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γ strength function and level density of 208Pb from forward-angle proton scattering at 295 MeV
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Background: γ strength functions (GSFs) and level densities (LDs) are essential ingredients of statistical nuclear
reaction theory with many applications in astrophysics, reactor design, and waste transmutation.
Purpose: The aim of the present work is a test of systematic parametrizations of the GSF recommended by the
RIPL-3 database for the case of 208Pb. The upward GSF and LD in 208Pb are compared to γ decay data from an
Oslo-type experiment to examine the validity of the Brink-Axel (BA) hypothesis.
Methods: The E1 and M1 parts of the total GSF are determined from high-resolution forward angle inelastic
proton scattering data taken at 295 MeV at the Research Center for Nuclear Physics (RCNP), Osaka, Japan. The
total LD in 208Pb is derived from the 1− LD extracted with a fluctuation analysis in the energy region of the
isovector giant dipole resonance.
Results: The E1 GSF is compared to parametrizations recommended by the RIPL-3 database showing systematic
deficiencies of all models in the energy region around neutron threshold. The new data for the poorly known
spin-flip M1 resonance call for a substantial revision of the model suggested in RIPL-3. The total GSF derived
from the present data is larger in the PDR energy region than the Oslo data but the strong fluctuations due to the
low LD resulting from the double shell closure of 208Pb prevent a conclusion on a possible violation of the BA
hypothesis. Using the parameters suggested by RIPL-3 for a description of the LD in 208Pb with the back-shifted
Fermi gas model, remarkable agreement between the two experiments spanning a wide excitation energy range
is obtained.
Conclusions: Systematic parametrizations of the E1 and M1 GSF parts need to be reconsidered at low excitation
energies. The good agreement of the LD provides an independent confirmation of the approach underlying the
decomposition of GSF and LD in Oslo-type experiments.
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I. INTRODUCTION

γ strength functions (GSFs) describe the average γ decay
behavior of a nucleus. They serve as input for applications
of statistical nuclear theory in astrophysics [1], reactor design
[2], and waste transmutation [3]. Although all electromagnetic
multipoles contribute, the GSFs are usually dominated by the
E1 component with smaller contributions from M1 strength.
Above particle threshold it is governed by the isovector giant
dipole resonance (IVGDR) but for astrophysical processes
the energy region around particle thresholds and at even
lower excitation energies [4] is more important. There, the
situation is more complex: In nuclei with neutron excess
one observes the formation of the pygmy dipole resonance
(PDR) [5], but the low-energy tail of the IVGDR can also
contribute. Furthermore, the spin-flip M1 resonance overlaps
with the energy region of the PDR [6]. The impact of the
low-energy GSFs on astrophysical reaction rates and the
resulting abundances in the r-process have been discussed,
e.g., in Refs. [7–9].

Many applications imply an environment of finite temper-
ature, notably in stellar scenarios [10], and thus reactions on
initially excited states become relevant. Their contributions
to the reaction rates are usually estimated applying the
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generalized Brink-Axel (BA) hypothesis [11,12] which states
that the GSF is independent of the properties of the initial
and final states. The validity of the BA hypothesis is also
implicity assumed in the derivation of the GSFs from many
experimental data based on ground state photoexcitation.
Although historically formulated for the IVGDR, where it
seems to hold approximately for not too high temperatures
[13], the BA hypothesis is nowadays commonly used to
calculate the low-energy E1 and M1 strength functions. This is
questioned by a recent shell-model analysis [14] where it was
demonstrated that the strength functions of collective modes
built on excited states do show an energy dependence, and
this is expected from spectral distribution theory. However,
the numerical results for E1 strength functions showed an
approximate constancy consistent with the BA hypothesis.

Recent work utilizing compound nucleus γ decay with the
so-called Oslo method [15] has demonstrated independence
of the GSF from excitation energies and spins of initial and
final states in accordance with the BA hypothesis once the
level densities are sufficiently high to suppress large intensity
fluctuations [16]. However, there are a number of experimental
results which seem to violate the BA hypothesis in the
low-energy region. For example, the GSFs in heavy deformed
nuclei at excitation energies of 2–3 MeV are dominated by
the orbital M1 scissors mode [17], and large differences of
B(M1) strengths are observed between γ emission [18,19]
and absorption [20] experiments. For the low-energy E1
strength the question is far from clear when comparing results
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from the Oslo method with photoabsorption data. Below
particle thresholds much of the information on GSFs stems
from nuclear resonance fluorescence (NRF) experiments. A
problem of the NRF method is experimentally unobserved
branching ratios to excited states, which have been neglected
in many cases [5]. Recent studies of the γ decay after
photoabsoprtion indicate that these may be sizable [21,22].

Here we present results for 208Pb from a new method
for the measurement of E1 and M1 strength distributions in
nuclei (and thus the GSF) from about 5 to 25 MeV based on
relativistic Coulomb excitation in inelastic polarized proton
scattering at energies of a few hundred MeV and scattering
angles close to 0◦ [23–26]. The E1 strength distribution
from Coulomb excitation permits us to determine the dipole
polarizability, which provides important constraints on the
neutron skin of nuclei and the poorly known parameters of
the symmetry energy [27]. The data also allow extraction
of the M1 part of the GSF [28] due to spin-flip excitations
which energetically overlaps with the PDR strength. The high-
resolution data also provide information on level densities—
another essential ingredient of statistical model cross section
calculations— from an analysis of the fine structure of the
IVGDR [29].

The purpose of the paper is twofold. On one hand, recom-
mended parametrizations of the GSF and LD summarized in
the RIPL-3 database [30] are evaluated for the case of 208Pb.
In particular, we provide new data for the poorly known M1
part of the GSF. On the other hand, the comparison with
the Oslo experiment provides a test of the BA hypothesis.
Moreover, since GSF and LD are independently determined,
the decomposition of both quantities in the Oslo method, which
measures the product of GSF and LD [15], can be verified.

II. γ STRENGTH FUNCTION OF 208Pb

In the experiments discussed here, the GSF for an electric or
magnetic transition X ∈ {E,M} with multipolarity λ is related
to the photoabsoprtion cross section 〈σXλ

abs 〉,

f Xλ(E,J ) = 2J0 + 1

(π�c)2(2J + 1)

〈
σXλ

abs

〉
E2λ−1

, (1)

where E denotes the γ energy and J,J0 the spins of excited
and ground states, respectively [30]. The brackets 〈 〉 indicate
averaging over an energy interval. In practice, only E1, M1,
and E2 provide sizable contributions to the total GSF. In
the following, we discuss the derivation of the GSF for
these components from the experimental data and compare
to parametrizations recommended in RIPL-3.

A. E1 contribution

The E1 contribution of the GSF in 208Pb was determined
using polarized inelastic proton scattering data obtained at the
Research Center for Nuclear Physics (RCNP) at Osaka, Japan
with a beam energy of 295 MeV in an excitation energy region
from 5 to 23 MeV [23,24]. In Ref. [24], the B(E1) strength was
extracted by means of the multipole decomposition analysis
(MDA) in the energy region from 4.8 to 9 MeV. The B(E1)
strength provided in Table I of that work was used to determine
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FIG. 1. E1 GSF of 208Pb deduced from the (p,p′) data [23,24]
(blue diamonds) in comparison with the SLO (green line), MLO
(cyan line), and EGLO (magenta line) models explained in the text.
The black circle shows the prediction from experimental systematics
at the neutron separation threshold [30].

the E1 part of the GSF. In the IVGDR region, the E1 GSF
was determined from photoabsorption cross sections extracted
from the (p,p′) data by means of the virtual photon method
[23]. The resulting E1 GSF is shown in Fig. 1 in comparison
with three widely used models and with a GSF value at
the neutron separation threshold deduced from experimental
systematics over a wide mass range [30].

The simplest model to describe the E1 GSF is a standard
Lorentzian (SLO) function

fSLO(E) = σr�r

3(π�c)2

�rE(
E2 − E2

r

)2 + (�rE)2
, (2)

where σr is the peak cross section, Er the centroid energy, and
�r the width of the IVGDR.

A more sophisticated model is the enhanced generalized
Lorentzian (EGLO) model

fEGLO(E) = σr�r

3(π�c)2

[
�K (E,T )E(

E2 − E2
r

)2 + (�K (E,T )E)2

+ 0.7
�K (E = 0,T )

E3
r

]
. (3)

The EGLO consists of two terms [31], a Lorentzian with
an energy- and temperature-dependent width �K (E,T ) and
a term describing the shape of the low-energy part of the GSF.
The temperature dependence is estimated within Fermi liquid
theory [32]

�K (E,T ) = χ (E)
�r

E2
r

[E2 + (2πT )2], (4)

where

χ (E) = κ + (1 − κ)
E − E0

Er − E0
(5)

is an empirical function with parameters κ and E0, and κ
is adjusted to reproduce the experimental E1 strength at a
reference energy E0 [30].
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The SLO and EGLO models are both parametrizations of
experimental data. In contrast, the modified Lorentzian model
(MLO) is based on general relations between the GSF and the
imaginary part of the nuclear response function

fMLO(E) = σr�r

3(π�c)2

	(E,T )�(E,T )E(
E2 − E2

r

)2 + [�(E,T )E]2
, (6)

where

	(E,T ) = 1

1 − exp(−E/T )
. (7)

The function 	(E,T ) accounts for the enhancement of the
GSF with increasing temperature. The width �(E,T ) within
the MLO is calculated with microcanonically distributed initial
states [33].

The resulting predictions are shown in Fig. 1 as green
(SLO), magenta (EGLO), and cyan (MLO) curves. In the
region around the maximum of the IVGDR all models provide
a good description. The high-energy tail of the IVGDR is
well described by SLO and MLO while EGLO overestimates
the photoabsorption cross sections. The low-energy tail of
the IVGDR exhibits strong fluctuations which complicate the
comparison with smooth strength functions. For excitation
energies down to about 8 MeV, MLO describes the average
behavior fairly well while SLO (EGLO) are roughly consistent
with the upper (lower) limits of the fluctuations but overes-
timate (underestimate) the average cross sections. Between
6 and 8 MeV a resonance-like structure dominates the GSF
identified as the PDR in 208Pb [24]. This low-energy resonance
is not included in the models. Finally, the GSF value expected
at neutron threshold (Sn = 7.37 MeV in the present case) from
experimental systematics of neutron capture cross sections
(black circle) is almost an order of magnitude smaller than
the experimental strengths in the PDR. However, this may be
an artefact of the unusually low level density in the doubly
magic nucleus 208Pb with corresponding strong fluctuations of
individual strengths at energies close to the neutron threshold
(note that the GSF values correspond to energy bins rather than
to individual transitions for excitation energies above 7 MeV
(cf. Table I in Ref. [24]).

B. M1 contribution

In addition to the B(E1) strengths measured in the (p,p′)
experiment, M1 cross sections at 
 = 0◦ are provided in
Table I of Ref. [24]. These are concentrated between 7 and
9 MeV and represent the spin-flip M1 resonance [6]. We note
that an additional M1 transition to a 1+ state at 5.844 MeV
is known (see Ref. [34] and references therein) but omitted
here because it is of dominant isoscalar nature [35]. Recently
a method utilizing isospin symmetry has been presented to
relate the spin-flip M1 cross sections to those of Gamow-
Teller excitations studied with the (p,n) reaction and extract
the spin-M1 matrix elements [28]. Assuming dominance of
the spin-isovector part of the electromagnetic M1 operator,
reduced B(M1) transition strengths can be extracted. In the
resonance region these agree well [28] with studies using
electromagnetic probes [36,37]. At excitation energies above 8
MeV, where previous experiments had limited sensitivity [36],
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FIG. 2. Same as Fig. 1 but for the M1 component of the GSF.

additional B(M1) strength is found in the (p,p′) data, which
raises the total strength of the spin-flip M1 resonance by about
20%.

Figure 2 displays the corresponding m GSF in comparison
with SLO, EGLO, and MLO model predictions for 208Pb.
The M1 GSF model results are derived from the E1 models
discussed above in the following way [30]

f M1(E) = f E1(Sn)

R
�M1(E)

�M1(Sn)
(8)

and

R = f E1(Sn)

f M1(Sn)
= 0.0588A0.878, (9)

where �M1(E) is a SLO parametrization of the spin-flip M1
resonance with energy centroid Er = 41 × A−1/3 and �r =
4 MeV [38]. The mass dependence of the ratio R in Eq. (9) is
valid for nuclei with Sn ≈ 7 MeV. Thus, it should be a good
approximation for 208Pb.

The comparison in Fig. 2 indicates that the theoretical GSF
values near maximum are of magnitudes roughly comparable
to the data. However, the assumed resonance properties
represent a poor approximation of the data. The theoretical
resonance energies are about 500 keV too low and the
experimental width is grossly overestimated. As a result,
the predicted total strengths of the spin-flip M1 resonance
exceed the experimental value

∑
B(M1) = 20.5(13) μ2

N [28]
by factors ranging from 2 (EGLO) to 5 (SLO).

C. E2 contribution

The E2 contribution to the GSF was estimated using (α,α′)
data obtained at the Texas A&M K500 superconducting cy-
clotron, College Station, Texas, USA [39]. In this experiment
several isotopes including 208Pb were investigated using α
particles with an energy of 240 MeV. The data were taken in an
excitation energy region of 10 to 55 MeV where isoscalar E0,
E1, E2, and E3 strength distributions were extracted with the
aid of a MDA. The resulting E2 strength distribution exhausted
100 ± 15% of the energy weighted sum rule (EWSR). Using
this data the B(E2) strength distribution was obtained and
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FIG. 3. E2 GSF deduced from Ref. [39] in comparison to the
SLO model with parameters from Ref. [40]. The GSF was multiplied
by E2

x to make the units comparable to the E1 and M1 GSFs.

converted to the E2 GSF shown in Fig. 3. The solid line
shows a global parametrization of the E2 giant resonance [40]
suggested in earlier RIPL versions.

D. Total GSF and comparison with Oslo data

Figure 4 summarizes the E1, M1, and E2 contributions to
the total GSF. As can be seen, the dominant contribution stems
from E1 transitions. The M1 contribution is of the order of a
few percent for excitation energies above 8 MeV and reaches at
most 10–30% in the peak of the resonance around Sn. The E2
contribution is of comparable magnitude to M1 but located
at higher excitation energies. Because of the simultaneous
strong rise of the E1 part in the IVGDR energy region, the E2
contribution to the GSF at the maximum of the E2 resonance
is about 1% only.

The total GSF summing all contributions is displayed in
Fig. 5 (blue diamonds) and compared with data derived with
the Oslo method from a 208Pb(3He ,3He′ γ ) experiment (red
circles) [41]. The data set has been reanalyzed recently [42].
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FIG. 4. Comparison of E1, M1, and E2 contributions to the GSF
of 208Pb.
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comparison to the reanalyzed [42] results from the Oslo experiment
[41]. The inset shows an expanded view of the low-energy region,
5–8 MeV.

The main changes are new, updated response functions for the
CACTUS detector array and an improved error estimate in the
simultaneous extraction of level density and γ strength from
the primary γ -ray spectra. The initial excitation energy range
used for the reanalysis was 4.75 � Ei � 7.95 MeV, and the
applied low-Eγ threshold was 2.65 MeV. For consistency with
the previous work, the level density has been normalized to
the p-wave resonance data of RIPL-2; see Table I in Ref. [41].
Further, the γ strength has been normalized to recent (γ,n)
data by Kondo et al. [43] and also compared to older data
[44,45]. This is considered as the low-limit estimate of the γ
strength from the 3He-induced reaction.

There are overlapping results from both experiments in the
energy region between 5 and 8 MeV (see inset of Fig. 5). The
GSF derived from the (p,p′) data is systematically higher in the
PDR region although it seems still compatible within error bars
in the peak region around the neutron threshold. Between 6
and 7 MeV consistent results are found while below 6 MeV the
strong transitions observed in Ref. [24] exceed the average γ
strength in the Oslo data by factors 4 to 5. However, one should
be aware that single transitions are analyzed for excitation
energies Ex < 7 MeV [24] and the level density of 1− states
excited from the ground state is probably too low to discuss an
average behavior in the PDR region. Rather the upward GSF
is dominated by Porter-Thomas intensity fluctuations.

III. LEVEL DENSITY OF 208Pb

Level density of 1− states in the excitation energy region
from 9 to 12.5 MeV was determined from (p,p′) data [29]
using a fluctuation analysis [46]. However, the LD for 208Pb
derived from the Oslo method represents a different spin
window depending on the specific reaction. Thus all results
are converted to total level densities using Fermi gas models
[15]. This can be achieved using the following equation:

ρ tot(E) = 2ρ(E,J,�)

f (J )
, (10)

054313-4



γ STRENGTH FUNCTION AND LEVEL DENSITY OF . . . PHYSICAL REVIEW C 94, 054313 (2016)

0 2 4 6 8
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

S
pi

n
D

is
tr

ib
ut

io
n

F
un

ct
io

n
f(

J)

Ex = 8 MeV

BSFGM (RIPL-3)

BSFGM (Rauscher et al.)

BSFGM (Syed et al.)

0 2 4 6 8 10

Spin J

Ex = 15 MeV

BSFGM (RIPL-3)

BSFGM (Rauscher et al.)

BSFGM (Syed et al.)

FIG. 6. Spin distribution functions of LDs in 208Pb at excitation
energies of 8 and 15 MeV from BSFG model predictions with the
parameters of Ref. [41] (magenta dashed-dotted lines), Ref. [30]
(green solid lines), and Ref. [48] (cyan dashed lines). The vertical
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where ρ tot(E) is the total level density at energy E and
ρ(E,J,�) is the level density for transitions with spin J and
parity �. The function f (J ) is the so-called spin distribution
function defined as

f (J ) = 2J + 1

2σ 2
exp

[
− (J + 1

2 )2

2σ 2

]
, (11)

where σ is the spin cutoff parameter. Since the spin cutoff
depends on the parameters of the Fermi gas model one has
to investigate the model dependence. For this purpose, we
considered three parameter sets derived within the back-shifted
Fermi gas model (BSFG) approach [47]. These include the
one used in the original analysis of the Oslo experiment
[41], a global set recommended in RIPL-3 [30], and the
parametrization of Ref. [48] developed for s-process reaction
network calculations, which has been shown to provide a good
description of LD for many nuclei near the valley of stability
[29,49–51].

Figure 6 shows the spin distribution functions from the
three different parametrizations at excitation energies of 8 and
15 MeV, which show significant differences. The values for
J = 1 are indicated by the vertical dashed lines.

Figure 7 presents the resulting total LDs in 208Pb from the
three models for an excitation energy range Ex = 9–12.5 MeV.
The absolute values depend on the chosen parametrization
(cf. Fig. 6), but their ratio shows limited variation over the
studied energy region; i.e., all three models predict a similar
energy dependence. Therefore, we use averaged values (blue
diamonds) for the comparison with the Oslo data. The error
bars include the model dependence which actually dominates
over the uncertainties in the extraction of the 1− LD discussed
in Ref. [29].

The comparison with the Oslo results (red squares) is
finally presented in Fig. 8. The value at neutron threshold
(black circle) is deduced from p-wave resonance neutron
capture converted to a total LD with the aid of the RIPL-3
BSFG parametrization. The black downward triangles denote
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FIG. 7. Total level density of 208Pb between 9 and 12.5 MeV
obtained with the spin distribution functions of Ref. [41] (right-
pointing magenta triangles), Ref. [30] (green upward triangles), and
Ref. [48] (cyan downward triangles). Mean values averaged over the
three models are shown as blue diamonds.

the results from level counting from a recent study claiming
essentially complete spectroscopy up to 6.2 MeV [52]. Indeed,
the LD agrees well with the Oslo result up to about 5
MeV. For Ex > 5 MeV, the LDs deduced from Ref. [52] are
approximately constant, indicating that an increasing amount
of levels is missing (approximately a factor of 2 at 6 MeV).

The magenta dashed-dotted, green solid, and cyan dashed
lines are the BSFG model predictions with the parameters
of Refs. [41], [30], and [48], respectively. The models are
normalized to the data point at Sn with factors 1.15, 2.18, and
0.52. However, absolute values for the RIPL-3 parametrization
are obtained by normalizing to s-wave neutron capture
resonance spacings. As pointed out in Ref. [41], the data are
rather poor in 208Pb and one should rather normalize to the
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FIG. 8. Total LD from the (p,p′) data [23,24] in comparison
to the reanalyzed [42] results from the Oslo experiment [41]. The
black downward triangles are results from from counting the levels
identified in Ref. [52] in 200 keV bins. The magenta dashed-dotted,
green solid, and cyan dashed lines are BSFG model predictions with
the parameters of Refs. [41], [30], and [48], respectively.
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p wave spacings; i.e., the solid curve is absolute. The energy
dependence of the BFSG model shows differences over the
wide energy range spanned by the two data sets. Remarkably,
the RIPL-3 parameter set, whose predicions of the total LD
are closest to the mean value (cf. Fig. 7), provides a consistent
description of all data.

IV. SUMMARY AND CONCLUSIONS

The main aim of this work was to determine the E1, M1,
and total GSF of 208Pb for tests of models recommended in
the RIPL-3 database as well as to study the BA hypothesis by
comparison with decay data obtained with the Oslo method.
It is shown that the E1 GSF can be described well by the
SLO and MLO models in the GDR region. In the low-energy
region strong fluctuations occur, so that no particular model
can be favored. The average behavior of the low-energy tail of
the IVGDR is probably best described by the MLO model.
However, none of models includes the PDR and thus the
predictive power at low excitation energies is generally limited.

The presently recommended parametrization of the spin-
flip M1 resonance provides only a poor description of the
208Pb data. Although the absolute magnitude of the resonance
maximum is reproduced within a factor of 2 to 3, the width of
the M1 GSF is strongly overestimated. As a result the B(M1)
strengths predicted by the empirical models are too large by
factors of 2 to 5. Since the excitation energy ranges of the spin-
flip M1 resonance and the PDR overlap in heavy nuclei, this
has a strong impact on attempts to extract model parameters for
the PDR contribution in decay experiments. Clearly, more data
are needed to establish the systematics of the poorly known

spin-flip M1 resonance in heavy nuclei. The method presented
in Ref. [28] promises experimental information from the (p,p′)
data on spherical [25,53] as well as deformed [54,55] nuclei.

The comparison of the present GSF derived from ground-
state absorption with the Oslo results shows larger values
in the PDR energy region, where both data sets overlap.
However, the fluctuations of the GSF are very strong due to the
anomalously small level densities in the closed-shell nucleus
208Pb, which prevents conclusions on a possible violation of
the BA hypothesis in the PDR energy region. Here, tests in
open-shell nuclei with higher level densities are required and
a corresponding study [54] is underway.

Total level densities for 208Pb were derived from fluc-
tuations of the high-resolution (p,p′) cross sections in the
IVGDR energy region and compared to those from the Oslo
method covering much lower energies. Using the BSFG model
parameters suggested by RIPL-3 to convert the experimental
partial-spin results to total level densities and to describe their
energy dependence, remarkable agreement between the two
results is obtained. This provides an independent confirmation
of the approach [15] to separate GSF and LD in Oslo-type
data.
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