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Effects of deformation and neutron-proton pairing on the Gamow-Teller transitions for 24,26Mg
in a deformed quasiparticle random-phase approximation
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We investigate effects of neutron-proton (np) pairing correlations on the Gamow-Teller (GT) transition of
24,26Mg by explicitly taking into account deformation effects. Our calculation is performed by a deformed
quasiparticle random phase approximation (DQRPA) which includes the deformation at the Bardeen-Cooper-
Schrieffer and RPA stage. In this paper, we include the np pairing as well as neutron-neutron (nn) and proton-
proton (pp) paring correlations to the DQRPA. Our new formalism is applied to the GT transition of well-known
deformed Mg isotopes. The np pairing effect is found to affect more or less the GT distribution of 24Mg and 26Mg.
But the deformation effect turns out to be much larger than the np paring effect because the Fermi surfaces smear
more widely by the deformation rather than the np pairing correlations. Correlations between the deformation
and the np pairing effects and their ambiguities are also discussed with the comparison to experimental GT
strength data by triton and 3He beams.
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I. INTRODUCTION

Neutron-proton (np) pairing correlations have been thought
to play important roles in understanding nuclear structure and
related nuclear electromagnetic (EM) and weak transitions for
N = Z nuclei [1–6]. In these nuclei, protons and neutrons
are usually presumed to occupy the same orbitals and have
maximal spatial overlaps. Compared to proton-proton (pp)
and neutron-neutron (nn) pairing which have only isovector
(T = 1), the np pairing correlations have two different modes,
viz. isoscalar (T = 0) and isovector (T = 1). Most studies for
the np pairing have focused on N = Z nuclei because the
np pairing in the nuclei is expected to be larger than that
in N �= Z nuclei. However, as shown in recent works [7–9],
nuclear structure of the N �= Z nuclei may also be affected by
the np pairing correlations.

The importance of the np pairing has been discussed in
our early reports for single- and double-β decays [10,11].
But, they were performed by using a spherical quasiparticle
random phase approximation (QRPA), which did not include
the deformation explicitly. Motivation of the present work
is to include the np-pairing effect within a deformed QRPA
(DQRPA) approach with a realistic two-body interaction given
by the Brueckner G-matrix based on the CD Bonn potential.
Therefore, this work is an extension of our previous works for
the DQRPA [12,13], in which the deformation effects were
consistently treated in the QRPA framework [12], but the
np pairing correlations were taken into account only at the
Bardeen-Cooper-Schrieffer (BCS) stage [13].

As an application of the DQRPA including the np pairing
correlations, we choose GT transitions because the GT strength
distributions are sensitive to the nuclear shape and the pairing
correlations [14]. For more quantitative comprehension of the
np pairing effects and the deformation in the GT transition,
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we consider two Mg isotopes, 24Mg and 26Mg, which are well-
known deformed nuclei and have new systematic GT data by
3He and t beams [15–18]. The np pairing correlations change
the conventional quasiparticle concept. The quasineutron and
quasiproton concept is to be understood as quasiparticles 1
and 2 which may mix properties of the quasiproton and
quasineutron. Therefore, in Sec. II, we explain the DQRPA
formalism including all types of pairing correlations as well
as the deformation. The applications to the GT transition
strength distributions of Mg isotopes are performed in Sec. III
with detailed discussions regarding how to determine some
parameters inherent in the present formalism. Summary and
conclusions are done in Sec. IV.

II. FORMALISM

Theoretical description of the DQRPA approach had been
already detailed in our previous paper [12], so that here we
briefly summarize the basic formalism. We start from the
following nuclear Hamiltonian:

H = H0 + Hint,

H0 =
∑
ρααα′

ερααα′c
†
ρααα′cρααα′ ,

Hint =
∑

ραρβργ ρδ,αβγ δ,α′β ′γ ′δ′

×Vρααα′ρβββ ′ργ γ γ ′ρδδδ′c
†
ρααα′c

†
ρβββ ′cρδδδ′cργ γ γ ′ , (1)

where Greek letters denote proton or neutron single-particle
states with a projection � of total angular momentum on a
nuclear symmetry axis. The projection � is treated as the only
good quantum number in the deformed basis. ρα(ρα = ±1)
denotes a sign of the total angular momentum projection � of
an α state. Isospin of real particles is denoted by Greek letters
with a prime (α′,β ′,γ ′,δ′), while isospin of quasiparticles is
to be expressed by Greek letters with a double prime. The
operator c

†
ρααα′ (cρααα′ ) in Eq. (1) stands for a usual creation
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(destruction) operator of the real particle in a state of ραα with
angular momentum projection �α and isospin α′.

A. Deformed BCS equation

The Hamiltonian in Eq. (1) represented by the real particles
was then transformed to a quasiparticle representation through
Hartree-Fock-Bogoliubov (HFB) transformation,

a
†
ρααα′′ =

∑
ρβββ ′

(uαα′′ββ ′c
†
ρβββ ′ + vαα′′ββ ′cρβ β̄β ′ ),

aραᾱα′′ =
∑
ρβββ ′

(uᾱα′′β̄β ′cρβ β̄β ′ − vᾱα′′β̄β ′c
†
ρβββ ′). (2)

Since our formalism was intended to include the np pairing
correlations, we denoted the isospin of quasiparticles as
α′′(β ′′) = 1,2, while the isospin of real particles was denoted as
α′(β ′) = p,n. We assumed the time reversal symmetry, which
means uαα′′ββ ′ = u∗̄

βα′′ᾱβ ′ and vαα′′ββ ′ = −v∗̄
βα′′ᾱβ ′ , and did not

allow mixing of different single-particle states (α and β) to the
quasiparticle state in a deformed state. However, in a spherical
state, the quasiparticle state was mixed with different particle
states because each deformed state (basis) can be represented
by a linear combination of the spherical state (basis) (see Fig. 1
at Ref. [12]). In this respect, the deformed BCS (DBCS) is
another representation of the HFB state in the spherical basis
calculation. In actual calculations, we expand all deformed
wave functions constructed by a deformed harmonic oscillator
basis into the spherical basis, because the Wigner-Eckardt
theorem can be only applied to the spherical states and our
G matrix was calculated in the spherical basis.

The HFB transformation for each α state was then reduced
to the following form:

⎛
⎜⎜⎝

a
†
1

a
†
2

a1̄
a2̄

⎞
⎟⎟⎠

α

=

⎛
⎜⎜⎝

u1p u1n v1p v1n

u2p u2n v2p v2n

−v1p −v1n u1p u1n

−v2p −v2n u2p u2n

⎞
⎟⎟⎠

α

⎛
⎜⎜⎝

c
†
p

c
†
n

cp̄

cn̄

⎞
⎟⎟⎠

α

(3)

and the Hamiltonian could be expressed in terms of the
quasiparticle as

H ′ = H ′
0 +

∑
ρααα′′

Eαα′′a
†
ρααα′′aρααα′′ + Hqp.int. (4)

Finally, using the transformation of Eq. (3), the following
deformed HFB (DHFB) equation was obtained:

⎛
⎜⎝

εp − λp 0 
pp̄ 
pn̄

0 εn − λn 
np̄ 
nn̄


pp̄ 
pn̄ −εp + λp 0

np̄ 
nn̄ 0 −εn + λn

⎞
⎟⎠

α

⎛
⎜⎝

uα′′p
uα′′n
vα′′p
vα′′n

⎞
⎟⎠

α

= Eαα′′

⎛
⎜⎝

uα′′p
uα′′n
vα′′p
vα′′n

⎞
⎟⎠

α

, (5)

where Eαα′′ is the energy of a quasiparticle with the isospin
quantum number α′′ in the α state. The pairing potentials in the
DHFB Eq. (5) were calculated in the deformed basis by using

G matrix calculated from the realistic Bonn CD potential for
nucleon-nucleon (NN ) interaction as follows:


pp̄α = 
αpᾱp = −
∑
J,c

gppF
J0
αaᾱaF

J0
γ cγ̄ cG(aacc,J,T = 1)

× (u∗
1pc

v1pc
+ u∗

2pc
v2pc

), (6)


pn̄α = 
αpᾱn = −
∑
J,c

gnpF
J0
αaᾱaF

J0
γ cγ̄ c

× [
G(aacc,J,T = 1)Re

(
u∗

1nc
v1pc

+ u∗
2nc

v2pc

)

+ iG(aacc,J,T = 0)Im
(
u∗

1nc
v1pc

+ u∗
2nc

v2pc

)]
, (7)

where FJK
αaᾱa = Bα

a Bα
a (−1)ja−�αCJK

ja�αja−�α
(K = �α − �α)

was introduced to represent the G matrix in the deformed
basis with the expansion coefficient Bα calculated as [12]

Bα
a =

∑
Nnz�

C
j�α

l� 1
2 �

A
N0l
Nnz�

bNnz�,A
N0lnr

Nnz�
= 〈N0l�|Nnz�〉.

(8)

Here, K , which is a projection number of the total angular
momentum J onto the z axis, was selected as K = 0 at
the DHFB stage because we considered pairings of the
quasiparticles at α and ᾱ states. G(aaccJ ) represents a
two-body (pairwise) scattering matrix in the spherical basis
where all possible scattering of the nucleon pairs inside a
nucleus were taken into account.

In the present work, we have included all possible J values,
which have K = 0 projection. 
αnᾱn is calculated in a way
similar to Eq. (6) by replacing a proton by a neutron. In order
to renormalize the G matrix, strength parameters (gpp, gnn, and
gnp) were multiplied with the G matrix [10] by adjusting the
pairing potentials, 
pp̄ and 
nn̄, of the lowest state in Eq. (6) to
empirical pairing gaps, 


emp
p and 


emp
n . The empirical pairing

gaps of protons, neutrons, and neutron-proton were evaluated
by a symmetric five-term formula for neighboring nuclei [13],
for which we exploited empirical masses. Theoretical np
pairing gaps were calculated as

δth.
np = −[(

H 12
g.s. + E1 + E2

) − (
Hnp

g.s. + Ep + En

)]
. (9)

Here H 12
g.s.(H

np
g.s.) is a total deformed BCS ground state energy

with (without) np pairing and E1 + E2(Ep + En) is a sum of
the lowest two quasiparticle energies with (without) np pairing
potential 
np in Eq. (5).

For the mean field energy εp(n) in Eq. (5), we adopted a
deformed Woods-Saxon potential with the universal parameter
set [19]. A quadrupole deformation parameter and a hexade-
capole deformation parameter, β2 and β4, are defined in the
following surface radius:

R(θ ) = R0(1 + β2Y20(θ ) + β4Y40(θ )), (10)

TABLE I. Deformation parameters and empirical pairing gaps for
Mg isotopes.

Nucleus βOurs
2 βOurs

4 βE2
2 
emp

p 
emp
n δemp

np

24Mg 0.5 0.05 0.605 3.123 3.193 1.844
26Mg 0.5 − 0.03 0.482 2.314 1.896 0.143
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where the sharp-cut radius R0 = 1.2A1/3 fm [20], and Y20

and Y40 are spherical harmonics. Table I shows the empirical
pairing gaps and the deformation parameter β2 deduced from
the E2 transition data with βours

2 and βours
4 values exploited

for Mg isotopes in this work, which are fixed by taking
the minimum ground state energy as done in Refs. [21,22].
Detailed calculations for the deformation parameters are
presented in Sec. III A.

B. Deformed QRPA equation

Our deformed QRPA (DQRPA) equation was obtained by taking the same approach as the derivation of the QRPA equation in
Ref. [23]. But all kinds of pairing correlations are included in the DQRPA. In particular, the np pairing becomes of importance
for the description of neutron deficient nuclei, where the Fermi energy of protons may be located near to that of neutrons. This
discussion is also addressed in detail in Sec. III. Our DQRPA equation with the np pairing is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1111
αβγ δ(K) A1122

αβγ δ(K) A1112
αβγ δ(K) A1121

αβγ δ(K) B1111
αβγ δ(K) B1122

αβγ δ(K) B1112
αβγ δ(K) B1121

αβγ δ(K)

A2211
αβγ δ(K) A2222

αβγ δ(K) A2212
αβγ δ(K) A2221

αβγ δ(K) B2211
αβγ δ(K) B2222

αβγ δ(K) B2212
αβγ δ(K) B2221

αβγ δ(K)
A1211

αβγ δ(K) A1222
αβγ δ(K) A1212

αβγ δ(K) A1221
αβγ δ(K) B1211

αβγ δ(K) B1222
αβγ δ(K) B1212

αβγ δ(K) B1221
αβγ δ(K)

A2111
αβγ δ(K) A2122

αβγ δ(K) A2112
αβγ δ(K) A2121

αβγ δ(K) B2111
αβγ δ(K) B2122

αβγ δ(K) B2112
αβγ δ(K) B2121

αβγ δ(K)
−B1111

αβγ δ(K) −B1122
αβγ δ(K) −B1112

αβγ δ(K) −B1121
αβγ δ(K) −A1111

αβγ δ(K) −A1122
αβγ δ(K) −A1112

αβγ δ(K) −A1121
αβγ δ(K)

−B2211
αβγ δ(K) −B2222

αβγ δ(K) −B2212
αβγ δ(K) −B2221

αβγ δ(K) −A2211
αβγ δ(K) −A2222

αβγ δ(K) −A2212
αβγ δ(K) −A2221

αβγ δ(K)
−B1211

αβγ δ(K) −B1222
αβγ δ(K) −B1212

αβγ δ(K) −B1221
αβγ δ(K) −A1211

αβγ δ(K) −A1222
αβγ δ(K) −A1212

αβγ δ(K) −A1221
αβγ δ(K)

−B2111
αβγ δ(K) −B2122

αβγ δ(K) −B2112
αβγ δ(K) −B2121

αβγ δ(K) −A2111
αβγ δ(K) −A2122

αβγ δ(K) −A2112
αβγ δ(K) −A2121

αβγ δ(K)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X̃m
(γ 1δ1)K

X̃m
(γ 2δ2)K

X̃m
(γ 1δ2)K

X̃m
(γ 2δ1)K

Ỹm
(γ 1δ1)K

Ỹm
(γ 2δ2)K

Ỹm
(γ 1δ2)K

Ỹm
(γ 2δ1)K

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ��m
K

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X̃m
(α1β1)K

X̃m
(α2β2)K

X̃m
(α1β2)K

X̃m
(α2β1)K

Ỹm
(α1β1)K

Ỹm
(α2β2)K

Ỹm
(α1β2)K

Ỹm
(α2β1)K

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

where 1 and 2 mean isospins of quasiparticles denoted as α′′(β ′′) in previous sections. The amplitudes X̃m
(αα′′ββ ′′)K and Ỹ m

(αα′′ββ ′′)K
stand for forward and backward going amplitudes from state αα′′ to ββ ′′.

Our DQRPA equation has a very general form because we include the deformation as well as all kinds of pairing correlations
still remaining in the mean field. If we switch off the np pairing, all off-diagonal terms in the A and B matrices of the left
hand side of Eq. (11) disappear with the replacement of 1 and 2 with p and n. Then the DQRPA equation is decoupled into
pp + nn + pn + np DQRPA equations. For charge conserving (or neutral current) reactions, pp + nn DQRPA can describe the
M1 spin or EM transitions on the same nuclear species, while np + pn DQRPA describes the GT(−/+) transitions in the charge
exchange (or charged current) reactions. Also it should be noted that the np DQRPA is different from the pn DQRPA because of
the deformation. But, if we neglect the np pairing, i.e., take only 1212 terms and αβγ δ = (pnp′n′) in the matrices, quasiparticles
1 and 2 reduce to quasiproton and quasineutron, and Eq. (11) becomes the np DQRPA at Ref. [24]. One more point to be noticed
is that, if we use the spherical QRPA, this equation is reduced to the QRPA equation in Ref. [10].

The A and B matrices in Eq. (11) are given by

A
α′′β ′′γ ′′δ′′
αβγ δ (K) = (Eαα′′ + Eββ ′′)δαγ δα′′γ ′′δβδδβ ′′δ′′ − σαα′′ββ ′′σγγ ′′δδ′′

×
∑

α′β ′γ ′δ′
[−gpp(uαα′′α′uββ ′′β ′uγγ ′′γ ′uδδ′′δ′ + vαα′′α′vββ ′′β ′vγγ ′′γ ′vδδ′′δ′)Vαα′ββ ′,γ γ ′δδ′

−gph(uαα′′α′vββ ′′β ′uγγ ′′γ ′vδδ′′δ′ + vαα′′α′uββ ′′β ′vγγ ′′γ ′uδδ′′δ′)Vαα′δδ′,γ γ ′ββ ′

−gph(uαα′′α′vββ ′′β ′vγγ ′′γ ′uδδ′′δ′ + vαα′′α′uββ ′′β ′uγγ ′′γ ′vδδ′′δ′)Vαα′γ γ ′,δδ′ββ ′], (12)

B
α′′β ′′γ ′′δ′′
αβγ δ (K) = −σαα′′ββ ′′σγγ ′′δδ′′

∑
α′β ′γ ′δ′

[gpp(uαα′′α′uββ ′′β ′vγγ ′′γ ′vδδ′′δ′ + vαα′′α′vβ̄β ′′β ′uγγ ′′γ ′uδ̄δ′′δ′)Vαα′ββ ′,γ γ ′δδ′

− gph(uαα′′α′vββ ′′β ′vγγ ′′γ ′uδδ′′δ′ + vαα′′α′uββ ′′β ′uγγ ′′γ ′vδδ′′δ′)Vαα′δδ′,γ γ ′ββ ′

− gph(uαα′′α′vββ ′′β ′uγγ ′′γ ′vδδ′′δ′ + vαα′′α′uββ ′′β ′vγγ ′′γ ′uδδ′′δ′)Vαα′γ γ ′,δδ′ββ ′ ], (13)
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where u and v coefficients are determined from the DBCS calculation with the pairing strength parameters gn
pair,g

p
pair, and g

np
pair

adjusted to the empirical pairing gaps 
nn,
pp, and δnp, respectively. Eαα′′ indicates the quasiparticle energy of the state α with
the quasiparticle isospin α′′ = 1 or 2. The two-body interactions Vαβ,γ δ and Vαδ,γβ are particle-particle and particle-hole matrix
elements of the residual NN interaction V , respectively, in the deformed state calculated by the G matrix. Detailed manipulations
were explained in Ref. [12].

The β± decay operator, β̂±
1μ, is defined in an intrinsic frame as

β̂−
1μ =

∑
αβ

〈αp|τ+σK |βn〉c†αpc̃βn, β̂+
1μ = (β̂−

1μ)
† = (−)μβ̂−

1,−μ. (14)

The β± transition amplitudes from the ground state of an initial (parent) nucleus to an excited state of a daughter nucleus, i.e.,
one phonon state K+ in a final nucleus, are written as

〈K+,m|β̂−
K |DQRPA〉 =

∑
αα′′ραββ ′′ρβ

Nαα′′ραββ ′′ρβ
〈αα′′pρα|σK |ββ ′′nρβ〉[uαα′′pvββ ′′nX

m
(αα′′ββ ′′)K + vαα′′puββ ′′nY

m
(αα′′ββ ′′)K

]
,

〈K+,m|β̂+
K |DQRPA〉 =

∑
αα′′ραββ ′′ρβ

Nαα′′ββ ′′ 〈αα′′pρα|σK |ββ ′′nρβ〉[uαα′′pvββ ′′nY
m
(αα′′ββ ′′)K + vαα′′puββ ′′nX

m
(αα′′ββ ′′)K

]
, (15)

where |DQRPA〉 denotes a correlated DQRPA ground state in the intrinsic frame and the normalization factor is given as
Nαα′′ββ ′′ (J ) = √

1 − δαβδα′′β ′′ (−1)J+T /(1 + δαβδα′′β ′′ ). The forward and backward amplitudes, Xm
(αα′′ββ ′′)K and Ym

(αα′′ββ ′′)K , are

related to X̃m
(αα′′ββ ′′)K = √

2σαα′′ββ ′′Xm
(αα′′ββ ′′)K and ˜Ym

(αα′′ββ ′′)K = √
2σαα′′ββ ′′Ym

(αα′′ββ ′′)K in Eq. (11), where σαα′′ββ ′′ = 1 if α = β

and α′′ = β ′′, otherwise σαα′′ββ ′′ = √
2 [10].

III. RESULTS AND DISCUSSIONS

A. Deformation and shell evolution

This study exploited a cylindrical Woods-Saxon potential
for the mean field with the universal parameter set in Ref. [19].
Particle model space for Mg isotopes was exploited up to
N = 5�ω for a deformed basis and up to N = 10�ω for a
spherical basis. In our previous paper [25], single particle
states obtained from the deformed Woods-Saxon potential
were shown to be sensitive to a deformation parameter β2.
Therefore we determined the β2 value by minimizing a ground
state energy, which is a sum of a deformed mean field energy
calculated by the Woods-Saxon potential and a pairing energy
evaluated at the DBCS stage. But pairing energy contributions
to the ground state energy turns out to be much smaller than
those by the mean field as shown in Fig. 1, in which pairing
strengths for np, nn, and pp are determined for each β2 value to
fit empirical pairing gaps deduced from standard mass tables.

In Fig. 1, total ground state energies for 24,26Mg, Etot =
EMF′ + Epair, are presented as a sum of the deformed Woods-
Saxon mean field energy and the pairing energy by the BCS
calculations, as a function of the quadrupole deformation
parameter β2. EMF′ (black squares) denotes a total energy of
the quasiparticles in the mean field calculated with respectd
to the Fermi surface and Epair (blue triangles) is a sum of all
pairing energies of the quasiparticles. The lowest total energy
is −232.18(−266.16) MeV at β2 = 0.6(0.5) for 24Mg(26Mg).
The β2 values are quite consistent with those extracted from E2
transition data, 0.605(0.482) for 24Mg (26Mg). One remarkable
point is that spherical shape nuclei favor larger (deeper) pairing
energies, while oblate or prolate nuclear shapes favor smaller
(shallower) pairing energy. This stems from the fact that single
particle states are widely scattered by the deformation, which
weakens the overlap of nucleon wave functions for the pairing
correlations.

Next, we switch on the hexadecapole deformation pa-
rameter β4 which was assumed to be 0 ∼ ±0.05 in this
calculation. In Fig. 2, total energies are shown in terms of
the deformation parameter β2 and β4 in the deformed Woods-
Saxon potential. The lowest ground state energy is obtained
as −233.06(−266.82) MeV with β2 = 0.5 and β4 = 0.05
(β2 = 0.5 and β4 = −0.03), respectively, for 24Mg(26Mg).
Although these β2 values are a bit different from those obtained
in Fig. 1, we use these β2 and β4 values hereafter. All of
the values for the parameters used in this calculation are
recapitulated in Table I. In the last subsection, Sec. III C, we
discussed possible ambiguities coming from the uncertainty
of the deformation parameter β2 to be deduced in Fig. 2.

Before the analysis of GT(−/+) strength distributions for
24,26Mg, in Fig. 3, we show a shell evolution of neutron single
particle state energies (SPSE) in 26Mg along with the β2 value.
One may easily notice that the deformation is a key ingredient
for the shell evolution. Specifically, the 0d5/2 state is split
into three different states by the deformation, which makes
other submagic numbers, 10 and 12, for the β2 = 0.5 case. For
example, the 5/2+

1 (3/2+
2 ) state in the Nilsson basis stems from

the 0d5/2(0d3/2) state in spherical basis and gives rise to the
submagic number in the deformed basis. Here Jπ

i [or J (i)π
in the legend] means the ith state of each single particle state
(SPS) having a spin J and parity π .

One important point to be noticed is that, by the β2 ∼ 0.5
deformation, an energy gap between two main shells, 1s1/2
and 0d5/2 states holding 14 neutrons, in the spherical shape
disappears and a new energy gap is generated in the deformed
shape above 3/2+

1 state keeping 12 neutrons. Therefore, the
open shell structure of 24

12Mg12 in the spherical shape changes
to a closed shell structure, so that repulsive particle-hole (p-h)
interaction in the GT transition [26] becomes dominant and
pushes the GT excitation to a bit higher excitations. On the
contrary, for 26

12Mg14, the closed shell structure becomes an
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FIG. 1. Total ground state energies of 24,26Mg, Etot = EMF′ +
EPair for different β2 values. They are calculated by a sum of the
deformed WS mean field energy (EMF) and the pairing energy (Epair).
EMF′ and Etot are presented with respect to the Fermi surface energy.
Marking of Epair are shown in the right y label. Here we neglected the
contribution by the β4 deformation because it is much smaller than
that by the β2 variation.

open shell structure by the deformation, which leads to a
mixture of attractive particle-particle (p-p) and repulsive p-h
interaction and scatters widely the GT strength distribution.
These features are confirmed in the experimental GT(−) data
as discussed in Sec. III C.

FIG. 2. Contours of total ground state energies of 24,26Mg as a
function of β2 and β4 deformations.

B. GT(−/+) transitions for 24Mg

Figure 4 shows our numerical results of the GT(−) strength
distribution, B(GT(−)), for 24Mg. Deformation effects in
panels (d) and (e) by the β2 and β4 deformation scatter

FIG. 3. Evolution of neutron single-particle state energies (SPSE)
for 26Mg as a function of β2 deformation.
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FIG. 4. Gamow-Teller [GT(−)] transition strength distribution
B(GT(−)) of 24Mg. Experimental data by 3He beam in (a) are from
Ref. [16]. Results of (b) and (c) are the spherical case, i.e., β2,β4 = 0
with and without the np pairing. (d) and (e) are the case of the
β2 = 0.5,β4 = 0.05 cases with and without the np pairing. Our results
are presented by the excitation energy from the parent nucleus. Here
the error of the GT data is reported as about 10%.

reasonably two main peak strengths in spherical shape [panels
(b) and (c)] to a wider, but relatively higher, excitation energy
region with general attenuation. This behavior comes from the
repulsive p-h interaction in the closed shell structure evolved
from the spherical shape by the deformation. Our results are
presented by taking a 0.1 MeV bin in DQRPA excitation
energy.

In high-lying GT states, the np pairing effects become
significant compared to those in low-lying states. In particular,
as shown in (c) and (e) of Fig. 4, some GT strengths appear
at the higher excitation energy region around 30 MeV and
27 MeV region by attractive np pairing force. It can be
understood from the fact that the attractive np pairing reduces

FIG. 5. The same as Fig. 4, but for B(GT(+)) of 24Mg. Experi-
mental data by t beam in (a) are from Ref. [15]. Here the error of the
GT data is reported as about 5%.

the Fermi energy gap of neutrons and protons, 
εF = |εF
n −

εF
p |, by which the neutrons below Fermi surface may more

easily transit to proton states.
Both deformation and np pairing effects also showed up

in the GT(+) case in Fig. 5. The deformation scatters and
weakens the peak strength around 5 MeV region and the np
pairing predicts some GT(+) contributions above 15 MeV
and 12 MeV region [see panels (c) and (e) of Fig. 5.]. These
high-lying excited states expected in the GT(−/+) transition
due to the np pairing correlations could affect thermal nuclear
reactions in the cosmos as well as the gA quenching problem
inside nuclei. For more intuitive and systematic understanding
the GT(−/+) strength, we present GT running sums with
experimental data in Fig. 6. Here we used the universal
quenching factor 0.79, which is a bit larger than that used
in Zegers [16].
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FIG. 6. Running sums for the GT (−/+) strength distributions
(a)–(e) in Figs. 4 and 5. Results by Zegers et al. are experimental data
deduced from Refs. [16] and [15].

C. GT(−/+) transitions for 26Mg

Numerical results for GT(−/+) transitions and their
running sums in 26Mg are given in Figs. 7–9. Deformation
strongly influences GT(−/+) transitions. It scatters and
largely attenuates a peak around 13 MeV for the GT(−) and
7 MeV for the GT(+) transition in spherical shape. But the np
pairing effects for 26Mg are not more significant than those for
the 24Mg case. It means that, once the deformation is included,
the smearing of the Fermi surface by the np pairing is not so
large as the smearing by the deformation. In the experimental
data of Fig. 7, we can notice lots of GT(−) states which come
from the shell evolution to an open shell by the deformation,
as explained Sec. III A and Fig. 3. But one may notice that
theoretical strength of the first GT excited state at 4.99 MeV
is still deficient, and the fourth peak at 8.77 MeV is a bit large
compared to experimental data, as shown in panels (d) and (e)
of Fig. 7. Also the GT(+) strengths in Figs. 8 and 9 are not
good enough to explain the data.

In Fig. 10, we analyze the first and the fourth GT(−) peaks
in Fig. 7. Main configurations of the four GT(−) excited states
(Eex = 4.99, 8.77, 11.21, and 14.65 MeV) are (π5/2+

1 , ν5/2+
1 )

FIG. 7. Gamow-Teller (GT−) transition strength distribution
B(GT(−)) of 26Mg. Experimental data by 3He beam in (a) are from
Ref. [18]. Results of (b) and (c) are the spherical case with and
without the np pairing, i.e., β2,β4 = 0. (d) and (e) are the case of
the β2 = 0.5,β2 = −0.03 case with and without the np pairing. Our
results are presented by the excitation energy from the parent nucleus.

(black line), (π1/2+
3 , ν3/2+

1 ) (red line), (π1/2+
3 , ν1/2+

2 )
(green line), and (π3/2+

2 , ν5/2+
1 ) (blue line), respectively.

Occupation amplitudes for each SPS in the configurations are
also presented in the figure.

According to Eq. (15), the main factors for the
GT(−) excitation are vnup, single particle matrix element
〈αα′′pρα|σK |ββ ′′nρβ〉 and X forward amplitude. Since the
vnup factors are nearly equal to each other (see black and
blue lines for the first and fourth peak), a key ingredient is
the single particle matrix element, 〈p5/2+

1 |σK |n5/2+
1 〉 and

〈p1/2+
3 |σK |n1/2+

3 〉 (second largest configuration) for the firstt
and 〈p3/2+

2 |σK |n5/2+
1 〉 for the fourth peak. But the K = 1

transition for the fourth peak is enumerated as almost two times
larger than the K = 0 transitions in the first peak. This is the
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FIG. 8. The same as in Fig. 7, but for B(GT(+)) of 26Mg.

reason why we have relatively larger peak around 15 MeV
region. More detailed analyses are necessary for further
understanding these peak strengths because the occupation
probabilities largely depend on the nuclear model. For GT(+)
transition, as shown in Fig. 8, a peak position at 9 MeV is
also not properly reproduced enough even if the deformation
and the np pairings are taken into account. This behavior
is also thought to come from the mixture of the p-h and
p-p residual interaction due to the open shell property by
the deformation in 26Mg. Running sums for both GT(−/+)
strengths are presented in Fig. 9, which show more or less
reasonable behavior compatible to the data. But there are still
remained some disagreements with the GT data, which may
result from the uncertainties associated with the parameters for
the DQRPA. These points are discussed in the next subsection.

D. Uncertainties and ambiguities in the DQRPA

It is well known that the quasiparticle concept does not
guarantee the exact particle number at BCS and RPA stages. In

FIG. 9. Running sums for the GT (−) strength distributions
(a)–(e) in Figs. 7 and 8. Results by Zegers et al. are experimental
data deduced from Ref. [18].

the BCS, one may usually constrain average particle numbers
by using the Lagrangian multiplier (or chemical potential).
But, at the RPA stage, there are no ways to conserve particle
numbers of the QRPA excited state. In this paper, correction
of the particle number nonconservation peculiar to the QRPA
approach is done by the following way [27,28]. In principle,
the excitation energy is given as

Eex = 〈�ex|H ′ + λnN̂ + λpẐ|�ex〉
−〈�gr|H ′ + λnN̂ + λpẐ|�gr〉, (16)

where H ′ = H − λnN̂ − λpẐ is the system Hamiltonian
including chemical potentials as Lagrangian multipliers for
the particle conservation, and |�ex〉 and |�gr〉 are the DQRPA
excited and DBCS ground states, respectively. In the QRPA
scheme, 〈�ex|H ′|�ex〉 − 〈�gr|H ′|�gr〉 in Eq. (16) is usually
approximated as �� without considering the terms relevant
to the chemical potentials. In this work, corrections of the
DQRPA excitation energies to the particle number deviation
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FIG. 10. Occupation amplitudes (v) of protons and neutrons as
a function of the SPSE for the four main GT(−) peaks for 26Mg at
Eex = 4.99 MeV (black line), 8.77 MeV (red line), 11.21 MeV (green
line), and 14.65 MeV (blue line) in Fig. 7(d). Filled (empty) symbols
denote the occupation amplitudes of proton (neutron).

have been done by explicitly including the terms as follows:

EQRPA
ex = �� + 〈�ex|λnN̂ + λpẐ|�ex〉

−〈�gr|λnN̂ + λpẐ|�gr〉. (17)

We approximate the last two terms as 〈�ex|N̂ |�ex〉 = N ∓
1,〈�ex|Ẑ|�ex〉 = Z ± 1,〈�gr|N̂ |�gr〉 = N,〈�gr|Ẑ|�gr〉 = Z
for GT(−/+) transitions. All of the results in this work are
corrected by Eq. (17). In fact, this correction is the same
approach as adopted in Ref. [29], which includes the particle
number correction in the QRPA equation.

As for the deformation parameter β2, although we deduced
it as 0.5 for 24,26Mg from Fig. 2, we have still some errors
of the order 0.1 as shown in the figure. In Fig. 11, we
performed error estimation by the uncertainty of β2. It has been
done for the running sum of the GT(−) strength distribution,
�(B(GT(−)), for 24Mg. Dashed area bands in panels (a) and
(b) represent accumulative GT strengths without and with

FIG. 11. Error analysis for the deformation parameter β2 =
0.4 ∼ 0.6 for 24Mg in running sums for GT (−) strength distributions.
(a) and (b) are the results without and with the np pairing correlations.
Experimental data are deduced from Ref. [16]. Dashed area are results
obtained by allowing β2 = 0.5 ± 0.1.

the np pairing, respectively. Low-lying GT strength results
with the np become compatible with the data. But they still
overestimate data, which needs a smaller quenching factor than
used in this work.

Finally, we address the ambiguity coming from the np
pairing correlations. In fact, there are many discussions
regarding how to include the np pairing at the BCS stage [7–9].
Here we adopted a conventional approach, namely, a unified
BCS theory [3], where we take pairing correlations between a
state and its time conjugated state, i.e., pp̄, nn̄, pn̄, and np̄. But
there is a more general BCS scheme, the isospin-generalized
BCS theory, which takes into account the pn pairing leading
to a 8 × 8 unitary transformation. The empirical pairing gaps
can also be refined if we take more neighboring nuclei into
account. In the present work, the GT strength results including
the np pairing correlations may become sometimes worse
than those by without the np pairing. More refined data and
general theoretical approaches for the np pairing correlations
are necessary for further definite evidence of the np pairing
correlations.
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IV. SUMMARY AND CONCLUSION

In summary, we added the neutron-proton (np) pairing
correlations, which have spin-triplet and isospin-singlet (J =
1,T = 0), and spin-singlet and isospin-triplet (J = 0,T =
1) component, to a proton-neutron DQRPA by explicitly
exploiting the G matrix for the nucleon-nucleon interaction
inside nuclei. Our approach was applied to the Gamow-
Teller transitions for N = Z and N �= Z nuclei of Mg
isotopes, 24,26Mg.

The pairing correlations including the np pairing were
found to be strongly and systematically correlated to the
deformation of 24,26Mg. The stronger deformation reduces
contributions of the pairing energy. The attractive np pairing
effects manifest themselves in high-lying GT states due to
the reduction of Fermi energy gap of protons and neutrons. It
means that the np pairing correlations may influence on the
nuclear structure of N ∼ Z light nuclei as well as medium
or heavy nuclei, if Fermi energies of the neutron and proton
are adjacent to each other. But, for deformed nuclei such as
Mg isotopes considered in the present work, main effect in the
GT transition turns out to come from the deformation. These
phenomena are also inferred from the modified smearing of
the Fermi surface mainly due to the shell evolution by the
deformation effect.

For example, 24Mg would have an open sd-shell structure
in its spherical shape. But, by the deformation, the open shell
evolves to a closed shell as shown in Fig. 3. Then the repulsive
particle-hole (p-h) interaction shifts the GT excitation to a

bit higher excitation states. On the contrary, 26Mg evolves to
its open shell characteristics by the deformation. As a result,
mixing of the repulsive particle-hole and the attractive particle-
particle force makes the GT excitations more complicated
than 24Mg. In this case, one needs to develop more refined
theoretical descriptions rather than the present DQRPA, such
as renormalized DQRPA and continuum DQRPA. But they are
beyond the scope of the present work.

In conclusion, it turns out that the np pairing effects as
well as the deformation effects can be important not only
for medium and heavy N ∼ Z nuclei but also for light
N ∼ Z nuclei. But more refined and general approaches for
the np pairing at the BCS stage are necessary for further
conclusions. Nevertheless, these effects may affect many
important nuclear electromagnetic and weak transitions in
nuclear astrophysics as well as nuclear physics. Extension of
the present approach to medium heavy nuclei, in particular, the
mass region considerably treated in the nuclear astrophysics,
are in progress.
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