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We study the convergence properties of nuclear binding energies and two-neutron separation energies obtained
with self-consistent mean-field calculations based on the Hartree-Fock-Bogolyubov (HFB) method with Gogny-
type effective interactions. Owing to lack of convergence in a truncated working basis, we employ and benchmark
one of the recently proposed infrared energy correction techniques to extrapolate our results to the limit of an
infinite model space. We also discuss its applicability to global calculations of nuclear masses.
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I. INTRODUCTION

Nuclear physics properties like nuclear masses, decay and
capture rates, fission, etc., constitute a key ingredient to
study the formation of elements in stellar nucleosynthesis.
For example, all current rapid neutron capture nucleosynthesis
process (r-process) models require nuclear physics input for
a large number of nuclei that have extreme neutron excess
and stretch up to the limits of the nuclear chart. Such nuclei
lie far beyond the capabilities of the experimental facilities
in any foreseeable future, and hence performing r-process
simulations one has to almost entirely rely on theoretical
predictions. Since masses determine thresholds of all nuclear
reactions, the calculated final r-process elemental abundances
of any astrophysical model are very sensitive [1–3] to the
employed nuclear mass tables.

Self-consistent mean-field theories based on the Hartree-
Fock-Bogolyubov (HFB) variational approach with energy
density functionals (EDF) were actively developing in the
recent decades and have proven successful in the systematic
study of low energy nuclear structure [4–6]. In particular,
the recent HFB-based mass models [7,8] are now found to
be on a similar accuracy level in describing experimental
masses as the more phenomenological approaches [9–11].
Nonetheless, in order to further increase the predictive power
of HFB-based models, particular attention must be paid to
the following important issues inherent to all currently used
HFB-models with either Skyrme, Gogny, or relativistic EDFs.
First of all, there are missing correlations at the purely mean-
field level, and one has to introduce the so-called beyond-
mean-field (BMF) corrections, such as symmetry restorations
and/or configuration mixing [8,12–14], in order to achieve
a better compliance with experimental data. Furthermore,
nuclei with an odd number of neutrons and/or protons are
usually not treated at the same self-consistent level as the
even-even isotopes [15–17], resulting in elevated uncertainties
when describing such odd-mass nuclei. This aspect affects
theoretical predictions of reaction Q values needed to describe
nucleosynthesis processes. Finally, there are also purely
numerical problems, such as an incomplete convergence of
observables in practical calculations that can lead to numerical

noise in the form of artificial jumps in the calculated binding
and neutron-separation energies [1,14,18]. In what follows, we
discuss the issue of insufficient convergence of practical HFB
calculations in more detail.

In particular, most of the current EDF calculations utilize
for the many-body wave function expansion either a mesh with
a given size of the box and a distance between neighbor points,
or a finite number of harmonic oscillator single-particle states.
Observables such as binding energies, radii, etc., should in
principle be independent of a particular choice for the working
basis. Nonetheless, such an independence is only obtained in
calculations in a mesh if a sufficiently large and dense box
is used. On the other hand, a large number of single-particle
states have to be included in the calculation with harmonic
oscillator bases. This is rarely the case in practical applications
due to limited computational resources. Hence, increasing the
size of the working basis usually leads to an emergence of a
convergence pattern for the calculated observables. In the case
of calculations in a mesh, such convergence studies have been
systematically performed recently with Skyrme functionals
(see Ref. [19] and references therein). For harmonic oscillator
bases, extrapolations schemes to the limit of an infinite
basis have been used [7,8,20–25] as well as modifications
of the basis in the so-called transformed harmonic oscillator
method [26].

One of the goals of this paper is to analyze the convergence
of energies computed with an underlying harmonic oscillator
single-particle basis using the variational HFB method. By
doing this, we can directly test the global validity of the
central ansatz for a widely implemented phenomenological
extrapolation prescription in some of the previous large-scale
HFB-based calculations [8,21,27]. To our best knowledge,
none of the earlier publications addressed the accuracy of
this approach across entire isotopic chains. Having performed
the convergence analysis, we turn our attention to a more
recent extrapolation method that was theoretically derived for
calculations performed in harmonic oscillator basis [22–25].
However, previous studies have evaluated the performance of
this extrapolation strategy on a couple of simple systems for
which “exact” many-body calculations are possible. In this
paper, we introduce necessary tools and establish appropriate
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criteria for the systematic analysis of this extrapolation strategy
applied to HFB calculations using the Gogny EDF.

In the first part of the paper (Sec. II A) we briefly discuss
the HFB method and the general properties of the harmonic
oscillator working basis (Sec. II B). In Sec. III we analyze the
convergence patterns of HFB calculations with the variation of
the numerical parameters of the basis. Then, we describe the
most important aspects of an extrapolation scheme introduced
by Furnstahl, Hagen, and Papenbrock in Ref. [22] and
improved subsequently in Refs. [23–25] (Sec. IV A–IV B).
In Sec. IV C, this method is applied to the nucleus 16O as
a benchmark. This analysis is generalized to the nucleus
120Cd and the cadmium isotopic chain in Sec. IV D, where
we identify the potential problems that could appear in the
extrapolation. Finally, the main results are summarized in
Sec. V.

II. THEORETICAL FRAMEWORK

A. Hartree-Fock-Bogolyubov (HFB) method

The HFB method is based on the variational principle,
where the variational many-body space is spanned by the
product-type HFB wave functions [28]

|�〉 =
∏
k

β̂k|0〉, (1)

with the property of being vacuum states with respect to the
Bogolyubov quasiparticles, i.e.,

β̂k|�〉 = 0 ∀ k. (2)

Bogolyubov quasiparticle creation and annihilation operators,
β̂
†
k and β̂k , are the most general linear transformation of

arbitrary single-particle operators ĉ
†
i and ĉi [28],

β̂
†
k =

∑
i

Uikĉ
†
i + Vikĉi , (3)

where the matrices Uik and Vik are sought by the minimization
of the total energy. Since the HFB states |�〉 violate the
particle-number symmetry, the minimization is performed
with constraints on the desired expectation values of neutron
and proton number operators N̂ and Ẑ, so that 〈�|N̂ |�〉 = N
and 〈�|Ẑ|�〉 = Z. Hence, the HFB equations that define the
ground-state |�0〉 are found by the condition

δ(E
′
HFB[|�〉])|�〉=|�0〉 = 0 (4)

with

E
′
HFB[|�〉] = 〈�|Ĥ − λNN̂ − λZẐ|�〉, (5)

where λN,λZ are Lagrange multipliers to ensure the constraints
above, while the Ĥ is the effective nuclear Hamiltonian. In
the present study, the Gogny D1S interaction [29] is used to
define the energy density functional and the HFB equations are
solved using the computer code developed at the Universidad
Autónoma de Madrid [30] based on the gradient method. Here,
all terms have been included in the Hartree-Fock (direct and
exchange) and pairing fields except the pairing part from the
spin-orbit term which is very small.

B. Spherical harmonic oscillator single-particle basis

A common choice of the single-particle working basis for
the quasiparticles’ expansion [Eq. (3)] is a set of spherical
harmonic oscillator (SHO) functions. In this case there are
two numerical parameters that define the basis itself. The first
one is the total number of major oscillator shells included in the
basis, NOS, which defines its dimension dtot, i.e., the number
of single-particle states, as

dtot =
NOS∑
N=1

D(N ) = 1

3
NOS(NOS + 1)(NOS + 2), (6)

where D(N ) = N (N + 1) is the degeneracy of a single
oscillator shell. Here, N = 1,2, . . . is the major oscillator
number N = 2n + l + 1, with n = 0,1,2, . . . and l being the
radial and angular momentum quantum numbers, respectively.

The second parameter of the basis is the intrinsic oscillator
length b of the SHO functions, which is connected to the
oscillator energy �ω as

b =
√

�

mω
. (7)

In Fig. 1 we represent schematically the well-known spheri-
cal harmonic oscillator potential, V (r) = −V0 + (r/b)2

�ω/2,
for two different values of the oscillator length b = 1.65 and
2.45 fm. The depth of the well is chosen to be the same for
both schematic potentials, V0 = 60 MeV. It is thus clear that,
for a fixed number of NOS, the maximum energy reached
by a single-particle state will be larger when the intrinsic
oscillator length b (and therefore the effective radius of the
basis) is smaller. Nevertheless, both bases are equivalent
and should yield identical results for calculated observables
when an infinite value of NOS is considered. However, due
to basis truncations in practical calculations and an improper
asymptotic behavior of the harmonic oscillator wave functions
at long distances, such an independence from the numerical
basis parameters (NOS,b) is rarely reached.
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FIG. 1. Spherical harmonic oscillator levels for two different
values of the oscillator length (a) b = 1.65 fm and (b) b = 2.45 fm.
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III. CONVERGENCE ANALYSIS

Figure 2 shows the calculated ground-state (g.s.) HFB
energies of 16O and 120Cd for bases NOS = 11, . . . ,21 that
are plotted against various oscillator length values b. One sees
that going from NOS = 11 to NOS = 13, or from NOS = 13
to NOS = 15 yields noticeably deeper minima. Yet given a
sufficiently large basis, g.s. energies of the 16O nucleus are
largely insensitive to the numerical parameters NOS and b;
see Fig. 2(a). We can thus state that in this case the results
are virtually converged to the true HFB energy, thereafter to
be referred to as E∞. However, as was already mentioned,
a complete convergence is rarely achieved in practice. For
example, the calculated g.s. energies of the neutron-rich 120Cd
in Fig. 2(b) are rather sensitive to the chosen intrinsic length
of the basis b, even in larger bases with greater NOS values.
Hence, further energy gain is anticipated from expanding the
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FIG. 2. HFB energies calculated in different bases NOS =
11, . . . ,21 (see labels at each curve) as a function of oscillator length
b for (a) 16O and (b) 120Cd.
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FIG. 3. Convergence patters of HFB energies with enlargement
of the basis dimension, defined as E′(NOS) = Emin(NOS) − Emin(11)
for (a) cadmium and (b) oxygen nuclei.

dimension of the working basis beyond our current maximum
of NOS = 21.

We generalize these results to the study of g.s. energies in
two isotopic chains, namely, oxygen and cadmium isotopes.
In Fig. 3 we show the energy gained by increasing the
number of major harmonic oscillator shells with respect to the
energy obtained with NOS = 11. Additionally, these values are
calculated with the optimal choice of the oscillator length for
each NOS,

Emin(NOS) = min{E(NOS,b)}; (8)

i.e., they correspond to the minima of the curves shown in
Fig. 2. First of all, a flat behavior in the HFB energies with
respect to NOS means a converged calculation. However, we
see in Fig. 3 that a strict convergence is reached only for
the nucleus 16O. In the rest of the oxygen and cadmium
nuclei we observe an increase in energy gain when we include
more harmonic oscillator states in the working basis. Such an
increase is larger for heavier isotopes. For example, performing
calculations in a basis with NOS = 21 for 16O yields only
∼0.06 MeV of extra g.s. energy compared to a calculation
with NOS = 11, and such gains gradually grow, reaching
∼0.36 MeV for the 24O nucleus. The situation with cadmium
nuclei is similar, but the lack of convergence in the NOS = 11
basis is much more profound for these heavier systems. Hence,
the calculation with NOS = 11 is underconverged by 1.70 MeV
for 90Cd compared to the calculation with NOS = 21, and this
value reaches 6.94 MeV for the nucleus 152Cd. In Fig. 3 we
also observe that the energy gain obtained by increasing the
basis with two units of NOS is not always monotonic. To get
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ARZHANOV, RODRÍGUEZ, AND MARTÍNEZ-PINEDO PHYSICAL REVIEW C 94, 054319 (2016)

40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

Number of neutrons, N

E
 [M

eV
]

8 12 16

0

0.02

0.04

0.06

0.08

N

E
 [M

eV
]

Cd

(b)

E(N
OS

) for  N
OS

 = 17 (    ), 19 ( ), 21 (   )

(a)

O

FIG. 4. Obtained HFB energy gains by including two more major oscillator shells in the working basis, �E(NOS) = Emin(NOS − 2) −
Emin(NOS), for (a) oxygen and (b) cadmium isotopes.

more insight into this matter, we define such an energy gain as

�E(NOS) = Emin(NOS − 2) − Emin(NOS), (9)

Figure 4 shows �E(NOS) for NOS = 17,19,21 in oxygen
and cadmium isotopic chains. First, we see once again a
fully converged calculation for 16O with �E(NOS) effectively
being equal to zero. Second, we notice irregularities in
the convergence pattern for the majority of nuclei. This
is particularly well seen for the cadmium isotopes, where
the convergence pattern �E(21) < �E(19) < �E(17) does
not generally hold. In addition, we can also notice a clear
disturbance of the slowly varying �E(NOS) patterns in the
isotopic region around the magic 130Cd nucleus. Therefore, any
extrapolation method that assumes a continuous and smooth
reduction of the energy gain obtained by adding two major
shells is not supported by the present calculations [8,20,21,27].

IV. EXTRAPOLATIONS TO AN INFINITE BASIS

The evident incomplete convergence in practical HFB
calculations of ground-state energies prompts us to search
for a systematic and reliable method to extrapolate the
results obtained in a truncated harmonic oscillator basis to
the limit of an infinite basis. One of the early attempts to
quantify for the numerical error due to the basis truncation
is based on the assumption that the g.s. energy follows a
law �E(NOS) ≈ �E(NOS − 2)/2, which by summing the
arithmetic series would imply an estimate E∞ ≈ Emin(NOS) −
�E(NOS) [8,20,21,27]. According to our previous discussion
of Fig. 4, this ansatz is too crude and not general enough to
give a reliable estimation of E∞. A number of more elaborate
phenomenological extrapolation schemes have also been used
in nuclear structure calculations [31–34], but most of them
include some arbitrary which prevent their use in global
calculations.

The rest of the paper is devoted to the performance analysis
of a more general theoretically justified extrapolation scheme
that was first introduced by Furnstahl, Hagen, and Papenbrock
in Ref. [22], and subsequently developed in Refs. [23–25]. The
underlying idea behind this approach is on a par with assertions
of quantum field theories, where the energy of a particle
enclosed in a finite volume is shifted by the imposed boundary
conditions. For example, it was shown in Refs. [35,36] that the
mass of a trapped particle exhibits an exponential convergence

to the infinite volume value at a certain theoretically predicted
rate. In our case, the corresponding spatial confinement is
present by virtue of the localized nature of the SHO basis. The
effective dimensions of the enclosing volume are deduced from
the spatial extensions of the oscillator functions. By truncating
our working basis, we effectively impose a spherical hard-wall
boundary condition in coordinate space and an analogous
intrinsic sharp boundary in momentum space. These induced
infrared (IR) and ultraviolet (UV) cutoffs of the basis, �IR and
�UV, are modulated by the actual nucleus in consideration and
the model space parameters NOS and b, but are independent
of the particular potential used. With the cutoffs explicitly
considered, it is possible to derive the finite volume corrections
to various nuclear structure observables, such as g.s. energies
and radii, hence effectively extending the dimensions of the
working basis to infinity.

As a proof of theoretical concept, a row of successful
tests for the suggested extrapolation were performed on a
number of model potentials, as well as an example of the
deuteron with a realistic chiral effective field theory (χEFT)
potential [22]. Although derived at first only for systems that
could be reduced to single-particle degrees of freedom, the
extrapolations showed a good reliability and robustness even
in many-body calculations. Hence, the extrapolation method
was used in the nuclei 6He and 16O computed with a no-core
shell model and a couple-cluster method respectively [22].
Since then, the extrapolation for the binding energy has also
been applied to several other nuclei [37–41], but without a
particular analysis of its reliability.

Based on the previous insights, in Ref. [25], Furnstahl et al.
have enhanced the theoretical basis of the derived IR correction
formula to extend its applicability to many-body fermionic
systems. The tests performed in three oxygen isotopes,
16,22,24O, generally confirmed the anticipated improvement of
such IR extrapolations for atomic nuclei and brought us closer
to the question of error quantification of the extrapolation.

Despite the demonstrated success of the method for these
individual nuclei, the proposed scheme has not yet been put to a
systematic test with widely used EDFs, exploring its precision,
accuracy, and reliability throughout the whole isotopic chains,
particularly in the neutron-rich extremes of heavier nuclear
systems where the lack of convergence is largest. It is the
purpose of this section to systematically test the performance
of the suggested energy correction procedure within the HFB

054319-4



SYSTEMATIC STUDY OF INFRARED ENERGY . . . PHYSICAL REVIEW C 94, 054319 (2016)

framework with the Gogny D1S EDF. We start by introducing
the relevant tools for the energy extrapolation on an example
of 16O. Later, we check the performance of the method in the
nucleus 120Cd. Finally, we perform a systematic study of the
IR extrapolation scheme in the cadmium isotopic chain from
proton to neutron drip lines.

A. Characteristic cutoffs of the basis

Following the arguments addressed in Refs. [22,42], there
are two momentum cutoffs imposed by the truncation of the
model space for a given finite single-particle basis of harmonic
oscillator functions. One of the cutoffs is associated with
the highest excitation energy of the chosen basis, Emax =
�ω(NOS + 3/2) (see Fig. 1). In a semiclassical approximation,
the maximum momentum a particle in such a basis can reach
is �0 ≡ √

2mEmax or in terms of basis parameters

�0 =
√

2(NOS + 3/2) × �/b. (10)

We take this as a leading-order estimate of the corresponding
UV momentum cutoff of the basis, i.e., �UV ≈ �0.

The second cutoff is induced in the opposite energy limit
of the finite SHO basis, which at low energies is shown to
be effectively equivalent to a spherical cavity with a sharp
boundary radius LIR [24]. Choosing the classical turning point
of a harmonic oscillator L0 ≡

√
2Emax/mω2, or

L0 =
√

2(NOS + 3/2) × b, (11)

as a first-order approximation for this radius suggests LIR ≈
L0. The associated IR cutoff is then defined as �IR ≡ π/LIR.

The complete convergence in a finite SHO basis can now
be attained by the fulfillment of both UV and IR conditions
imposing constrains on the choice of the basis. The first
requirement is to select the basis in such a way that the
highest momentum scale λ of the employed interaction is
smaller than the maximum momentum in the working basis,
i.e., λ < �UV. This will ensure that all the ultraviolet physics
set by the interaction has been captured in the working basis,
which would provide a UV-converged result of the calculation.
The second condition requires that the effective spatial radial
extent LIR of the chosen basis is large enough to encompass
the many-body wave function, i.e., r < LIR. It is this second
condition that can usually never be fully achieved in practice
for neutron-rich nuclei due to the different asymptotic behavior
of the nuclear wave function (exponential falloff) and the SHO
basis (Gaussian falloff) in coordinate space. Thus, in order
to obtain the greatest degree of convergence in a truncated
model space, one usually performs calculations in the largest
accessible NOS and seeks an optimal compromise between
the IR and UV conditions by finding the binding energy
minimum through variation of the intrinsic oscillator length
b (see Fig. 2). However, selecting calculations performed only
with sufficiently small oscillator lengths, one can strive to
ensure the UV condition and thereby effectively isolate the
systematic error coming from the lack of IR convergence.

While this is easily achievable in many-body calculations
with interactions where the cutoff is set using an UV regulator,
the situation is different in the current EDF approaches. Since
the Gogny interaction has contact terms in the spin-orbit and

density-dependent part of the functional, it does not have an
intrinsic momentum cutoff. Rios and Sellahewa [43] have
recently shown that the D1S parametrization, once decom-
posed in partial waves, contains significant matrix elements
connecting high and low momenta in some channels of the
interaction. Nonetheless, it still remains to be investigated
whether these two-body matrix elements have noticeable
impact on the whole HFB calculation for a particular nucleus
under consideration. However, in many cases we are able, a
posteriori, to determine the parameters of the working basis
in order to effectively ensure the UV criterion λ < �UV,
whereupon the IR extrapolation scheme could be applied to
account for the IR corrections.

B. The first-order IR extrapolation

One of the actual challenges in accounting for the boundary
effects enacted by the IR cutoff was the determination of the
effective impenetrable extend of the chosen set of SHO basis
functions in a most accurate and universal way. The choice
of the maximum displacement, L0, can qualitatively explain
the concept of extrapolation, but it is only a leading-order
estimate for the extent of the oscillator wave function. As it
was recently shown, the correct box size of the SHO basis
for a many-body system is deduced by matching the smallest
eigenvalue of total squared momentum operator for a particular
nucleus in a given SHO basis to the analogous smallest value
in the spherical cavity [25]. The resulting effective radius Leff

is then

Leff =
(∑

nl νnla
2
ln∑

nl νnlκ
2
ln

)1/2

, (12)

where the κ2
ln are the eigenvalues of the momentum squared

operator diagonalized in the SHO basis, νnl are the occupation
numbers of nucleons giving the lowest kinetic energy in SHO
basis, and aln are the (n + 1)th zeros of the spherical Bessel
function jl .

With the effective hard-wall boundary of the SHO basis
properly identified, one can now recast the initial problem of
having the given many-body system enclosed by a harmonic
oscillator soft cavity into the one with a sharp infinite potential
with an effective radius Leff . Such problems of confined
quantum systems have been studied already (e.g., [44] and
citations therein) with various techniques available for the
energy corrections. One can proceed by making a linear energy
approximation of the many-body wave function and impose a
vanishing Dirichlet boundary condition at Leff . Whereas the
details of the derivation can be found in Ref. [25], the resulting
analytical expression of the first-order IR correction is then of
the form

EL(LIR) = A∞ exp (−2k∞LIR) + E∞, (13)

where for the atomic nucleus the proper radius is LIR = Leff

that depends both on the basis and the particular isotope, while
A∞, k∞, and E∞ are taken as fit parameters. This derived
exponential pattern of the IR correction was shown to be
independent of the particular potential and validated in the
examples mentioned above [23–25].
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C. Playground test with 16O

We now illustrate the suggested extrapolation concept and
introduce the relevant benchmarking tools for this method
using the nucleus 16O as an example. The commencing test
with this nucleus is prompted by the well-converged HFB
results starting already with a basis of NOS = 15, as is evident
from Figs. 2 and 3. In Figs. 5(a) and 5(c) we show the HFB
energy as a function of the effective radial extent Leff . In
order to apply the IR corrections, we start by selecting only
those calculations for which the UV cutoff of the basis is
sufficiently large, so that the results are considered to be UV
converged. This is done by taking into account only those
g.s. energies that are computed in a basis with the UV cutoff
above a certain threshold value; that is, �UV > �thr. For this
illustration we take �thr = 750 MeV/c, and justify this choice
later. The selected HFB energies are represented by the filled
symbols in Fig. 5(a). We find that all of them almost perfectly
fall on an exponential curve, consistent with the theoretical
predictions for UV-converged results. The observed rise of
the g.s. energies at larger values of Leff [Fig. 5(a), hollow
symbols] is due to an insufficient UV convergence. Those
calculations are excluded from the fit to the form of Eq. (13).
The solid lines in Fig. 5(a) represent the separate fits to the
HFB energies calculated in different combinations of the basis
dimensions, NOS. The inset, Fig. 5(b), shows the corresponding
extrapolated values E∞ together with a reference value of a
virtually converged calculation Emin(21). We see in this figure
that differences around 60 keV are obtained. Although we do
not directly attribute such a spread in the extrapolated values to
the uncertainty of the method, it is nevertheless representative
of the precision and accuracy level of the extrapolation
scheme.

Nevertheless, we have to mention that some of the points
used in the extrapolation given in Figs. 5(a) and 5(b) are already
close to the converged value. In order to imitate a typical
situation (common to heavy and neutron-rich nuclear systems)
of having access only to an insufficiently large working basis
for complete convergence, we limit ourselves now to a SHO
basis with NOS = 13. In this case the calculations for 16O
are not fully converged. Furthermore, an accurate, precise,
and reliable extrapolation should also be largely insensitive
to the choice of the threshold momentum �thr, as long as the
UV convergence is ensured. We verify this criterion for 16O
by fitting to different sets of HFB calculations, defined by
the choice of a threshold value �thr = 850,950,1050 MeV/c.
The illustration of this benchmark can be seen in Fig. 5(c),
where fits for different threshold values are provided by the
colored lines. All HFB points are found to be on an exponential
curve and the quality of the exponential convergence pattern
is particularly well seen in Fig. 5(d). The corresponding E∞
estimates of the fits, shown in Fig. 5(e), yield a narrow spread
of their values, falling very close to the converged energy value
Emin(21) even in cases where the closest points used in the fit
are a few MeV above this value. This indicates good stability,
accuracy, and precision of the method in this specific example.

We now perform a systematic analysis to estimate the
dependence of the extrapolated values on the choice of �thr. It
is expected that, below a certain value of �thr, the computed
HFB energies values could be affected by a lack of UV
convergence (or “UV contamination”). The knowledge of a
lower limit of �thr will allow us to include as many computed
HFB data points into our extrapolation as possible. To this
end, we perform a series of extrapolations obtained in bases
with various sets of NOS and b parameters, and vary the
threshold momentum across a wide range of 450 � �thr �
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FIG. 6. Difference of the calculated Emin(21) and the energy
obtained with IR extrapolations from different combinations of basis
dimension NOS and �thr values.

1250 MeV/c. In Fig. 6 we plot the difference between Emin(21)
and the extrapolated values. Hence, positive (negative) values
give extrapolated g.s. energies below (above) Emin(21), which
is considered to be the converged g.s. energy. We observe first
that lowering �thr below a certain limit, namely, 620 MeV/c,
we start to incorporate into our extrapolation an increasing
amount of points which are not sufficiently UV converged.
Therefore, the inclusion of these points deteriorates the quality
of the fit and should be eliminated from the IR extrapolating
data set. Resting upon the results of these calculations, we
estimate the threshold for a significant UV contamination
lies around �thr ≈ 750 MeV/c in 16O. We also observe a
slight dependence of the extrapolated g.s. energies on �thr of
about 0.1 MeV if HFB results with NOS � 15 are considered,
even in the regions well above the estimated onset of the UV
contamination. Consequently, the extrapolated results are not
completely free of �thr dependencies unless a sufficiently large
value of NOS is chosen.

To conclude this section, we summarize the necessary
criteria for the IR extrapolation to be robust and reliable.
Assuming that the set of parameters (NOS,b) defining the
basis of HFB calculations ensures the UV convergence of the
g.s. energies, the following properties must hold for the E∞
estimates:

(i) Independence of the chosen threshold value �thr that
defines the set of HFB energies used in the fits
according to criterion �UV > �thr.

(ii) Insensitivity to the basis dimensionality used to com-
pute the HFB energies chosen in the fit dataset. That
is, the E∞ values should be independent of whether
we pick a calculation performed with NOS = 17, with
NOS = 19, or even if we combine the two sets.

(iii) Finally, given that the fully converged value of the
HFB g.s. energy is generally unknown, extrapolations
should be able to at least reproduce the best converged

HFB calculation available, i.e., Emin(21) in this work,
or yield E∞ estimates that are below that value.

D. Cadmium isotopic chain

In the previous section we studied the nucleus 16O to
benchmark the IR extrapolation scheme and establish the main
properties that the extrapolated energy should fulfill. We now
apply the same method to extract the E∞ estimates first in
the nucleus 120Cd, and then for the whole cadmium isotopic
chain. As we showed in Figs. 2(b) and 3(a), none of these
nuclei are fully converged. The HFB energy as a function of
the effective spatial radial extent Leff and the corresponding
fits to Eq. (13) for the nucleus 120Cd are plotted in Fig. 7.
Following the prescription found in the previous section,
we impose a cutoff of �UV > 750 MeV/c to select SHO
bases with sufficiently high momentum cutoff. We observe
in Fig. 7(a) a qualitative exponential decay with respect to
Leff . However, the extrapolated values show a larger spread
in absolute energy than in the case of 16O, as can be seen in
Fig. 7(b). For example, the E∞ estimate is about 1.7 MeV
lower with the extrapolation from the NOS = 15 basis than
from the one with NOS = 17. In addition, the minimal g.s. HFB
energy attained in the NOS = 21 basis, i.e., the Emin(21) value,
lies between the two extrapolated energies mentioned above.
Similarly to Fig. 6, we plot the dependence of the extrapolated
energies on the �thr value in Fig. 8 for the nucleus 120Cd. In
this case the situation is far from fulfilling the requirements
for a robust and reliable extrapolation given in the previous
section. We found rather unstable results for extrapolations
from NOS = 13, 15, and 17 bases for large values of �thr that
are precisely the ones that should be better UV converged. In
those cases, the spread in the extrapolated energies produced
by the particular choice of �thr can be as large as 7 MeV. In
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FIG. 7. Similar to Figs. 5(a) and 5(b), but for 120Cd nucleus for
NOS = 15 and 17 bases. The Emin values is indicated by the dashed
red line.
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addition, when the fits are performed for the NOS = 13, 15,
and 17 results separately, as well as combinations thereof, the
extrapolated energies are systematically less bound than the
best value reached with the NOS = 21 basis in the range of
�thr where a flatter behavior is found. Since the extrapolation
method is intended to estimate the remaining energy missed
by the truncation of the working basis, these results are not
acceptable. However, the only exception are the extrapolations
from HFB energies obtained with NOS = 19 basis, which seem
to be most reliable.

So far we have discussed the performance of the IR
extrapolation method for individual nuclei. For the sake of
completeness, we analyze the reliability and stability of the
method in the whole cadmium isotopic chain. According to
the points raised in the previous section to define the quality of
the extrapolated energies, let us define the following quantities
for each nucleus in the chain:

(i) �Ethr ≡ E∞(�thr = 750 MeV/c) − E∞(�thr =
900 MeV/c) with NOS = 19 fixed to check the
dependence on the chosen threshold value �thr.
Hence, �Ethr ≈ 0 would mean good performance.

(ii) �EOS ≡ E∞(NOS = 17) − E∞(NOS = 19) with
�thr = 750 MeV/c fixed to check the dependence
on NOS. As in the previous point, �EOS ≈ 0 would
mean good performance.

(iii) �Egain≡Emin(21) − E∞(NOS = 19,�thr=750 MeV/c)
to check the quality of the extrapolation with respect
to the lowest HFB energy computed in this work.
Thus, �Egain should be equal to zero for converged
cases and slightly positive for those HFB calculations
which are not converged.

In Fig. 9 we show these three quantities as a function of the
number of neutrons in the nuclei 90–152Cd. We observe first that
the three conditions given above are not completely fulfilled
simultaneously throughout the whole cadmium isotopic chain.
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FIG. 9. �Ethr, �EOS, and �Egain for 90–152Cd isotopes as a
function of the neutron number.

Nevertheless, in many nuclei the dependencies on �thr and
NOS are rather mild, with |�EOS| ≈ |�Ethr| � 2 MeV in
the range of N = 42–84. In this region, the differences of
the extrapolated energies with respect to the best values
obtained with NOS = 21 basis are close to zero or slightly
above, providing a physically sound extrapolation. However,
the situation is different in the neutron rich region above
N � 86, where the extrapolations are remarkably dependent
on the choice of both �thr and NOS, and they lie above the best
HFB energies directly computed, i.e., �Egain < 0. Therefore,
whereas in the first region some systematic error bars could
be extracted from the extrapolation, that is not the case in the
neutron-rich region.

We now represent in Fig. 10 the same quantities but as
a function of the two-neutron separation energy S2n(N ) ≡
E(Z,N − 2) − E(Z,N ), where the shell gaps, corresponding
to N = 50 and 82 magic numbers, are well seen. From
the astrophysical point of view, the most interesting aspect
is that the ill behavior of the extrapolation method with
the present EDF is significantly larger for isotopes beyond
N = 82 when the two-neutron separation energy is less than
5 MeV approximately, which is precisely the relevant range in
r-process calculations.

A similar result is obtained in the magnesium isotopic chain
(not shown) where such an erratic behavior of the extrapolated
energy is also found in the neutron rich part of the chain
(S2n � 5 MeV). Therefore, the present extrapolation scheme
with Gogny EDF is not able to provide reliable estimations
of E∞ values in those loosely bound regions, where the lack
of convergence is also the largest. One possible explanation
is that the momentum threshold chosen to select the set of
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FIG. 10. Similar to Fig. 9 but as a function of the S2n, which
were obtained directly from HFB calculations in the NOS = 21 basis
without extrapolations.

points used for the extrapolations, though in some case as
large as �thr = 1200 MeV/c, is not large enough to ensure
the UV convergence. This could be justified by the absence
of an explicit regulator in momentum space in the Gogny
EDF. Another, complementary option could be the fact that
a simple exponential extrapolation cannot fully capture the
IR physics of the present EDF. By the same arguments, the
considered extrapolation scheme cannot be used to extract
the two-neutron separation energies from the E∞ values.
Despite this, being energy differences of the neighboring
nuclei, the particle separation energies are expected to be
better converged. Indeed, this is the case as can be seen in
Fig. 11, where calculated S2n values are shown without any
extrapolations. The obtained energies are distributed among
the shaded column bins according to the basis dimensions
of the calculations. Moreover, in order to see the convergence
patterns more clear, the separation energies for each isotope are
shifted down by a constant that equals the S2n value obtained
in the NOS = 11 [Fig. 11(a)] or NOS = 13 [Fig. 11(b)] basis.
Furthermore, for better readability, the two-neutron separation
energies are also displaced within each column bin so that
the lower absolute S2n values are shifted closer to the left
edge of each shaded region, while the higher ones are closer
to the right edge (by analogy to Fig. 10). We see that for
isotopes having S2n > 5 MeV, the enlargement of the basis
beyond NOS = 11 affects their values up to 0.3 MeV at
most, Fig. 11(a). For nuclei which have S2n < 5 MeV the
spread around zero reference value is about double twice as
high, reaching as much as 0.6 MeV for the dripline isotope
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FIG. 11. S2n energies of cadmium isotopes calculated in different
basis dimensions (shaded bins). Color code and symbols are same as
in Fig. 3.

152Cd predicted by the Gogny D1S EDF. By the same token,
Fig. 11(b) shows the convergence patterns zeroed out for a
somewhat larger NOS = 13 basis. Here we see that almost all
of the S2n values in NOS = 21 basis fall within a 0.1 MeV
spread. However, we observe a somewhat larger spread for
nuclei having S2n < 5 MeV in the NOS = 15, 17, and 19 bases.
All in all, despite the fact that two-neutron separation energies
do not exhibit any noticeable convergence pattern when the
basis size is increased, these quantities reach a much better
degree of convergence already in relatively small bases.

V. SUMMARY AND DISCUSSION

We have studied the convergence pattern of the HFB
energies as a function of the maximum number of SHO shells
included in the working basis, NOS, as well as a function
of the oscillator length, b. The calculations were performed
with the Gogny D1S EDF. Generally, one has to include a
prohibitively large number of NOS in practical calculations to
ensure convergence. In order to circumvent this shortcoming,
one can opt to use various extrapolation techniques to obtain
an estimate of the converged observables. While the ansatz
�E(NOS) ≈ �E(NOS − 2)/2, that is central in a purely
phenomenological energy correction scheme [8,21], proved
generally not to hold, we have turned to and studied one of
the most promising extrapolation schemes recently proposed,
namely the IR extrapolation [25].
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FIG. 12. The plot shows the results of IR extrapolation for nuclei in cadmium, tin, and tellurium isotopic chains as a function of neutron
number in form of the differences Emin(21) − E∞(NOS) with momentum threshold �thr = 750 MeV/c. Two dimensions of model space
are considered: NOS = 17 (hollow symbols) and NOS = 19 (filled symbols), separately. The associated error bars represent the spread in
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We have seen that the application of the considered IR
extrapolation to a test case of 16O seems to work nearly
perfectly, providing reliable results that are both threshold
independent and consistent with the fully converged reference
value. A more serious benchmark, first by application to the
nucleus 120Cd, and then to the whole set of nuclei in the
cadmium isotopic chain, revealed, however, some limitations
of the proposed scheme for the HFB energy obtained with the
Gogny D1S EDF.

Figure 12 summarizes the conducted analysis of the IR
extrapolation scheme for cadmium isotopes, as well as extends
the scope of the study to tin and tellurium nuclei. As
is the case with all considered isotopic chains, the most
robust extrapolations are obtained for isotopes in the direct
vicinity of the stability region. Nevertheless, in this region
the extrapolations are least relevant due to the larger degree
of convergence of the HFB calculations in comparison to the
neutron-rich isotopes. However, as one moves away, towards
the neutron drip line, the IR extrapolations fail to yield reliable
results. In particular, the discrepancy of the extrapolations from
NOS = 17 and NOS = 19 values (with �thr = 750 MeV/c)
reach easily up to 5–8 MeV. Besides that, varying �thr for
neutron-rich nuclei has a much greater impact on the estimated
E∞ values (spanning energies of 10–15 MeV for A ∼ 115).
Finally, we also notice that the IR corrections can no longer
even reproduce the most converged HFB calculations at hand
[i.e., the Emin(21) values] in the neutron-rich tail of the isotopic
chain, which is evident by the negative unphysical estimates
for N � 96 in Fig. 12. These results have been supported

by similar findings for other isotopic chains throughout the
nuclear chart [45].

To summarize, our HFB calculations with Gogny EDF show
that the investigated extrapolation schemes are so far applica-
ble only in the regions of well-bound nuclei. The origin of these
behavior could be the lack of UV convergence even in har-
monic oscillator basis with a momentum cutoff of ≈1 GeV/c
due to the presence of contact terms in the Gogny EDF (and
in most of the EDFs used nowadays). In such a case, the IR
extrapolation should not be applied unless an ultraviolet regu-
lator is explicitly included in the EDF. Additionally, it is also
possible that even though the calculations are UV converged,
the simple exponential extrapolation is not enough to produce
physically sound extrapolated HFB energies with the present
functional. Disentangling these two aspects requires one to
either explicitly include a regulator in the definition of the
functional or to consider all terms of the EDF as finite range.
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