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The neutron matter equation of state is calculated from two-neutron forces up to fifth order of the chiral
expansion, and the order-by-order convergence of the predictions is investigated. Based on these equations of
state, the binding energies and the neutron and proton density distributions in 208Pb and 48Ca are derived, with
particular attention paid to the neutron skins, the focal point of this paper. Anticipating future experiments which
will provide reliable information on the weak charge density in nuclei, the theoretical uncertainties and the
possibility of constraining the size of few-neutron forces in neutron matter are discussed.
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I. INTRODUCTION

Chiral effective field theory (EFT) has become established
as a model-independent approach to constructing nuclear two-
and many-body forces in a systematic and internally consistent
manner [1,2]. Nucleon-nucleon (NN) potentials have been
developed from next-to-leading order (NLO, second order) to
N3LO (fourth order) [3–7], with the latter reproducing NN data
at the high precision level. More recently, NN chiral potentials
at N4LO have become available [8,9].

Consistent application of these potentials in few- and many-
body systems requires inclusion of all few- and many-nucleon
forces which appear at the given order of chiral EFT, a task
of greater and greater complexity with increasing order. In
fact, even today, all two-, three-, and four-nucleon forces of
order greater than three have not yet been applied in an A >
3 system, although several ab initio calculations of nuclei and
nuclear matter based on chiral EFT have been reported. A
fairly extensive, although likely not exhaustive list is given in
Refs. [10–29]. Predictions in neutron matter from chiral EFT
interactions can be found in Ref. [30].

On the other hand, thanks to recent progress in the
development of chiral NN forces [8,9], internally consistent
calculations can be conducted in the many-body system with
two-nucleon forces (2NFs) up to fifth order. Although the
predictions thus obtained are incomplete, they can provide
valuable information on what is missing. Observing the
order-by-order convergence of such 2NF-based calculations,
one can pin down the effect of 3NFs with uncertainty
quantification. Together with reliable empirical information
on the observables under consideration, the size of the missing
3NFs can be constrained.

Neutron-rich systems are especially interesting and are
receiving considerable attention. Neutron-rich nuclei are
intriguing for many reasons, ranging from the mechanism
that controls the formation of the neutron skin to remarkable
correlations with the properties of compact stars. On the other
hand, the properties of these nuclei are, in general, poorly
constrained. However, the electroweak program at the Jeffer-
son Laboratory promises to deliver accurate measurements
of the neutron skin in 208Pb and potentially in 48Ca. Note
that for the latter nucleus, ab initio calculations are now
possible [31].

The arguments stated above motivate the present work. It
is the purpose of this paper to explore to which extent one
can estimate the size of three-neutron forces in neutron matter
using empirical constraints. After a description of the novel
aspects of this work (Sec. II A) and a brief review of previously
developed formalism (Sec. II B), order-by-order results are
shown for nuclear properties in 208Pb and 48Ca (Sec. III). For
that purpose, microscopic equations of state (EOSs) of neutron
matter with 2NFs up to fifth order of chiral EFT are first
calculated. The theoretical uncertainties arising from diverse
sources are discussed and available constraints on the skins
of 208Pb and 48Ca are examined to explore the likelihood that
future, more stringent constraints would allow one to estimate
the size of few-neutron forces in neutron matter. Section IV
concludes the paper.

II. NUCLEAR PROPERTIES FROM TWO-NUCLEON
FORCES UP TO FIFTH ORDER

A. Nucleon-nucleon force in neutron matter at N4LO

The neutron matter EOSs used as input are obtained as in
Ref. [32] up to fourth order, but without 3NFs. An important
novel aspect here is the extension of the 2NF to the fifth order
of chiral EFT. The NN interaction employed is the one at N4LO
whose predictions for peripheral partial waves were shown in
Ref. [8]. The potential includes one- and two-loop two-pion
exchanges and two-loop three-pion exchanges as required at
this order, see Fig. 1.

Although at N2LO the main features of the nuclear force
can be described reasonably well, it is well known that one
must go to the next order to achieve high precision. However,
at N3LO (as at N2LO), the chiral 2π exchange is still too
attractive. It is shown in Ref. [8] that the 2π exchange at N4LO
is mostly repulsive, which allows an improved description of
the F and G partial waves. The overall contribution from
the 3π exchange is found to be of moderate size, suggesting
convergence with regard to the number of exchanged pions.
The hierarchy of nuclear forces as they emerge at each order
of chiral EFT is displayed in Fig. 1.

The neutron matter EOS is calculated within the particle-
particle ladder approximation, order by order from NLO to
N4LO using 2NFs only. The EOSs are displayed in Fig. 2.
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FIG. 1. Diagrams of two- and few-nucleon forces appearing at
increasing orders of chiral perturbation theory.

[Note that the leading order (LO) is not included because
it is an extremely poor representation of the nuclear force
and thus would not add much to the discussion, even in the
context of order-by-order convergence.] The order-by-order
pattern shows a clear signature of convergence: The fifth-order
correction is substantially smaller than the fourth-order one.

B. Brief review of additional tools

To facilitate the understanding of the results, this section
provides a very brief review of previously developed tools.
Nuclear properties are obtained as described in Ref. [33].
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FIG. 2. Energy per neutron as a function of neutron matter density
ρ obtained with chiral 2NFs at the indicated orders of EFT.

Namely, inspired by a liquid droplet model, the energy of
a nucleus is written in terms of a volume, a surface, and a
Coulomb term as

E(Z,A) =
∫

d3r e(ρ,α)ρ(r) +
∫

d3r f0|∇ρ|2

+ e2

4πε0
(4π )2

∫ ∞

0
dr ′ r ′ρp(r ′)

∫ r ′

0
dr r2ρp(r).

(1)

In the above equation, ρ is the isoscalar density, given by
ρn + ρp, α is the neutron asymmetry parameter, α = ρI /ρ,
where the isovector density ρI is given by (ρn − ρp). e(ρ,α) is
the energy per particle in isospin-asymmetric nuclear matter,
written as

e(ρ,α) = e(ρ,0) + esym(ρ)α2 , (2)

with esym(ρ) the symmetry energy. The density functions for
protons and neutrons are obtained by minimizing the value of
the energy, Eq. (1), with respect to the parameters of Thomas-
Fermi distributions,

ρi(r) = ρ0

1 + e(r−ai )/ci
, (3)

with i = n,p. The radius and the diffuseness, ai and ci ,
respectively, are extracted by minimization of the energy,
while ρ0 is obtained by normalizing the proton (neutron)
distribution to Z (N ). The neutron skin, which is the object of
this investigation, is defined as

S = Rn − Rp, (4)

where Rn and Rp are the rms radii of the neutron and proton
density distributions,

Ri =
(

4π

T

∫ ∞

0
ρi(r)r4 dr

)1/2

, (5)

where T = N or Z. This method has the advantage of allowing
a very direct connection between the EOS and the properties
of finite nuclei. It was used in Ref. [33] in conjunction
with relativistic meson-theoretic potentials and found to yield
realistic predictions for binding energies and charge radii. The
constant f0 in the surface term is typically obtained from fits
to β-stable nuclei and found to be about 60–70 MeV fm5 [34].
How this uncertainty impacts the corresponding predictions
will be discussed below.

The isospin-symmetric part of the EOS in Eq. (2) is
taken from phenomenology [35] to maintain the focus on the
microscopic neutron matter predictions. The EOS employed
here for symmetric matter was obtained from empirically
determined values of characteristic constants in homogeneous
matter at saturation and subsaturation [35], with isoscalar
quantities (and also isovector ones) found to be very well
constrained. At the low densities probed by the neutron
skin, one might expect that equations of state constructed to
reproduce closely empirical properties will not be appreciably
different from one another, as is confirmed in Fig. 3. Never-
theless, to estimate the uncertainty associated with different
phenomenological parametrizations of the symmetric matter
EOS, the phenomenological EOS from Ref. [36], designed
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FIG. 3. Phenomenological equations of state for symmetric nu-
clear matter. Solid line, from Ref. [35]; dashed, Ref. [36], lower
incompressibility; dotted, Ref. [36], higher incompressibility. See
text for more details.

to describe both isospin symmetric and asymmetric nuclear
matter, will be used in addition. For symmetric nuclear matter,
it is given as

e(ρ,0) = 3�
2

10m

(
3π2

2
ρ

)2/3

+ α

2

ρ

ρ0
+ β

σ + 1

(
ρ

ρ0

)σ

, (6)

where ρ0 = 0.16 fm−3, the energy at saturation is very close
to −16 MeV, and α, β, and σ are expressed in terms of the
incompressibility K0 [36], whose commonly accepted value
is 240 ± 20 MeV. Figure 3 shows the equation of state from

Ref. [35] (solid line), whose parameters are fitted to the central
values of the constraints (e.g., K0 = 240 MeV), in comparison
to the one from Ref. [36] with parameters corresponding to
K0 = (240 − 20) MeV (dashed) or K0 = (240 + 20) MeV
(dotted). The predictions shown by the dotted curve, which
appear to differ more noticeably from the solid curve at
subsaturation to saturation densities, will be used here to
estimate the uncertainty arising from the choice of the
phenomenological EOS. In fact, several tests confirmed that
the larger differences between the solid and dashed curves
at suprasaturation densities are essentially insignificant for the
neutron skin investigations performed here. Note, further, that I
am not considering a family of theoretical EOSs for symmetric
matter, since I wish to keep out of this investigation any model
dependence which may arise from those.

III. RESULTS

As a first look into order-by-order convergence, I begin
this section by showing, in Fig. 4, the two-parameter Fermi
functions obtained for neutron and proton densities from NLO
to N4LO. Obviously, order-by-order differences cannot be
discerned on the scale of the figure, with the exception of the
neutron densities. The green curve (lower curve) reflects the
stronger repulsion (hence, lower central densities) of the EOS
at N2LO, cf. Fig. 2. The predictions in Fig. 4 are obtained with
� = 450 MeV, but order-by-order differences remain small
when varying the scale, as will be discussed below.

Next, I will focus on the binding energy per nucleon, the
charge radius, the proton and neutron point radii, and the
neutron skin for 48Ca and 208Pb. I will consider truncation
error, sensitivity to cutoff variations, as well as uncertainties
associated with the density functional including the choice of
the phenomenological EOS.

With regard to the cutoff parameter, which appears in the
regulator function

f (p′,p) = exp[−(p′/�)2n − (p/�)2n] , (7)
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FIG. 4. Density distributions for neutrons and protons in (a) 48Ca and (b) 208Pb, for different orders of chiral EFT from NLO to N4LO.
Color code as in Fig. 2. For protons, the various curves cannot be distinguished on the scale of the figures. For neutrons, the lowest (green)
curve represents the N2LO result.
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TABLE I. Binding energy per nucleon (B/A), charge radius (rch),
proton and neutron point radii (rp and rn, respectively), and neutron
skin (S) of 48Ca. The predictions are obtained from a microscopic
neutron matter EOS including only two-neutron forces at the specified
orders of chiral EFT. The value of f0 in Eq. (1) is 60 MeV fm5.

Order Cutoff (MeV) B/A (MeV) rch (fm) rp (fm) rn (fm) S (fm)

NLO 450 8.735 3.620 3.517 3.655 0.138
NLO 500 8.734 3.620 3.517 3.656 0.138
NLO 600 8.735 3.621 3.518 3.658 0.140
N2LO 450 8.693 3.613 3.510 3.672 0.162
N2LO 500 8.690 3.613 3.510 3.674 0.164
N2LO 600 8.686 3.612 3.509 3.675 0.166
N3LO 450 8.723 3.618 3.515 3.660 0.145
N3LO 500 8.715 3.617 3.514 3.663 0.149
N3LO 600 8.714 3.616 3.513 3.663 0.150
N4LO 450 8.728 3.618 3.515 3.661 0.146
N4LO 500 8.724 3.617 3.514 3.661 0.147
N4LO 550 8.722 3.617 3.514 3.662. 0.148

values between 450 and about 600 MeV will be considered,
with 550 MeV being the largest available at N4LO. Note
that these values are below the breakdown scale of chiral
EFT [37]. Other analytical expressions are possible for the
regulator function [37]. It will be interesting to include these
potentials when they become available to the community
at large. Furthermore, coordinate-space potentials have been
developed up to N2LO for the 2π -exchange contributions and
up to N3LO for the contact terms [38]. Therefore, a consistent
study at N3LO and beyond, as the one undertaken here, would
not be possible with the potentials from Ref. [38].

The results for 48Ca, using the f0 parameter [see Eq. (1)]
on the lower side, are shown in Table I. One can see that these
nuclear properties show good convergence tendency at N4LO.
Similar comments apply to Table II, where the predictions
differ from those in Table I only in the larger value of f0,
which introduces more repulsion in the liquid droplet model.
Binding energy values are smaller by a few percent and the
rms radii remain very close to those in Table I. Once again,
all properties show a clear signature of convergence toward

TABLE II. Same as Table I, but using f0 = 70 MeV fm5.

Cutoff (MeV) Order B/A (MeV) rch(fm) rp(fm) rn (fm) S (fm)

NLO 450 8.362 3.659 3.557 3.708 0.152
NLO 500 8.362 3.659 3.557 3.709 0.152
NLO 600 8.363 3.659 3.557 3.711 0.154
N2LO 450 8.324 3.651 3.549 3.725 0.176
N2LO 500 8.321 3.651 3.549 3.727 0.178
N2LO 600 8.318 3.650 3.548 3.728 0.180
N3LO 450 8.351 3.656 3.554 3.713 0.159
N3LO 500 8.344 3.655 3.553 3.716 0.163
N3LO 600 8.343 3.654 3.552 3.717 0.165
N4LO 450 8.356 3.656 3.554 3.714 0.160
N4LO 500 8.353 3.655 3.554 3.714 0.161
N4LO 550 8.350 3.655 3.553 3.715 0.162

TABLE III. Same as Table I, but for 208Pb.

Cutoff (MeV) Order B/A (MeV) rch (fm) rp (fm) rn (fm) S (fm)

NLO 450 7.966 5.645 5.580 5.690 0.110
NLO 500 7.963 5.646 5.581 5.693 0.112
NLO 600 7.960 5.649 5.584 5.701 0.117
N2LO 450 7.862 5.643 5.577 5.730 0.154
N2LO 500 7.853 5.643 5.578 5.735 0.158
N2LO 600 7.844 5.644 5.578 5.740 0.162
N3LO 450 7.936 5.642 5.576 5.699 0.123
N3LO 500 7.917 5.643 5.577 5.708 0.130
N3LO 600 7.914 5.641 5.575 5.708 0.132
N4LO 450 7.943 5.645 5.579 5.705 0.125
N4LO 500 7.937 5.643 5.577 5.703 0.126
N4LO 550 7.930 5.642 5.576 5.705 0.129

N4LO. The results for 208Pb, which are given in Tables III
and IV, show trends very similar to those observed in 48Ca.

In the uncertainty analysis which follows, the results at
N3LO will be taken as the “final” predictions, since the
truncation error at this order can be reliably estimated from
the knowledge of the predictions at N4LO. For 48Ca at N3LO,
using the smaller value of f0 (cf. Table I) and averaging the
results for the different cutoffs yields S = 0.148 +0.002

−0.003 fm,
whereas a similar average for the larger value of f0 (cf. Table II)
gives S = 0.162 +0.003

−0.003 fm.
At N3LO, the truncation error is given by the difference

between the predictions at N3LO and those at N4LO. Or, in
other words, the N4LO correction is the N3LO uncertainty.
Applying this reasoning, next I take the difference between
cutoff-averaged predictions at N3LO and N4LO, respectively,
and determine the truncation error to be about 0.001 fm,
showing that the results are very well converged with respect
to the chiral expansion of the two-nucleon force. Further, to
account for the uncertainty arising from the parameter f0 in
the droplet model, the central values given above are averaged,
which yields S̄ = 0.155 ± 0.007 fm.

The same steps are then repeated using another phenomeno-
logical EOS for symmetric matter (see discussion above, at the
end of Sec. II B). Using the smaller value of f0 and averaging

TABLE IV. Same as Table II, but for 208Pb.

Cutoff (MeV) Order B/A (MeV) rch (fm) rp (fm) rn (fm) S (fm)

NLO 450 7.741 5.671 5.605 5.729 0.124
NLO 500 7.739 5.672 5.606 5.732 0.125
NLO 600 7.736 5.675 5.609 5.740 0.130
N2LO 450 7.642 5.667 5.602 5.770 0.169
N2LO 500 7.634 5.667 5.602 5.775 0.173
N2LO 600 7.625 5.668 5.603 5.780 0.177
N3LO 450 7.712 5.667 5.602 5.738 0.137
N3LO 500 7.694 5.668 5.602 5.747 0.145
N3LO 600 7.692 5.666 5.601 5.747 0.147
N4LO 450 7.719 5.670 5.605 5.744 0.139
N4LO 500 7.714 5.668 5.603 5.743 0.140
N4LO 550 7.707 5.667 5.602 5.744 0.143
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TABLE V. Empirical values for the neutron skin of 48Ca and 208Pb
taken from various sources.

Nucleus S (fm) Source

48Ca 0.13 ± 0.06 [42]
0.16 ± 0.07 [42]
0.11 ± 0.04 [44]

208Pb 0.15 ± 0.08 [42]
0.14 ± 0.10 [42]
0.18 ± 0.05 [45]
0.18 ± 0.05 [46]

the results for the different cutoffs, I obtain S = 0.155 +0.002
−0.003

fm, whereas a similar average for the larger value of f0 gives
S = 0.169 +0.0024

−0.003 fm. The truncation error is again very small
(about 0.001 fm). Averaging the central values as before yields
S̄ = 0.162 ± 0.007 fm.

Finally, combining the results obtained with two phe-
nomenological EOSs and calculating the total error in
quadrature, the prediction based on chiral 2NFs at N3LO is
found to be

S̄2NF(48Ca) = (0.159 ± 0.009) fm. (8)

An identical analysis for 208Pb yields

S̄2NF(208Pb) = (0.14 ± 0.01) fm. (9)

The question to be addressed next is whether one can
constrain the effect from few-neutron forces in neutron matter
using these well-converged results based on 2NFs only and
empirical information. Some comments are in place here
concerning the nature of the contributions one may potentially
constrain. In principle, four- and higher-body forces are
included in the missing terms. However, it is reasonable to
expect that by far the largest contribution would be from 3NFs.
In fact, chiral perturbation theory offers a justification for
why higher-body forces should be smaller, since they appear
at higher order in the expansion. An investigation aimed at
constraining 3NFs exploiting chiral 2NFs can be found in
Ref. [39].

Accurate measurements of the neutron skin of 208Pb from
the Lead Radius Experiment (PREX) [40] [and, potentially,
the Calcium Radius Experiment (CREX) for 48Ca [41]] are
expected but not yet available. Thus, I will start from current
information and project a near-future scenario when accurate
measurements of neutron radii become available from parity-
violating electron scattering experiments.

Table V displays some representative empirical results for
the neutron skin thickness of 48Ca and 208Pb extracted by a va-
riety of methods (see corresponding citations). Reference [42]
makes use of pionic probes and total π+ reaction cross sections
between 0.7 and 2 GeV/c. The first two values for calcium
displayed in Table V are obtained with pionic atoms adopting
two different versions of the neutron density [43]. The last
entry for calcium was obtained from analyses of π+ and π−
scattering across the (3,3) resonance [44]. The same comment
applies to the first two table entries for lead. The authors of
Ref. [45] also make use of pionic atom potentials while varying

radial parameters of the neutron distributions. The third entry
for lead in Table V is a weighted average of their analysis as
well as results from previous models. The last 208Pb entry is
extracted from symmetry energy constraints and is consistent
with a broad set of skin measurements based on antiprotonic
atoms, pigmy dipole resonances, electric dipole polarizability,
and proton elastic scattering [46].

By averaging the values for 48Ca of Table V and calculating
the error in quadrature, one can estimate the current knowledge
of the neutron skin in 48Ca as

S̄emp(48Ca) = (0.13 ± 0.03) fm. (10)

The difference between theory and experiment then comes out
to be

|S̄2NF(48Ca) − S̄emp(48Ca)| = (0.03 ± 0.03) fm. (11)

Obviously, the difference between the central values from
Eqs. (10) and (8) is about the same as the uncertainty and,
therefore, current empirical determinations of the neutron skin
of 48Ca cannot pin down the effect of the 3NF on neutron
matter.

The situation is similar for 208Pb, where the average of the
empirical values shown in Table V results in

S̄emp(208Pb) = (0.16 ± 0.04) fm. (12)

Here, the difference between theory and experiment is

|S̄2NF(208Pb) − S̄emp(208Pb)| = (0.02 ± 0.04) fm , (13)

which is smaller than the uncertainty.
To summarize, from the present analysis one may conclude

that a measurement of the neutron skin can provide a constraint
for the effect of 3NFs on neutron matter if the experimental
uncertainty is 	S̄emp < |S̄2NF − S̄emp|. Based on the above
values, one may conclude that future experiments on the
neutron skin of 208Pb (or 48Ca) should aim for an uncertainty
	S̄emp < 0.03 fm to provide a useful constraint on 3NFs in
neutron matter.

IV. SUMMARY AND CONCLUSIONS

Predictions which cannot be stated with appropriate theo-
retical uncertainty are no longer consistent with contemporary
standards. With chiral EFT, one can reliably estimate the
truncation error at each order of the chiral expansion. Being
able to do so is crucial to guiding future measurements.

In this work, the neutron matter EOS applying chiral
2NFs up to fifth order has been calculated, thus extending
previous predictions. Using as input the microscopic neutron
matter EOS from second to fifth order, the order-by-order
convergence pattern of the neutron skin in 48Ca and 208Pb has
been explored. It turns out that the uncertainty with regard
to the chiral expansion of the 2NF up to N4LO is 0.001
fm for both nuclei, which reflects an excellent degree of
convergence concerning the Hamiltonian. Including (nonlocal)
cutoff variations and the error from the many-body method
applied, the overall uncertainty of these predictions comes out
to be about 0.01 fm for 48Ca and 208Pb. This small theoretical
uncertainty of the 2NF-based predictions should, in principle,
allow one to pin down the effects of the missing 3NFs, if
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the empirical determination carries a sufficiently small error,
which is not the case with present constraints. This analysis
finds that the experimental error of neutron skin determinations
for these nuclei should be less than 0.03 fm to be effective in
constraining missing contributions from few-nucleon forces.
These findings can be a useful guideline for planners of future
PREX and CREX experiments.

Before closing, it is important to remind the reader that this
analysis will be broadened in the near future. In particular, (i)
the uncertainty analysis should be extended to include a full
variation of the regulator function, namely, both scheme and
scale; and (ii) at this time, the EOS of symmetric matter has

been kept fixed to an empirical one in order to maintain the
focus on the possibility of constraining three-neutron forces in
neutron matter. The information obtained in the present study
will be useful when moving on to a similar investigation which
employs, instead, fully microscopic EOSs of symmetric matter
at each chiral order.
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Phys. Rev. C 89, 061301 (2014).

[23] A. Cipollone, C. Barbieri, and P. Navrátil, Phys. Rev. C 92,
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