; α) =
√

η

2m
√

π m!
Hm(ηα) e− 1

2 η2(α−α̊)2
. (32)

The function Hm(ηα) denotes the standard Hermite
polynomial of mth order, whereas η is the so-called “width”
parameter. Note that, as in Sec. IV, α2, α3 denote the full
sets of quadrupole and octupole variables of the model,
respectively. The

√
2 factor in front of ηλν for ν > 0 in

Eq. (31) introduces the “scaling” of the corresponding
variable according to the metrics g(λ).

In the current investigations, depending on the parity of the
basis state, we admit the phonon number of the quadrupole
and octupole functions um, which for the ground-state band
are

3∑
κ=0

n3κ = 0, κ = {0,1,2,3},

n20 + n22 = {0,1, . . . ,6}, (33)

while, for the negative-parity octupole band, they are

3∑
κ=0

n3κ = {1,3}, κ = {0,1,2,3},

n20 + n22 = 0. (34)

The free basis parameters are therefore η20, η22, η3ρ and the
corresponding argument shifts ˚α20, ˚α22, ˚α3ρ for ρ = {0,1,2,3}.

Applying the projection onto the given parity operator

P± = 1
2 (Î ± Ĉi) (35)

with Ĉi and Î denoting, respectively, the inversion and the
identity operations, the basis functions of positive or negative
parity are given as the following combinations of functions
(31):

�k;JMKπ=±1(α2,α3,�)

= 1
2 [�(+)

k;JMK(α2,α3,�) ± �
(−)
k;JMK(α2,α3,�)], (36)

where numbers π = +1 and π = −1 correspond, respectively,
to the even- and odd-parity functions.

Now, we can switch on the symmetrization of the basis
state using the projection onto the demanded irreducible
representation � of a given symmetry group method. Such
a projection onto the representation � of the symmetrization
intrinsic group Ḡs is performed with the help of the Hermitian
projection operator defined as in Ref. [26],

P̂ � = dim(�)

card(G)

∑
ḡ∈Ḡs

χ�(ḡ)� ˆ̄g, (37)

where ḡ belongs to the group Ḡs containing card(Ḡs) elements.
The quantity χ�(ḡ) is the character of the element ḡ in the
irreducible representation �. The dim(�) is the dimension
of this representation, which, for the scalar representation
� = A1, is dim(A1) = 1. The formula (37) is valid in both
the laboratory and the intrinsic reference frames under the

condition that the matrices corresponding to the elements ḡ of
the intrinsic group are transposed with respect to the laboratory
group elements.

In numerical calculations, it is very useful that the projec-
tion operator is idempotent, i.e., (P̂ �)2 = P̂ � . This property,
together with the commutation relation [P̂ �,Ô] = 0, where
the operator Ô describes a demanded observable, allows us
to calculate the matrix elements between projected states
〈�k|P̂ �ÔP̂ �|�k′ 〉 as equal to the element between a projected
and unprojected functions, 〈�k|ÔP̂ �|�k′ 〉 = 〈�k|P̂ �Ô|�k′ 〉.

The actions of the operator ˆ̄g onto an arbitrary functions of
α and � variables are defined for intrinsic groups in Eq. (9).

Applying operator (37), projecting the function (36) onto
the scalar (denoted by A1) representation of our symmetriza-
tion group D̄4, one gets

�
(A1)
k;JMκπ = P̂ (A1) �k;JMKπ = √

2J + 1
card(D̄4)∑

i=1

dim(A1)

card(D̄4)

×
J∑

K=−J

DJ
κK (ḡi)D

J∗
MK (�)un20 (η20, ˆ̄giα20 − ˚α20)

× un22 (
√

2η22, ˆ̄giα22 − ˚α22)un30 (η30, ˆ̄giα30 − ˚α30)

× un31 (
√

2η31, ˆ̄giα31− ˚α31)un32 (
√

2η32, ˆ̄giα32− ˚α32)

× un33 (
√

2η33, ˆ̄giα33 − ˚α33), (38)

where the action of the element ˆ̄g onto the rotational function
RJ

MK(�) is given by Eq. (9). Finally, since ˆ̄gi operators do not
couple the quadrupole, octupole, and rotational spaces, we can
rewrite the projected function (38) to an abbreviated form,

�
(A1)
k;JMκπ ≡ φnπ (α2,α3) R̃J

Mκ (�). (39)

Note that the right-hand side of Eq. (9) is summed over all
possible projections of angular-momentum number K . As a
result, for function (38), K is not a good quantum number. If
we admit, for fixed parity π , that in the body-fixed frame the M
number may be chosen arbitrarily within the range −J � M �
J , then the only number that allows us to identify the basis
states (38) is κ , changing also within the range −J � κ � J .
For the practical calculations, it is important that the operator
(37) does not change the parity π of the initial state (31) since
any rotation operation ḡ entering Eq. (37) commutes with the
parity operator of Eq. (35).

B. Orthogonalization of projected states

The projection operator (37) presented in Sec. V A, applied
onto different functions defined through Eq. (36), does not
assure the orthogonality of the resulting functions, say, �

(A1)
k ,

i.e., 〈
�

(A1)
k

∣∣�(A1)
k′

〉 	= δkk′, (40)

although all initial {�k}’s are chosen here to be orthonormal.
An efficient orthogonalization could be done by standard

Gram-Schmidt procedure described, e.g., in Ref. [47] or by
diagonalization of the so-called Gramm matrix, applied, e.g.,
in the generator coordinate method, described in Ref. [48].
In our opinion, the latter turns out to be more efficient since
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it immediately allows us to identify the linearly dependent
functions in the function set. Such functions should, certainly,
be removed from the basis. Now, let us schematically describe
this method.

Generally, in the NQ-dimensional Hilbert space of
nonorthogonal states {Q}, one can introduce the positive
defined overlap operator N̂ of the form [48]

N̂ =
∑

q∈{Q}
|q〉〈q|, (41)

where, obviously, its expectation value for an arbitrary state
|φ〉 ∈ {Q} is equal to

〈φ|N̂ |φ〉 =
∑
{Q}

〈φ|q〉〈q|φ〉 =
∑
{Q}

|〈q|φ〉|2 � 0. (42)

The eigenproblem of the N̂ operator is therefore given in the
form ∑

q

|q〉〈q|wl〉 = λl|wl〉, (43)

where {|wn〉} and {λn}, n = 1,2 · · · NQ correspond, respec-
tively, to the eigenvectors and eigenvalues of the NQ × NQ

Gramm matrix. Now, to transform the above equation to the
matrix form, we multiply both sides of Eq. (43) by a bra vector
〈q ′|, ∑

q

〈q ′|q〉〈q|wl〉 = λl〈q ′|wl〉, (44)

where 〈q ′|q〉 is the overlap matrix and w̃lq ′ ≡ 〈q ′|wl〉 is the
column corresponding to the NQ-dimensional lth eigenvector.

The orthonormal space of vectors |bk〉, k = 1,2, . . . ,NQ

constructed with the help of states q is given as

|bl〉 = 1√
λl

∑
q ′

w̃lq ′ |q ′〉. (45)

The above general formalism can be directly applied to our
functions given by Eq. (38) to obtain the orthonormalized,
A1-symmetric collective basis, used later to diagonalize the
collective Hamiltonian (18).

In our numerical calculations, it happens that some of the
eigenvalues λn of Eq. (44) are equal to zero (strictly speaking,
they are several orders of magnitude smaller than the others).
This indicates that in the set {Q} there exist unwanted linearly
dependent subspaces. In our model, for given spin J , parity π ,
and the phonon number imposed by conditions (33) and (34),
the pairs of states (38) with κ and −κ numbers are identified to
be linearly dependent. The final basis, certainly, should contain
only one such state, either with κ or −κ .

VI. CENTER-OF-MASS MOTION AND ELECTRIC
TRANSITION OPERATORS

The octupole deformation of the nucleus induces the change
of the center-of-mass position as function of deformation. This
implies that, besides the collective quadrupole and octupole
vibrations and rotations treated in the proposed model, our
nucleus as a whole performs a kind of periodic translational

motion. The kinetic energy of such a mode is not explicitly
included in the collective Hamiltonian (18).

However, we investigate on average the effect of the
center-of-mass motion on the B(E1) and B(E2) probabilities,
which are the quantities of our interest, by including the dipole
(with λ = 1) degrees of freedom, α1ρ, ρ = {−1,0,+1} into the
dipole and quadrupole transition operators defined in Sec. VIII.
Those parameters are believed to be mainly responsible for
the center-of-mass motion. Nonetheless, as shown [49], their
large-enough values are also able to significantly modify the
shape of nuclear drop, affecting also the total nuclear potential
energy surface.

The center-of-mass (c.m.) vector �rc.m. = �rc.m.(α1μ,α20,α22,
{α3ν}) of a nucleus of total mass M and nuclear density ρ(�r),
defined in a standard way as

�rc.m. = 1

M

∫
V

�rρ(�r)d3�r, (46)

are, as easily deduced from Eq. (46), the four order poly-
nomials in α1μ with the coefficients dependent on the other
remaining, quadrupole and octupole, parameters. These poly-
nomials are solved with respect to the variables α1μ with the
condition �rc.m. = 0,

α1μ = α1μ(�rc.m. = 0,α20,α22,{α3ν}). (47)

Calculated in this way α1μ’s as a function of α2ν and α3ν ′ ,
inserted into Eq. (4), ensure that the nuclear surface is defined
in the center-of-mass frame. The above consideration indicates
also that the above-mentioned quadrupole and octupole defor-
mations are still the only independent collective variables of
our model.

The influence of dipole deformation parameters on the
properties of atomic nuclei are discussed relatively rarely in
the literature. As an example, the authors of recent work (in
Ref. [49]) discussed the influence of α1ν on the potential energy
surface of Thorium isotopes.

Figure 1 shows the evolution of the nuclear shape [cuts
by (OX,OZ) plane of OZ axially symmetric nucleus] as a
function of the α10 parameter for the fixed other deformations:
α20 = 0.25 (top) and α20 = 0.8 (bottom) and, in both cases,
α30 = 0.3 and α3ν = 0, ν = {1,2,3}.

The increase of α10 values leads to more and more compact
shapes and, by consequence, lower energy. In the extreme,
this process may bring the nucleus to the spherical form.
In contrast, in Fig. 2 we have shown the change of the
nuclear shape obtained with α3ν = 0, ν = {1,2,3}, α10 = 0,
α20 = 0.8, and α30 = 0.3 plotted for several values of the α11

parameter. This nonaxial deformation is seen to be responsible
for creating neck-in shapes. Such a feature can be interesting
since, even very compact shapes with significantly large values
of α11 can split into two parts; see the curve for α11 = 1.0.

Let us show the numerical solutions of Eq. (47) on the
six-dimensional mesh of {α20,α22,α3μ} deformations. First,
for each point of the six-dimensional mesh, the center-of-mass
shift �rc.m. is calculated and then the dipole parameters α10 and
α11 that mimic this shift are found.

The dipole α10 and α11 variables induced by couplings of,
in general, considered all six degrees of freedom are shown
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FIG. 1. Influence of α10 deformation parameter on the shapes of
the nucleus [here (OX,OZ) cuts are shown] in two cases: (a) for
α20 = 0.25 corresponding to the ground-state minimum of 156Gd
and (b) for α20 = 0.8. In both cases, the only nonzero octupole
deformation is α30 = 0.3.

in Fig. 3. However, more detailed studies reveals that α10 is
induced only by the axial octupole α30 parameter for other five
octupole and quadrupole parameters equal to zero. Similarly,
α11 arises solely due to the presence of the α31 one.

To sum up, in Fig. 3 we can observe the direct dependence
of induced dipole deformations α10 and α11 on axial α30 and
nonaxial α31 octupole degrees of freedom alone, respectively,
whereas Fig. 4 presents the influence of combinations of the
axial α20 and α30 parameters on induced α10.

FIG. 2. Same as in Fig. 1 but α11 values are changed.

FIG. 3. Dependence of the dipole axial α10 (a) and nonaxial α11

(b) on the octupole deformation parameters α30 and α31 with other
quadrupole and octupole deformations set to zero.

Comparing Figs. 3 and 4 we can learn that for quadrupole
deformations equal to zero, the values of α10 as a function
of α30 varies within the range of (−0.04,+0.04) while,
for extremely elongated nucleus with α20 =≈ ±1.0, α10 ∈
(−0.5,+0.5). Briefly, the larger nuclear elongation, the
stronger the dipole deformation that is induced.

FIG. 4. Values of the induced α10 parameter obtained from
the center-of-mass shift for different combinations of α20 and α30

parameters by the other deformations set to zero. Each vertical
thick (red) line corresponds to fixed α20 changing from α20 = −1.0
(extreme left line) to α20 = +1.0 (extreme right line) by the step of
0.25.
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VII. COLLECTIVE POTENTIAL

Over the years, considerable effort has been made to
calcule the potential energy of a nucleus as a function of
its geometrical shape. It is clear that the most adequate
approach to calculate this energy would be to start with a
carefully chosen effective nucleon-nucleon interaction and
solve the resulting many-body problem. Although there has
been great progress in computational techniques recently, the
constrained self-consistent calculation with more than three
independent constraints, imposed, e.g., on multipole moments
of mass-distribution density, is still a challenging task.

A. Macroscopic-microscopic method

In this work the estimates of the total energy of the
deformed nucleus are therefore done within the phenomeno-
logical nuclear mean-field approach, known as the so-called
macroscopic-microscopic method of Strutinsky. Note that in
this method the total nuclear potential energy is composed of
the macroscopic energy term given usually by the liquid-drop-
type energy and the microscopic, shell, and pairing energy
corrections describing quantum effects in a nucleus. Despite
the fact that this kind of approach has been applied since the
early 1960s, it is still a powerful and successful tool, well suited
particularly to large-scale calculations and able to produce
results close to the experimental data. The details of these
kinds of calculations and corresponding results are presented,
e.g., in Refs. [50–54].

One usually applies an adequate type of liquid drop model
and the mean-field potential to reproduce the results possibly
in the best way. Nevertheless, the topology of the potential
energy surfaces obtained in the vicinity of the equilibrium
state of cold medium mass nuclei generated, for example,
by the finite range droplet model (FRLDM) [55,56] or the
Lublin-Strasbourg model (LSD) [44], is very similar.

The FRLDM model looks to be slightly more involved (thus
a little more time-consuming) than the LSD one, and the col-
lective potential calculations on six-dimensional deformation
mesh of about 2 × 106 points have been performed with the
use of the LSD approximation.

In turn, the microscopic energy of the nucleus is defined as
the sum of the shell and pairing energy corrections to the liquid
drop smoothly changing energy. The shell energy is obtained
from the Strutinsky method developed in Refs. [39–41]. For the
pairing energy [42,43] as the difference between the sum of the
single-particle energies and the energy of the pair correlations
[55], the particle-number projected pairing model [43] within
the standard BCS framework is applied.

The BCS wave function has the form:

|BCS〉 =
∏
m

(um + vmâ+
m̄ â+

m)|0〉, (48)

where the |0〉 is the particle vacuum, vm(um) are the occupation
(nonoccupation) numbers of the state m and â+

m, â+
m̄ are the

creation operators of the quassiparticles on top of mth single-
particle state and its time-reversed counterpart, respectively.
Index m runs over the states belonging to the so-called pairing
window.

The particle-number-projected (PBCS) wave function can
be written with the use of appropriate projection operator as

|PBCS〉 = 1

2π

∫ 2π

0
e−iφN

∏
n

(un + e2iφvnâ
+
n â+

n̄ )|0〉, (49)

where N is the number of particles in the system and φ is the
rotation angle in the so-called gauge space. Function (49) is
used to obtain the energy of the nucleus as the expectation
value of the BCS Hamiltonian

EPBCS = 〈PBCS|Ĥ |PBCS〉
〈PBCS|PBCS〉 , (50)

where Ĥ is the many-body BCS Hamiltonian. As a result of
evaluating Eq. (50), we may come to the expression for the
total nuclear energy EPBCS arising from the pairing interaction
in the nucleus

EPBCS =
N2∑

ν=N1

2 v 2
ν (eν − λ) − � 2

G
−

N2∑
ν=N1

(eν − λ)

−G

⎛
⎝ N2∑

ν=N1

v4
k −

N2∑
ν=N1

1

⎞
⎠, (51)

and the so-called average pairing correction

Epc = −1

4

N2

ρ

{√
1 + 2ρ�

N
− 1

}

+ 1

2
ρ � G arctan

N

2ρ�
, (52)

where N1 and N2 are the lower and upper limits of the pairing
window, v2

ν is the occupation probability of ν th quasiparticle
state, ρ is the mean density distribution of single-particle
states, and G is the strength of the pairing interaction [57].
The average proton and neutron energy gaps, �p and �n, are
fitted to the experimental separation energy differences [58]
and are given as

�n = 9.08/
√

A MeV, �p = 9.85/
√

A MeV . (53)

Finally, the full pairing correction energy in the projected
BCS model is defined as

Epair = EBCS + Epc. (54)

In order to calculate the pairing energy correction �E
(q)
BCS

(q = n for neutrons and q = p for protons) as a component
of the macroscopic-microscopic approach, we subtract the
energy E

(q)
pair given by Eq. (54) from the sum of single-particle

levels and its time-reversed partners separately for protons and
neutrons,

�E
(q)
BCS =

N
(q)
F∑

μ=1

e(q)
μ − E(q)

pair, (55)

with N
(q)
F denoting the Fermi level of the proton or neutron

distribution. Clearly, the total energy correction is the sum of
both the proton and neutron contributions.
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The single-particle energies eν used to calculate the shell
and pairing energies are the solutions of the Schrödinger
equation with the mean-field Hamiltonian of the Woods-Saxon
form [37]. The latter is developed with the use of the so-
called universal set of parameters [19], refitted to the newest
experimental data and presented in Ref. [38].

Having defined all the components of the macroscopic-
microscopic model, we come now to the numerical calcu-
lations of the total collective potential entering Eq. (18) on
a six-dimensional mesh of vibrational collective variables:
{α20,α22,α3ν,ν = 0,1,2,3} for the 156Gd nucleus.

The ranges of those variables defining the shape of nucleus
in the intrinsic coordinate system as well as the corresponding
mesh steps �αλμ are listed below:

α20ε(−1.0; 1.0), �α20 = 0.05

α22ε(−0.5; 0.5), �α22 = 0.05

α30ε(−0.3; 0.3), �α30 = 0.1

α31ε(−0.3; 0.3), �α31 = 0.1

α32ε(−0.3; 0.3), �α32 = 0.1

α33ε(−0.3; 0.3), �α33 = 0.1, (56)

which gives the mesh of 41 × 21 × 7 × 7 × 7 × 7 =
2 067 261 points, describing various quadrupole-octupole nu-
clear shapes. In order to interpolate the potential-energy values
in an arbitrary point within this mesh, we use an efficient
and fast approximation algorithm, based on the idea of the
Strutinsky shell correction, described in Ref. [59].

Finally, let us consider the behavior of the macroscopic-
microscopic potential energy function with regard to the action
of the symmetrization group. The Woods-Saxon mean-field
potential used to generate the single-particle spectra, by
its particular construction, behaves in the same manner as
the nuclear shape function R(ϑ,ϕ) of Eq. (4) under the
symmetrization group operations ḡ ∈ Ḡs . The same can be
said about the liquid-drop energy which is finally determined
through the functions of R(ϑ,ϕ) and the microscopic shell
and pairing energy corrections depending only on set of
mean-field eigenenergies. Concluding, the final macroscopic-
microscopic potential energy as a function of the quadrupole-
octupole deformation is invariant (scalar) with regard to the
intrinsic symmetrization group Ḡs . It means that no further
modifications of the obtained through the presented method
potential are necessary.

B. Potential energy surfaces

The two-dimensional cross sections of total macroscopic-
microscopic potential energy surfaces (PES) are obtained by a
projection of the full six-dimensional one onto demanded two-
dimensional planes, assuming that the other four deformation
parameters are fixed to zero. Figure 5 displays the total energy
as function of the quadrupole (β,γ ) deformation parameters
which are directly connected with (α20,α22). There, the equi-
librium energy minimum corresponding to quadrupole axial
(prolate) shape of 156Gd element is visible. The standard (β,γ )
plots are very useful to trace the nonaxialities of quadrupole
configurations. The γ = 0 gives the prolate (elongated) shape
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FIG. 5. The total energy of the 156Gd in the quadrupole plane
(β cos(γ + π/6),β sin(γ + π/6)) (a) and in (α20,α22) (b).

while γ = ±π/3 allows us to have the oblate forms. For
γ ∈ (0,π/3) there is a space for triaxial shaped nuclei. This
parametrization, however consistent and easy to read for
quadrupole shapes, contains no room for higher multipolarity
deformations discussed in the presented framework. We thus
replot the upper figure in terms of exploited here (α20,α22)
variables.

The straight dashed line in Fig. 5(a) indicates the axially
symmetric shapes. The straight dashed line in the (α20,α22)
[Fig. 5(b)] plane separates the shape configurations which are
identical with respect to the D̄4 symmetrization group. Note
that in the pure quadrupole shapes presented here, the true
symmetrization group is, in fact, the octahedral Ōh group
containing D̄4 as its subgroup. In such a case, we observe
the ground-state energy well occurring in the three (α20,α22)
quadrupole configurations: the first for

(
α

(gs)
20 ,α

(gs)
22

) = (0.25,0.0), (57)

the second for

α
(2)
20 = 1

2

(−α
(gs)
20 +

√
6α

(gs)
22

)
,

α
(2)
22 = + 1

4 (
√

6α
(gs)
20 + 2α

(gs)
22 , (58)
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and the third for

α
(3)
20 = 1

2

(−α
(gs)
20 +

√
6α

(gs)
22

)
,

α
(3)
22 = − 1

4

(√
6α

(gs)
20 + 2α

(gs)
22

)
. (59)

If, for any other than the 156Gd nucleus, the ground
state occurs for nonzero octupole deformations, then the
symmetrization group turns to be a D̄4 group. Then, for

fixed (α(gs)
20 ,α

(gs)
22 ) quadrupole deformation, the remaining

four-dimensional full octupole domain can be split into the
subdomains corresponding to identical shapes in the intrinsic
frame. Assume that the point (α(0)

30 ,α
(0)
31 ,α

(0)
32 ,α

(0)
33 ) describes a

current octupole configuration. The identical shapes in the
intrinsic frame (and rotated with respect to the laboratory one)
correspond to the other seven points, say (α(i)

30 ,α
(i)
31 ,α

(i)
32 ,α

(i)
33 ) for

i = 1,2, . . . ,7 which can be obtained by applying the second
property of Eq. (8) onto the point (α(0)

30 ,α
(0)
31 ,α

(0)
32 ,α

(0)
33 ) [60],

(−α
(0)
30 , − α

(0)
31 , − α

(0)
32 , − α

(0)
33

)
,
(±α

(0)
30 , ∓ α

(0)
31 , ± α

(0)
32 , ∓ α

(0)
33

)
, for i = 1,2,3;(± 1

2

(√
5α

(0)
33 −

√
3α

(0)
31

)
, ∓ 1

4

(√
3α

(0)
30 −

√
10α

(0)
32

)
, ± 1

4

(√
6α

(0)
33 +

√
10α

(0)
31

)
, ∓ 1

4

(−√
6α

(0)
32 −

√
5α

(0)
30

))
, for i = 4,5;(± 1

2

(√
5α

(0)
33 −

√
3α

(0)
31

)
, ± 1

4

(√
3α

(0)
30 −

√
10α

(0)
32

)
, ± 1

4

(√
6α

(0)
33 +

√
10α

(0)
31

)
, ± 1

4

(−
√

6α
(0)
32 −

√
5α

(0)
30

))
, for i = 6,7. (60)

Above, the points with a plus or minus sign correspond to
two different transformed, four-dimensional octupole con-
figurations. As seen from Eq. (60), for a fixed quadrupole
deformations, a single octupole shape for all α

(0)
3μ 	= 0 can

be obtained by using eight different deformation-parameter
combinations. Within the D̄4 symmetrization group, each such
shape can appear for the two (not three as in the case of an
octahedral symmetrization group) different combinations of
α20 and α22 described by (57) and (58). In total, the identical
quadrupole-octupole shape should show up at maximum 16
times in the full (α2,α3) domain. The borders of subdomains
of identical shapes in six-dimensional space can be found as a
common part of all six linear conditions of the form

α
(i)
λμ

(
α

(gs)
20 ,α

(gs)
22 ,α

(0)
30 ,α

(0)
31 ,α

(0)
32 ,α

(0)
33

) = α
(0)
λμ (61)

for λ = {2,3} and indices (i) as introduced in Eq. (60). One
easily notices the property that a given transformed point α

(i)
3μ

in Eq. (60) depends only on the two, not, in general, on all
four, values of α

(0)
3ν and α

(0)
3ν ′ . This implies that the borders in

question can be searched into the appropriate two-dimensional
collective subspaces.

For examining the influence of the octupole degrees of free-
dom on the total potential energy, the maps presented in Fig. 6
may be useful. The projections of full PES on each available
pair of octupole deformation parameters plotted there allow us
to trace the structure of the equilibrium minimum and/or the
depths and positions of possible local energy minima.

In Fig. 7 we show the total energy PES’s as function of the
quadrupole α20 and all octupole α3μ variables.

The total energy maps projected on the (α20, α3μ) plane
show slightly pronounced minima for negative α20 values.
If, as seen in Fig. 6, there is no other than the ground-state
well, which appears for octupoles α3ν = 0, we should obtain
by virtue of (58)–(60) exactly two additional “copies” of
this minimum, both again for α3ν = 0. In Fig. 7, these
minima are slightly pronounced for α20 < 0 and α22 = 0.
Their true position occurs roughly for α

(2)
20 ≈ −0.125 and quite

significant values of α
(2)
22 ≈ ±0.153 (note that Fig. 7 is done

for α
(2)
22 = 0.0).

VIII. B(Eλ) PROBABILITIES

A numerical diagonalization of the collective Hamiltonian
(18) represented in the basis of (38) provides us with realistic
collective states. A certain subset of its eigenstates, with
collective energies related to the ground state and the B(Eλ)
values comparable to the experimental results, can be identified
as the experimentally populated spectra, grouped into the
bands of given spin, parity, etc. In the framework presented
here we are focused mainly on investigating the ground-state
band as well as the lowest negative-parity states in the
156Gd nucleus. According to the experimental indications,
the ground-state well in this nucleus is strongly quadrupole
deformed with deformation β = 0.34. This means that in the
equilibrium state octupole degrees of freedom are, in the
first approximation, not excited. It implies that in the basis
function (38)

∑3
ρ=0 n3ρ = 0 while n20 and n22 values are

admitted to be {0,1,2,3}. For the negative-parity states, on
the contrary, n20 = 0 and n22 = 0 while in the octupole part of
this function,

∑3
ρ=0 n3ρ = {1,3}. Obviously, due to the parity

reasons, even phonon numbers in the right-hand side of the
previous condition are not allowed.

A separate problem is to fix the values of “shift” parameters
˚α2μ and ˚α3ν in Eq. (38) for λ = {2,3} and −λ � μ � λ.

These parameters make all the basis functions (38) are
centered over the potential energy well where the minimum
in our six-dimensional deformation space is in the point
(α20,α22,α30,α31,α32,α33) = (0.25,0.0,0.0,0.0,0.0,0.0).

Now, we are ready to determine the last group of basis
parameters in function (38), namely ηλμ. Certainly, for the
incomplete basis set, comprising only several (16 ÷ 24)
different vibrational quadrupole-octupole configurations, the
parameter ηλμ introduced in Eq. (32), determining the interval
of arguments, where the basis function differs substantially
from zero is absolutely crucial. We have decided that the
optimal values of those parameters should correspond to the
minimal energy of the ground state, i.e.,

Egs = Egs({ηλμ}) = min. (62)

Within this work such a minimization is performed in
successive steps. First, the true six-dimensional ground-state
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FIG. 6. The total energy of the 156Gd in the octupole planes (α3ν,α3ν′ ), where axial symmetry is for μ = 0 and nonaxial deformations are
for {μ,ν} = {1,2,3} for quadrupole deformation α20 = 0.25 and α22 = 0.0, being close to the ground-state deformation found in Fig. 7.

potential energy well is approximated within the least-squares
method by the paraboloid potential of the harmonic oscillator
of the form

Vosc = 1

2

3∑
λ=2

λ∑
μ=0

g(λ)
μμCλμ(αλμ − ˚αλμ)2, λ = {2,3}, (63)

where Cλμ plays a role of the potential energy stiffness
parameter for the (λμ) mode and g(λ)

μμ is the metric tensor of
our collective space. It is easy to check that for the harmonic
oscillator the following relation is fulfilled:

η
(0)
λμ = (Bλμ Cλμ)1/4. (64)

For simplicity, we have admitted that the mass Bλμ corresponds
to the mass-tensor value of Eq. (19) calculated in the ground
state.

The shape of 156Gd in the ground state is well α20 deformed,
see Fig. 7. The one-dimensional energy profiles for the
ground-state deformation α20 = 0.25 and α22 = 0.0, presented
in Fig. 8, exhibit almost parabolic-like behavior as a function
of axial and nonaxial octupole deformations for sufficiently
low excitation energies of about 1–3 MeV. This feature allows
for interpreting the octupole excitations in terms of phonon
numbers of the oscillator basis functions (38). The potential
towards α30 is flatter as compared to the ones for the other
three octupole modes α3μ. Hence, at first glance, it is the axial
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FIG. 7. The quadrupole (α20,α22 = 0) versus octupole (α30, α31, α32, α33) energy maps.

octupole mode which seems to be most likely excited due to
collective vibrations.

However, this statement is partially contradicted by the
study of the relations between mass parameters B3030 and
the other diagonal components B3μ3μ. The values of the oc-
tupole mass tensor diagonal components are shown in Fig. 9.
The procedure of obtaining the mass tensors has been
discussed in Sec. IV at Eq. (19). The B3030 mass tensor has a
minimum for α3μ = 0 and weakly depends on axial octupole
deformation. On average, its values are 2 times smaller than

FIG. 8. The profiles of the total energy for the ground-state point
of the 156Gd nucleus with α20 = 0.25 and α22 = 0.0 as function of
various octupole parameters: α30, α31, α32, α33.

mass parameters calculated for nonaxial deformations in the
vicinity of the ground-state minimum. The PES and mass
parameters are the main factors governing the properties of
the vibrational excitations in the nucleus.

As the second step, we determine the ratios rλμ;λ0 ≡
η

(0)
λμ/η

(0)
λ0 . In an approximate way, varying only two, instead

of six, parameters ηλ0 around η
(0)
λ0 values by a discrete step

of �ηλ0 = 0.5, we can determine through condition (62), a
demanded ηλμ as ηλμ = rλμ;λ0 ηλ0, keeping, of course, the ratio
rλμ;λ0 untouched during the whole calculation.

FIG. 9. The profiles of the mass tensors for the ground-state point
of the 156Gd nucleus with α20 = 0.25 and α22 = 0.0 as a function of
various octupole parameters: α30, α31, α32, α33.
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The eigenstates of the Hamiltonian (18) calculated for the
model parameters defined as written above can be used now to
obtain the intraband and interband B(E1) and B(E2) transition
probabilities and compared with the experimental data.

Now we come to the calculation of the electric reduced
transition probabilities. As mentioned in Sec. II, an intrinsic
coordinate system is chosen to fix the moment of inertia
tensor of the quadrupole nuclear surface shape in the principal
axes frame, i.e., α21 = α2−1 = 0 and α22 = α2−2 ∈ R. The
transformation of any irreducible tensor T̂λμ from the intrinsic
(intr) to laboratory (lab) frame obeys the relation (13). In
the same way, we transform the collective electric transition
operators [28]

Q̂
(lab)
λμ =

∑
ν

Dλ
μν(�)�Q̂(intr)

λν . (65)

Above, Q̂λν is the operator of the intrinsic electric multipole
moment of the nucleus of A nucleons and Z protons which
can be approximated, in the case of uniform proton density
distribution of an effective radius R0 ≈ 1.2 A1/3, by

Q̂
(intr)
λν = 3ZeRλ

0

4π

{
αλν + λ + 2

2
√

4π

∑
λ1λ2

√
(2λ1 + 1)(2λ2 + 1)

2λ + 1

× (λ10λ20|λ0)
(
αλ1 ⊗ αλ2

)λ
ν

}
. (66)

Let us remember that Eq. (66) contains αλμ variables which
are, in general, complex. If one wants to calculate the matrix
element of this operator between basis functions (38) defined
in the space of real αλμ, where μ � 0, the properties (2) and (3)
should be applied. Finally, let us calculate the SO(3)-reduced
matrix elements of the multipole transition operator between
states (39) numbered by k and k′ indices

〈�k′;J ′κ ′π ′ |∣∣Q(lab)
λ

∣∣|�k;Jκπ 〉
=
∑

μ

〈φn′π ′ |Q̂(intr)
λμ |φnπ 〉 · 〈R̃J ′

κ ′
∣∣∣∣Dλ�

·μ
∣∣∣∣R̃J

κ

〉
, (67)

where J and J ′ are the angular momenta of the initial and final
basis states, respectively. The symbol ·μ as the subscript by the
Wigner function denotes that the considered reduced matrix
element has been already reduced, using the Wigner-Eckart
theorem, with respect to the first index. As easily seen, the
expression 〈φn′π ′ |Q̂λμ|φnπ 〉 is simply the matrix element of
the Q̂

(intr)
λμ intrinsic multipole moment operator of the charge

distribution between vibrational part of the basis state (39). In
this work, the latter is calculated numerically. The second
element in Eq. (67) between the rotational functions can
be evaluated analytically, using the standard Wigner-Eckart
theorem, similarly as in Eq. (29),

〈
R̃J ′

κ ′
∣∣∣∣Dλ�

·μ
∣∣∣∣R̃J

κ

〉 = √
(2J + 1)

∑
KK ′

∑
gg′∈Ḡs

[
1

card(Ḡs)

]2

· [DJ ′
κ ′K ′ (g′)

]�
DJ

κK (g) (JKλμ|J ′K ′), (68)

where for the symmetrization group Ḡs = D̄4 and
card(D̄4) = 8.

To obtain the transitional matrix elements between a pair
of full Hamiltonian eigenstates |�(Jπ ) (or simply collective
states), the matrix elements (67) between given 〈bra| and |ket〉
basis functions should be first multiplied by the appropriate
products of the two probability amplitudes corresponding to
the k and k′ indices (if necessary, for the “bra” function it is
complex conjugated) and, second, doubly summed over the
full basis set (k and k′ indices). The probability amplitudes
in question corresponding, e.g., to the mth Hamiltonian
eigensolution are usually stored in the mth column (less often
the row) of the orthonormal matrix of eigenvectors returned
by the diagonalization routine.

Having obtained the transitional matrix element for the pair
of full collective states according to the above prescription,
the reduced transition probability of the electric Eλ transition
finally reads

B(Eλ,J → J ′) =
∣∣〈�J ′π ′ |∣∣Q(lab)

λ

∣∣|�Jπ 〉∣∣2
2J + 1

. (69)

IX. RESULTS

In the presented framework we are able to estimate the
positive- and negative-parity collective states of a nucleus
and calculate the electric transitions between them as well.
We performed calculations for 156Gd nucleus which has been
recently investigated, e.g., in Ref. [61,62] to search for the
traces of the high rank symmetries (tetrahedral, octahedral) of
its geometrical form. The purpose of this work is to construct,
at least in an approximate way, a basic model enabling us
to discuss the problem of a full set of octupole degrees of
freedom and the interplays between them in this nucleus.
Certainly, the model permits us to treat other nuclei with static,
octupole-deformed stable configurations. This, we hope, will
chart a path to develop more and more involved collective
models to more closely approach the experimental results in
the future.

A. Band structures

Analyzing the calculated and experimental values of the in-
traband and interband electric-transition probabilities, we can
identify, with a significant dose of probability, the eigenstates
which may correspond to states populated in the experiment.
On the other hand, with regard to the observables such as the
B(E1), B(E2) probabilities, energies of emitted photons, Eγ ,
which can be directly compared with the experimental data, we
are able to construct, at most, three reasonable schemes of the
ground state and the accompanying low-energy negative-parity
rotational bands in 156Gd. Each of those schemes corresponds
to the experimental level scheme of Ref. [61,62] and reflects a
possible scenario where the dominating octupole one-phonon
excitation of α3μ type is considered as the bandhead of the
lowest negative-parity band.

As often done, each Hamiltonian eigensolution is the linear
combination of the orthonormal basis states with the corre-
sponding amplitudes determined through the diagonalization
of the Hamiltonian matrix. Analyzing those amplitudes,
particularly in a given low-energy octupole, negative-parity
state, one would be able to extract the dominating vibrational
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FIG. 10. The schematic presentation of the calculated levels for
156Gd. The odd- and even-spin bands are drawn. There are a series
of levels corresponding to every spin. The energies (in MeV) of each
level are marked as well as the B(E2) transition probabilities (in
W.u.).

mode and associated with this the symmetry of the considered
configuration. Note that we are mainly interested in one-
phonon vibrational excitations of axial, tetrahedral, or nonaxial
type.

As we remember, the minimum of the octupole part
of the potential energy well corresponding to the ground
state appears for deformations α3μ = 0 for all μ = {0,1,2,3}.
For such an octupole configuration, the negative-parity basis
functions (38) are obtained solely with the use of the odd-order
Hermite polynomials of octupole variables. As the outcome of
calculations, the octupole excitations corresponding to a given
α3ν mode are either of one- or three-phonon type. The latter
lie much higher (some 2 MeV) in energy than the one-phonon
excitations and are not considered in this work. We also
observe that the individual one-phonon eigensolution contains
hardly a minor admixture of the three-phonon component
of the same multipolarity. Its magnitude is on the level of
5 ÷ 15%, depending on the state and thus contributes to the full
state only insignificantly. This may indicate that the harmonic
approach for low-energy octupole modes is rapidly convergent
in this nucleus. Note also that the approximation formula used
to generate the collective potential between the mesh points has
nothing to do with any parabolic-like interpolation methods.

Figure 10 presents the most intensive of the obtained in
current calculations E2 transitions within quadrupole and
octupole bands. Apart from the quadrupole band built on the
lowest quadrupole excitation, one can also distinguish two
additional rotational bands, based on vibrational structures
that are higher by 600 keV and 650 keV. Both of them are
characterized by B(E2) values of the order of 120 W.u.

In the negative-parity regime, the lowest two 3− states in
Fig. 10 are described by one-phonon excitations in the α30

and α31 modes, but the latter lies only some 70 keV higher.
The so-called tetrahedral mode, described here by a real α32

variable, is placed more or less 380 keV higher than the
lowest axial mode while the nonaxial one, characterized by α33

deformation, is placed some 900 keV above the lowest one.
The latter therefore seems to be less likely excited. The same
order of octupole modes is conserved for 5− bundle of states.

TABLE I. The γ -ray energies predicted theoretically (Eth
γ ) and

measured experimentally (Eexp
γ ) in ILL Grenoble on 156Gd [61,62].

Both even- and odd-spin bands are compared. The experimental
values of the negative-parity bandhead is (3−

1 ) = 1.27 MeV. The
energies of the bandheads of the negative-parity states characterized
by various types of the one-phonon octupole excitations are also
shown.

Transition Eth
γ Eexp

γ

(2+ → 0+) 90 keV 88 keV
(4+ → 2+) 210 keV 199 keV
(5− → 3−) 180 keV 130 keV
(3−

0 ) 0.87 MeV
(3−

1 ) 0.94 MeV
(3−

2 ) 1.25 MeV 1.27 MeV
(3−

3 ) 1.77 MeV

As we observe, within the range of 0.5 MeV we can find three
types of one-phonon octupole excitations that can potentially
be treated as the bandheads of the lowest negative-parity odd-
spin model bands. What is important, the B(E2,5− → 3−)
probabilities between rotational states, based on each of those
four excitations, are all around 200 W.u. The comparison of
the present calculation results with experimental deexcitation
energies is shown in Table I.

Now let us present some features of the positive-parity
states. For every even-spin value available in the model,
i.e., J = 0,2,4,6, we can distinguish three different vibra-
tional structures which are responsible for producing strong
quadrupole transitions, e.g., B(E2,2+ → 0+) being 110 ÷
118 W.u. Theoretically, those states can be considered as a
potential band-heads for construction of three ground-state
model bands. They differ by the structure of the quadrupole
excitations. The lowest-energy state is in about 98% dominated
by the zero-phonon (u0(α20)u0(α22)) quadrupole oscillator
solution. The other two are composed mainly of the one-
phonon states of α20 and α22 modes with small 2-, 3-, . . . ,6-
phonon admixtures. As mentioned, their energies with respect
to the lowest 0+ state are, respectively, 600 keV and 650 keV.

B. Calculated electric transitions

Let us now discuss the B(Eλ) transition probabilities
obtained for different model bands. If the ground-state band is
concerned, all the interband B(E2) probabilities reproduced
within this model are too small as compared to experimental
measurements. In fact, the theoretical equilibrium static
quadrupole deformation β

(gs)
2 = 0.25, which is the main factor

determining the value of the transitional matrix element
(67) is too small as compared to the experimental value of
β

(exp)
2 = 0.34.

However, since β
(exp)
2 describes a kind of dynamical

deformation effect caused by the zero-point vibrations of
the ground-state configuration, it is clear that its direct
comparison with the static deformation of the mean-field
potential-energy minimum is not that direct. According to
our earlier estimates, the dynamical effects in question can
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TABLE II. The predicted (Theory) and measured (Exp.) E2 tran-
sition probabilities for positive- and negative-parity bands. The mode
of octupole excitation is also shown (Excitation). The experiment was
done in ILL Grenoble for 156Gd [61,62].

Transition B(E2) (W.u.) Dominating

Iπ
i → Iπ

j Theory Exp. Excitation

2+ → 0+ 118 187(5)
4+ → 2+ 163 263(5)

5−
0 → 3−

0 197 293+61
−134 α30 → α30

5−
1 → 3−

1 195 α31 → α31

5−
2 → 3−

2 194 α32 → α32

5−
3 → 3−

3 191 α33 → α33

enlarge the static deformation of the ground state even by 20%.
Nevertheless, by the fact that the rotational and vibrational
motions are totally decoupled in this model, the obtained
ratio of B(E2,4+ → 2+)/B(E2,2+ → 0+) ≈ 1.4 agrees with
the experimental issue, which is characteristic for electric
transitions within fixed vibrational structure.

Comparing the B(E2) results with those of Ref. [12]
obtained through one of the recent version of the Bohr-
Hamiltonian model, we see that for nuclei lighter than hafnium
isotopes, the discrepancy of experimental and theoretical
B(E2)′s exceeds 50 W.u. with the tendency to growing up.

Within the negative-parity model bands mentioned in the
previous subsection, the strongest intraband B(E2,5− → 3−)
transition probabilities are all of the order of 200 W.u.
They are mainly contributed by the sole quadrupole part
u0(α20 − ˚α20) u0(α22 − ˚α22), common for all negative-parity
basis states (38). Only a few Weisskopf units contributing to
this value comes from pure octupole partly due to the fact that

the E2 transition operators (66) in the octupole part occur as
the second-order couplings of the octupole variables only.

Now, the argument shifts ˚α20 and ˚α22 describe the position
of the main octupole potential energy minimum on the
quadrupole (α20,α22) plane. Note that in the 156Gd nucleus,
the only octupole minimum appears for all α3ν = 0 and is
“based” on the quadrupole ground-state well. Therefore, we
admit that ˚α20 = 0.25 and ˚α22 = 0.

This value of reduced probability for the negative-parity
band agrees with the experimental measurement within quite
high error bars (see Table II). The energy Eγ in this transition
stays in good agreement with the experimental value and is
equal to 130 keV. The other series of obtained B(E2,5− →
3−)’s, of the order of 130 W.u., 65 W.u., and 15 W.u., are
beyond the error bars.

We realize that the values of the B(E2) transitions within
the bands of interest are reproduced with unsatisfactory
accuracy. Particularly, the B(E2)’s in the ground-state band
are much beyond the experimental confidence interval. As a
result, the quadrupole transition in the octupole band based on
the quadrupole ground state, however, fits the interval between
the error bars and is far from the reference value equal to
293 W.u.

As the next step, we calculate the interband B(E1) tran-
sitions between the ground-state and the octupole, negative-
parity model bands. Since the dipole E1 transitions are sensi-
tive for the structures of both the positive- and negative-parity
states, we expect the B(E1) probabilities to be calculated
with an order-of-magnitude accuracy. The dipole transitions
allow us to finally eliminate the scenarios with the interband
B(E1) probabilities differing within more than one order of
magnitude from the experimental data. Figure 10 visualizes
the three modes of the positive-parity bands as well as the
same number of selected negative-parity ones obtained in our

FIG. 11. The energy scale for the four model bands deduced from the presented calculations. The experimentally measured band is also
shown.
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TABLE III. The predicted and measured (Exp.) E1 transition
probabilities between positive- and negative-parity bands. Symbols
α3μ specify the type of the model bandhead structures. The experiment
has been done in ILL Grenoble for 156Gd [61,62].

Transition Theory B(E1) (10−3W.u.)

Iπ
i → Iπ

j α30 α31 α32 α33 Exp.

3− → 2+
1 58 37 0.36 0.006 0.98(21)

3− → 2+
2 0.052 0.053 1.5 4.3

3− → 2+
3 3.2 2.3 0.018 0.000001

3− → 4+
1 81 51 0.51 0.009 0.77(16)

3− → 4+
2 0.082 0.14 2.2 6

3− → 4+
3 4.4 3.3 0.034 0.00001

5− → 4+
1 66 42 0.41 0.0072 0.85+0.19

−0.38

5− → 4+
2 0.67 0.12 1.8 5

5− → 4+
3 0.36 2.7 0.028 0.00008

5− → 6+
1 81 51 0.53 0.008 0.64+0.14

−0.29

5− → 6+
2 0.069 0.13 2.1 6.0

5− → 6+
3 4.5 3.2 0.023 0.0005

calculations. In turn, Fig. 11 shows the transitions from all four
negative-parity bands to the ground-state band.

The first model, illustrated in Fig. 11, assumes that the
quadrupole band (0+,2+,4+,6+) is composed of rotational
states based on the third (energetically the highest) of selected
in the previous section quadrupole structures, whereas the
accompanying negative-parity band, (3−,5−, . . . ), is based
on the one-phonon axial octupole (α30) excitation. The best
estimates of the B(E1) probabilities given by this model are,
on average, 4 ÷ 5 times too large than the corresponding
experimental values. Also, the energies of emitted photons,
Eγ ’s, are here much too small compared to the experimental
ones. In case the E1 transitions would finish in the two other
energetically lower positive-parity states, the B(E1) reduced
probabilities become roughly either two orders of magnitude
too large or two orders too small, respectively. The photon
energies for this choice are getting closer to the experimental
values.

The second scenario, shown in Fig. 11, where the ground-
state band is assumed to be the same as in the previous
scheme and the rotational band is built on the one-phonon
α31 excitation, gives somewhat better estimates of B(E1)
probabilities, which are still about 3 times too high than in
the experiment. The behavior of Eγ ’s is similar as in the first
scheme. Again, if the final states in the ground-state band
would be based on the two energetically lower bandheads,
the corresponding B(E1) values are, similarly as in the first
scenario, not acceptable, regardless of the fact that now the
Eγ ’s better fit the experimental values.

The third theoretical level scheme in this figure has, as the
favorable positive-parity bandhead, the energetically lowest
quadrupole structure, whereas the negative-parity band is
constructed on the one-phonon tetrahedral (α32) excitation.
This scenario reproduces within the error bars the two of four
measured experimental B(E1) values. The B(E1,5− → 4+

1 )
transition is slightly out of the confidence interval while the

B(E1,3− → 2+
1 ) one is too small by a factor of two. The Eγ ’s

of this scenario are reproduced in quite a satisfactory way, see
Table III.

Comparing above three model bands, we can observe that
the third model, based on the tetrahedral excitation, reproduces
both the transition probabilities and the energies of emitted γ
rays with acceptable accuracy.

X. SUMMARY AND PERSPECTIVES

We have constructed the collective model in the intrinsic
frame based on the realistic collective Hamiltonian. Having
diagonalized this Hamiltonian for the 156Gd nucleus, one can
then determine the reduced transition probabilities B(Eλ)
within or between the model bands as well as the correspond-
ing energies of emitted photons, Eγ ’s. The presented model
treats all the quadrupole and octupole degrees of freedom on
the same footing.

The Hamiltonian is diagonalized in a six-dimensional
uncoupled harmonic oscillator basis. This basis is restricted to
0-, 1-, 2-, 3-phonon states in both the quadrupole and octupole
parts.

Since only real parts of complex αλμ collective variables are
considered, the symmetrization group of our model is no longer
the octahedral group Ōh, as for purely quadrupole vibrations,
but rather its subgroup, D̄4.

The symmetry conditions discussed above forced us to
use the generalized rotor Hamiltonian, which is a much
more involved approximation than the standard nonaxial rotor.
In return, we get the rotational Hamiltonian of required
symmetry, where the coupling constants of “higher-order”
terms, playing a role of perturbations to the standard rotor,
can be fitted to a selected fragment of the full experimental
rotational spectrum.

The calculated intraband B(E2,6+ → 4+), B(E2,4+ →
2+), B(E2,2+ → 0+), and B(E2,5− → 3−) reduced proba-
bilities are systematically too small compared to the experi-
mental data. In turn, the interband dipole B(E1) probabilities,
using the quadrupole-octupole-induced coupling α1μ dipole
variables in the transition operator, are reproduced with
accuracy up to an order of magnitude.

As discussed above, there appears to be a need to search for
a more realistic model to determine the collective potential.
The macroscopic-microscopic approximation used here gives
quadrupole equilibrium deformations that are too small, which
directly influence the E2 transitional matrix elements in both
types of bands discussed. A promising solution would be to use
a fully microscopic approach with a realistic nucleon-nucleon
effective interaction that is able to generate the results within
a reasonable “computer power” and time scale.

Surprisingly, the nonaxial α31 octupole mode is very close
in energy to the axial α30 one, which, since the beginning,
has supposed to have been the lowest. Studying only the
potential-energy surfaces, the nonaxial modes have not been
seriously taken into account as being able to efficiently
compete with the axial mode. Of course, for a given basis
cutoff criterion, such effects difficult to predict are the
outcome of the interplay between complicated behavior of
the potential-energy function and deformation-dependent
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quadrupole and octupole mass tensors. The interesting
features of the so-called tetrahedral states point out that all
four octupole degrees of freedom are important to understand
a complex behavior of negative-parity bands.

As also shown, in the presented approach the octupole
three-phonon basis functions contribute only within several
percentages to the leading one-phonon components. It con-
firms that the consideration of five, seven, or higher phonon
components would have only a minor influence on the results
presented.

The problem of quadrupole-octupole coupling by the one-
diagonal components of one, common for quadrupole and
octupole mass tensors in the kinetic-energy term, should also
be considered in a future version of the presented model.
We are also aware of the fact that for nuclei with “soft”
potential-energy wells the coupling of vibrational and rota-
tional modes should be switched on to provide us with more
adequate description of collective states and electromagnetic
transitions.

For the future applications it would be interesting to see
what the present approach predicts in the case of, e.g., the

224Ra nucleus, where static octupole deformation has been
detected [63], as well as in neighboring nuclei currently under
experimental investigation as possible candidates for stable oc-
tupole deformation. For 224Ra, predictions of B(E1), B(E2),
and B(E3) probabilities by models of Refs. [64,65] at or close
to the axial symmetry have been found to provide good results.

An open problem is the even-spin negative-parity spectra,
recently measured in the 156Gd nucleus. If the appropriate
preliminary experimental data are confirmed, then we hope
that the forthcoming work will be (partly) devoted to this topic.

In addition, to catch more subtle effects of the octupole
vibrations, the density of the potential-energy mesh should be
enlarged.
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Leander, P. Möller, and E. Ruchowska, Nucl. Phys. A 429, 269
(1984).

[11] W. Nazarewicz, J. Dudek, R. Bengtsson, T. Bengtsson, and
I. Ragnarsson, Nucl. Phys. A 435, 397 (1985).
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[29] A. Góźdź, J. Dudek, and M. Miśkiewicz, Acta Phys. Pol. B 34,
2123 (2003).
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