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The density profiles of spherical nuclei are calculated with two methods based on the energy density
functional approach. Isotopic trends are discussed in nuclear surface diffuseness. The simple parametrizations of
the dependencies of nuclear diffuseness and radius on neutron number are suggested. The nucleus-nucleus
potentials are calculated with the nucleon densities obtained and are compared with those resulting from
the phenomenological treatment. The height of the Coulomb barrier is suggested to be used in the fit of the
density-dependent nucleon-nucleon interaction.
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I. INTRODUCTION

A challenge of nuclear theory is to propose an unified
theoretical tool, applicable to the description of nuclear
structure and nuclear reactions. Ab initio approaches [1,2] are
just on this way. However, they are presently applicable to
relatively light nuclei due to the computational limitations.
So, the microscopic self-consistent theories based on the
effective nucleon-nucleon forces with few phenomenological
parameters are usually applied to describe the entire nuclear
chart.

Historically, the Hartree–Fock (HF) method with effective
Skyrme forces [3] or, a bit later, the one with Gogny forces [4]
were the first such approaches. As an alternative the nuclear
energy density functional (EDF) method was developed by
Fayans with coauthors [5] which was generically related to
the self-consistent theory of finite Fermi systems (TFFS) [6].
The generalizations of the HF approach with effective forces
for superfluid nuclei were formulated first as the HF + BCS
method and later, as a more general Hartree–Fock–Bogoliubov
(HFB) method. As for the Fayans EDF method, it was
from the beginning formulated for superfluid nuclei, with
the EDF depending on the normal and anomalous densities.
Nowadays the above HF methods with the effective force are
usually formulated as the EDF method with Skyrme or Gogny
functionals; see Ref. [7] and references therein. The same
is true, to some extent, for the relativistic mean-field theory
which became popular last decade; see e.g., Refs. [8–10].

There are partially ab initio microscopic approaches in
which the main part of the EDF parameters is found starting
from the free NN interaction and only several phenomenolog-
ical parameters are introduced, significantly less than in the
case of the EDFs which are completely phenomenological.
Thus, the M3Y representation of the G matrix from the
Paris NN was used in Ref. [11] as a starting point for
finding the effective NN interaction. It was modified by in-
troducing density-dependent vertex renormalizations, with the
use of several phenomenological parameters. More recently,
the so-called Bolognia–Catania–Paris–Madrid method was

developed [12,13], based on the EDF of nuclear matter found
within the Brueckner–Hartree–Fock method from the Argonne
AV18 force. Only three phenomenological parameters were
introduced; two for the surface and one for the spin-orbit
components.

The crucial test of the phenomenological theory is the
description of the ground-state properties of nuclei as the
binding energies, radii, equilibrium deformations, and decay
properties. The theory has to predict the low-lying excited
states as well. For nuclear reactions, one should have a tool to
calculate the nucleus-nucleus potential as the main ingredient
of description of all reaction processes. The parameters of the
EDFs are usually fit to the ground-state nuclear characteristics.
The use of them for description of nuclear reactions provides an
important additional test. Indeed, the nucleus-nucleus potential
is mainly defined by the effective NN forces at low nuclear
density (their external part), while the ground-state nuclear
properties are mainly determined by the NN interaction in the
nuclear interior (the internal part). An example of the test of
the EDF method in description of reactions induced by heavy
ions is one of the goals of this work.

Average central densities, nuclear radius, and surface
diffuseness are basic quantities characterizing finite nuclear
systems. Extensive discussions are currently made on the
proton-neutron differences of proton-neutron nuclear radii
and diffuseness to study the symmetry energy [14–20]. The
polarization of the nuclear surface in the deformed nuclei
was also considered in Ref. [21]. Here, we focus on the
isotopic trends of nucleon distributions considering all studied
nuclei as spherical. A particular attention is taken to study the
diffuseness of the surface which has an important impact on
the calculation of the Coulomb barrier [22–24] in the nucleus-
nucleus potential. While the central density and radius are
mainly related to the internal NN forces, or to the properties
of nuclear matter, the diffuseness of the nuclear surface turns
out to be related to the external part of these forces, being the
effect of finite Fermi systems. The nuclear surface region is
of particular importance for nuclear reactions. From point of
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view of nuclear dynamics, this is a transitional region where
the in-medium interactions gradually undergo into the free NN
interactions. The TFFS [25], for example, accounts for these
transient effects explicitly introducing internal and external
interactions.

The article is organized as follows: in the next section, the
two versions of the EDF method to characterize nuclear shapes
and density profiles are exposed. The first one is partially
ab initio EDF [11]. The Fayans EDF [5,26,27], which is
completely phenomenological, is the second one. Section III
provides an analysis of the density profile and its consequence
in the calculation of nucleus-nucleus potential. In Sec. IV, an
example of consequences on nuclear dynamics is given.

II. ENERGY DENSITY FUNCTIONAL APPROACH TO
NUCLEAR GROUND-STATE DENSITY DISTRIBUTIONS

A. Method I: Partially ab initio energy density functional

Nuclear binding energies, single-particle states, and
ground-state densities are described by an EDF:

E(ρ,τ,κ) = Ekin(τ ) + Eint(ρ)+Epair(ρ,κ)−
∑

q=p,n

λqρq, (1)

given by the kinetic-energy density Ekin, the interaction energy
density Eint, and the pairing interaction density Epair. The
functional E depends on the proton and neutron densities
ρ = {ρp,ρn}, the corresponding kinetic energy densities τ =
{τp,τn}, and the pairing densities κ = {κp,κn}. To enforce
particle number conservation, the proton and neutron chemical
potentials λp,n are introduced. The interactions contained in
Eint andEpair are derived from in-medium G-matrix interactions
which is supplemented by an effective three-body interaction
in order to describe properly the saturation properties of infinite
nuclear matter. Following the density matrix expansion scheme
[28] as used in Ref. [11] an effective density dependent local
two-body interaction is constructed, incorporating already
antisymmetrization. Hence, our approach is based effectively
on an energy density functional with

Ekin(1,2) =
∑

q=p,n

τq(1,2), (2)

Eint(1,2) = 1

2
[ρ†(1)V00(1,2)ρ(2) + ρ

†
1(1)V01(1,2)ρ1(2)]

+ EC(1,2) + Es.o.(1,2) + Eres(1,2), (3)

Epair(1,2) = 1

2

∑
q=p,n

κ†
q(1)Vqq (1,2)κq(2), (4)

where V00 and V01 denote the interaction form factors in
the isoscalar and isovector interaction channels which for
spin-saturated nuclear systems have nonzero ground-sate
expectation values. Vqq indicates the paring interaction for
protons and neutrons, respectively, taken here as the contact
interaction with the strength fixed by the singlet-even on-shell
scattering matrix at the local Fermi momentum kq = kFq

(ρq).
All interaction form factors depend on the density as discussed
in Ref. [11]. Residual interactions, which do not contribute to
the ground state of a spin-saturated nucleus, are contained in
Eres. In addition, in a finite nucleus also the Coulomb and

spin-orbit densities are given in terms of the charge density ρc

and the spin-orbit energy density ρs.o.:

EC(1,2) = 1

2
e2ρ

†
C(1)ṼC(1,2)ρC(2), (5)

Es.o.(1,2) = 1

2

∑
T =0,1

WT (1,2)J†T (1)∇ρT (2) + H.c., (6)

where the interaction ṼC accounts for antisymmetrization
effects which we treat in local density approximation with an
effective density-dependent contact interaction. The spin-orbit
energy density is defined in terms of the isoscalar and isovector
interactions WT and the corresponding spin-currents JT . The
isoscalar and isovector densities are given in terms of the
proton and neutron ground state as

ρ = ρn + ρp and ρ1 = ρn − ρp, (7)

respectively.
The kinetic, nucleon, and pairing densities are defined

in terms of single-particle wave functions ϕqjm, occupation
probabilities njm = v2

jm, and the emptiness u2
jm = 1 − v2

jm:

τq =
∑
jm

v2
jm

�
2

2mq

|∇ϕqjm|2, (8)

ρq =
∑
jm

v2
jm|ϕqjm|2, (9)

κq = 1

2

∑
jm

ujmvjm|ϕqjm|2. (10)

The isospin spin-currents are given by

JT =
∑
q,jm

v2
qjmϕ

†
qjmτ T [−i∇ × σ ]ϕqjm. (11)

In a spherical nucleus, only the radial projection JrT = rJT

contributes effectively,

JrT =
∑
q,jm

v2
qjmϕ

†
qjmτ T � · σϕqjm, (12)

which is seen to describe the spin-orbit density. The charge
density ρc(k) is obtained by folding the proton and neutron
densities (9) by the corresponding proton and neutron charge
form factors, respectively, taken from the experiment [29,30].

Variation of E with respect to ϕ
†
qjm leads to the equations

for the single-particle wave functions
(

−�
2∇2

2mq

+ Uq + eqUC + Us.o.� · σ + �q − εqj

)
ϕqjm = 0,

(13)

with the single-particle self-energy

Uq = δ

δρq

(Eint + Epair), (14)

which accounts for isoscalar and isovector contributions
and includes rearrangement self-energies due to the intrinsic
density dependence of the interactions [31]. The pairing
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FIG. 1. The binding energies per nucleon for the Ni isotopic
chain. The energy density functional results (solid squares connected
by lines) are compared with the experimental data (solid circles) of
Ref. [33].

field is

�q = δ

δκq

Epair ∼ Vqq

(
ρq

)
kq, (15)

where we neglect higher-order corrections from the vari-
ation of the state-dependent gaps, which are defined by
the matrix elements �qj = 〈qjm|�q |qjm〉 of the pairing
field and determine the quasiparticle energies and occupation
numbers in BCS approximation. In a spherical nucleus they
are independent of the magnetic quantum numbers and, thus,
are given as

Eqj =
√

(εqj − λq)2 + �2
qj , (16)

v2
qj = 1

2

(
1 − εqj − λq

Eqj

)
. (17)

Solving Eqs. (13) with the parameters defined in Ref. [11],
we find the nucleon density profile with Eq. (9). Equation (13)
is solved by direct numerical integration. For that purpose the
Numerov–Cowell method (see, e.g., Ref. [32]), is a stable
and fast algorithm optimized for the solution of ordinary
second-order differential equations. In practice, the eigenvalue
problem is solved by matching outward and inward integrated
solutions by variation of εqj until both solutions and their
first derivatives are smoothly connected. In comparison to the
widely used expansion in terms of oscillator wave functions,
our approach avoids artificial cutoff effects and guarantees
the correct exponential falloff of bound-state wave functions
and densities in the asymptotic region up to arbitrarily large
radii. Also particle states will be described with the proper
asymptotic oscillatory behavior.

The energy density functional approach leads to good
description of nuclear binding energies (Fig. 1). The exper-
imentally available data [33] are well reproduced. The slight
deviations around 56Ni are most likely due to the neglect
of the rank-2 tensor interactions which have been found to

FIG. 2. The calculated radial distributions of the proton density
ρp for 58Ni (dotted line) and 64Ni (solid line) are compared with
the experimental data [37] shown by open and solid symbols,
respectively.

add a non-negligible amount of energy to the total binding
energies around subshell closures in even-even nuclei in
this mass region [34]. Further results on the ground-state
properties and nuclear excitations of beta-stable and exotic
nuclei were presented in Refs. [11,35,36]. Here, in Fig. 2
we demonstrate a good description of the measured [37]
charge-density distribution for 58,64Ni. As seen, the quality of
description of the characteristics of proton density distribution
is similar to those in Refs. [9,17–20].

B. Method II: Phenomenological Fayans energy
density functional

As an alternative approach we use the phenomenological
EDF by Fayans [5,26]. For completeness, we describe in short
its main peculiarities. In more detail, this EDF is presented
in Ref. [26] or in more recent Refs. [38,39]. The Fayans
EDF belongs to the class of finite-range functionals with
Yukawa-type coordinate dependence of the central force. The
ground-state energy of a nucleus is considered as a functional
of normal ρ and anomalous κ densities. The normal part of the
EDF Enorm contains the central, spin-orbit and effective tensor
nuclear terms and Coulomb interaction term for protons. The
in-volume central term can be schematically written as

Ev
norm(x) = C0Fexx

2

2

1 + αxσ

1 + γ x
, (18)

where x = ρ/ρ0 is the relative density, whereas Fex, σ and γ
are the parameters. C0 = (dn/dεF)−1 = π2/mpF is the usual
TFFS normalization factor, inverse density of states at the
Fermi surface. The isotopic indices are omitted for brevity.
The corresponding term of the Skyrme EDF can be obtained
from Eq. (18) putting γ = 0, thus reducing the “Fayans
denominator” to unity. The use of the bare mass instead of
the effective one, m∗ = m, is another peculiarity of the Fayans
method. Both the peculiarities of the Fayans EDF reflect, in
a hidden form, the energy dependence effects inherent to the
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self-consistent TFFS [6]. In particular, the effective mass is
close to the bare mass in the self-consistent TFFS due to almost
exact cancellation of two effects: of the energy and momentum
dependence of the nucleon mass operator. The surface part
E s

norm(x) of the normal EDF is derived from the expression of
Eq. (18) type (with different values of parameters) by action
of the operator

D
(
r − r′) = 1

4πr2
c r

exp

(
− r

rc

)
− δ

(
r − r′). (19)

Evidently, the surface term E s
norm(x) vanishes in nuclear matter,

x ≡ 1.
The anomalous Fayans EDF in Ref. [26] was used in the

form of

Ean(r) =
∑

τ

F ξ,ττ (r; [ρ])|κτ (r)|2, (20)

with the three-parameter effective pairing interaction:

F ξ = C0f
ξ = C0

[
f ξ

ex + hξx2/3 + f
ξ
∇r2

0 (∇x)2
]
. (21)

The first two terms of Eq. (21) are usual for the TFFS [25]
or modern Skyrme HFB EDFs [7], whereas the third one,
∝(∇x)2, was introduced in Ref. [40]. The latter turned out to
be of the principal importance for reproducing the odd-even
staggering effect in charge radii of several long isotopic chains
(Ca, Sn, and Pb), including the cases of negative isotopic
shifts [26]. In Ref. [26], the EDF DF3 was used with the
set of parameters fit to the equation of state of nuclear and
neutron matter by Friedman–Pandharipande [41] and masses
and radii of spherical nuclei, from calcium to lead. Later,
in Ref. [27], the spin-orbit and effective tensor components
of this EDF were modified to describe nuclei heavier than
lead. The corresponding EDF, named DF3-a, turned out to
be successful in describing uranium and transuranium nuclei
without spoiling the accuracy of description of lighter nuclei.
In fact, method II allows us to describe successfully the
ground-state properties of nuclei from the calcium region
to the transuranium one. In particular, the charge radii are
reproduced with this functional with the perfect accuracy of
0.01–0.02 fm [39]. Method II was proved out to be also
successful in systematic description of nuclear magnetic
[42,43] and quadrupole [38,44,45] moments. The energies
and B(E2) values for the first 2+ excitations in semimagic
nuclei [38,46] is another example of successful application of
the Fayans EDF. A record accuracy was reached also [47] in
describing the single-particle energies of seven doubly magic
nuclei.

In the calculation of nucleus-nucleus potentials we
parametrize the self-consistent density distributions found with
method II by properly normalized Fermi functions. Quality of
fitting is demonstrated in Sec. III. It should be stressed that
the tails of the density distributions mainly contribute to the
folding integral containing in the expression for the nuclear
part of nucleus-nucleus potential. Therefore, the differences
between the self-consistent density distributions and the Fermi
ones, which are seen in the central regions, are expected to
unimportant for the results.

III. CALCULATED RESULTS

A. Nucleon density distribution

The nucleon density distribution ρ in the spherical nucleus
is usually taken in the three-parameter symmetrized Fermi-
type form:

ρ(r) = ρ0

1 + exp [(r − R)/a]
, (22)

where ρ0 is the saturated nucleon density in the center of the
nucleus, R = r0A

1/3 is the nuclear radius with the parameter
r0, and a is the nuclear diffuseness. As seen in Fig. 3, one can
fit well the density profile with Eq. (22). The value of

ρ0 = 3

4πr3
0

1

1 + (
πa

r0A1/3

)2 , (23)

provides the proper normalization of Eq. (22). By using the
values of r0 and a obtained in a three-parameter fit of the
nuclear density profile in Fig. 3, we obtain from Eq. (23) ρ0 =
0.158, 0.162, 0.156, and 0.154 fm−3 for 64Ni , 122Sn , 196Pb,
and 276Ds, respectively. These values of ρ0 differ from those
of the three-parameter fit (Fig. 3). So the three-parameter fit
provides ρ(r) which is not normalized to the total number of
nucleons. By using ρ0 from Eq. (23), we fit the nucleon density
profile with r0 and a and obtain the normalized ρ(r). As seen
in Fig. 3, the values of ρ0 obtained in this way are close
to 0.16 fm−3, which resulted from consideration of infinite
nuclear matter, and the variation of ρ0 has minor influence the
tail of the density distribution. To reveal the isotopic trends
in r0 and a and simplify the calculations of nucleus-nucleus
potential, one can take safely ρ0 = 0.16 fm−3 up to an accuracy
of a few percent and consider the fit of the density profile
with r0 and a. Taking this ρ0, we focus on the quality of the
description of the nucleon density distribution at r > 0.8R
(Fig. 3). Because the nuclear density tail is mainly responsible
for the nucleus-nucleus interaction, the quality of the nuclear
structure input can be checked in the calculation of the nucleus-
nucleus potential. Indeed, the height of the Coulomb barrier is
a measurable value.

If we fix the values of ρ0 = 0.16 fm−3 and r0 = 1.15 fm,
the description of the density tail becomes worse (Fig. 3),
particularly in the case of light nuclei. In a heavy nucleus, the
density profile can be well fit even at fixed ρ0 and r0.

For further consideration, we use the two-parameter fit and
set ρ0 = 0.16 fm−3 because this value is close to that obtained
in the two-parameter fit, which resulted in the normalized ρ(r).
If the value of ρ0 is fixed in Eq. (22), the fit of nucleon-density
profile results in smoother dependence of a on N . Although
the values of a are slightly larger in this fit, the qualitative
dependence on N remains.

We found that r0 is weakly dependent on the neutron
number of nucleus. Based on the calculations of nucleon
density profiles, the parametrization

r0 = Z1/37 (fm) (24)

is suggested to estimate the radius parameter. In accordance
with Eq. (24), the value of r0 varies from 1.07 fm for Mg to
1.135 fm for Ds. Note that this unusual expression provides
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FIG. 3. The nucleon-density distributions calculated with method I in indicated spherical nuclei are fit with Eq. (22). The results of the
three-parameter fit are shown by red lines. The results of the two-parameter fit at ρ0 defined from Eq. (23) are shown by green lines. The results
of the one-parameter fit at fixed ρ0 = 0.16 fm−3 and r0 = 1.15 fm are shown by blue lines.

the values of r0 close to those from more sophisticated
parametrization given below.

In Figs. 4 and 5, the isotopic dependencies of the diffuseness
a in Eq. (22) are shown. The present results and those obtained
in Ref. [21] demonstrate the same qualitative dependence on
the neutron number. The diffuseness is minimal at N = 28
and 50, corresponding to the magic numbers. As in Ref. [48],
the a(N ) dependence in Pb is essentially nonlinear and is
characterized by an increase with N from 112–116 to 126
(Fig. 5). The value of a depends on the strength of NN forces
at small nucleon density. This strength is mainly defined by

the external NN interaction. The density dependence of NN
forces influences the diffuseness as well. As shown, various
NN interactions or energy-density functionals provide a good
description of nuclear properties but result in quite different
values of a. In Figs. 4 and 5, the values of a calculated within
different methods vary within a factor of 1.2. In Ref. [9], the
diffuseness parameter for Ni is essentially a step function: a ≈
0.45 fm for N < 40 and a ≈ 0.5 fm for larger N . Although
the values of a are close to those obtained in Ref. [9], the
qualitative dependence on N is rather different, which reflects
the dependence of a on the nucleon-nucleon interaction used.
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FIG. 4. The comparison of isotopic dependencies of diffuseness
of Ni obtained with method I (solid line), method II (dotted line), and
the approach of Ref. [21] (dashed and dash-dotted lines result from
the SLy4 and SKMS interactions, respectively).

Based on the calculations of proton and neutron densities,
the expressions

Rp = 1.249A1/3 − 0.5401 − 0.9582
N − Z

A
(fm),

Rn = 1.2131A1/3 − 0.4415 + 0.8931
N − Z

A
(fm),

ap = 0.4899 − 0.1236
N − Z

A
(fm),

an = 0.4686 + 0.0741
N − Z

A
(fm) (25)

can be suggested to estimate the proton Rp and neutron Rn

radii as well as the diffuseness for protons ap and neutrons
an. These expressions are suitable for estimating the smooth
part of isotopic dependence of nuclear radius and diffuseness.
As seen in Fig. 6, the nuclear radii for protons and neutrons
are well reproduced. The proton (neutron) diffuseness is rather

FIG. 5. The same as in Fig. 4, but for Pb.

FIG. 6. Comparison of isotopic dependencies of (a) proton (solid
line) and neutron (dashed line) radii, and (b) proton (solid line) and
neutron (dashed line) diffuseness obtained with method I for Ni
isotopes with those calculated for protons (dotted lines) and neutrons
(dash-dotted lines) with Eqs. (25).

well described for the nuclei with N near the magic values.
The nuclear radius is estimated as R = (ZRp + NRn)/A that
results in r0 = 1.10–1.12 fm for the Ni isotopes considered.
The expression (24) leads to r0 = 1.1 fm. As seen, the addition
dependence of r0 on N in Eq. (25) causes about 2% correction
to the value of r0 obtained with Eq. (24).

As seen in Figs. 7–11, the diffuseness calculated with the
methods I and II are different. Method I provides larger a
for Ni and Mg. However, it results in smaller values of a for
Pb and Ds than those from method II. Although Mg isotopes
are well deformed in the ground state, here we consider them
as spherical to reveal the isotopic trend of the diffuseness
without polarization effects caused by deformation [21]. For
Ni and Sn, the functions a(N ) have the minima at N = 28,
50, and 82. There is also the minimum of a at N = 162–164
in Ds. In the single-particle schemes of spherical nuclei, these
neutron shells and subshells are closed by the levels with large
orbital angular momenta (l � 7) [49]. Thus, the centrifugal
barrier restricts the diffuseness of some closed-shell nuclei.
For Mg and Pb, the magic neutron numbers N = 20 and 126
are not reflected in the a(N ) dependence because these shells
are closed by the levels with small orbital angular momenta.
So one can conclude that the last occupied single-particle level
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FIG. 7. The comparison of isotopic dependencies of diffuseness
of spherical Mg obtained with method I (solid line) and method II
(dotted line). The values of a are obtained at ρ0 = 0.16 fm−3.

is responsible for the peculiarities in isotopic dependence of
the nuclear diffuseness. The same was pointed out in Ref. [20].

The dependencies of a on N in Figs. 7–11 are rather
complicated to be fit with a simple formula. As in Refs. [21,50],
one can consider the dependence of a on the neutron separation
energy Sn. Indeed, the value of a is proportional to 1/

√
Sn. In

this case one can suggest the simple parametrization

a(N ) = a0
N

2N − N0

√
S0/Sn (fm), (26)

where a0 and S0 are the diffuseness and neutron separation
energy, respectively, in the isotope with neutron number N0.
As seen in Figs. 8 and 9, this expression allows us to estimate
a diffuseness with satisfactory accuracy. Although the value
of N0 can be arbitrary chosen, we set N0 = Z in Figs. 8 and 9.
Expression (26) provides a better evaluation of a for N closer

FIG. 8. The same as in Fig. 7, but for spherical Ni. The fit of the
solid line with Eq. (26) at N0 = 28 is presented by dash-dotted line.
The isotopic dependence of a calculated with Eqs. (25) is presented
by dashed line.

FIG. 9. The same as in Fig. 7, but for spherical Sn. The fit of the
solid line with Eq. (26) at N0 = 50 is presented by dash-dotted line.

FIG. 10. The same as in Fig. 7, but for spherical Pb.

FIG. 11. The same as in Fig. 7, but for spherical Ds.

054309-7



G. G. ADAMIAN et al. PHYSICAL REVIEW C 94, 054309 (2016)

to N0 and heavier nuclei. In Fig. 8, the isotopic dependence of
a = (Zap + Nan)/A is presented, where the values of ap and
an are calculated with Eqs. (25). For the most of isotopes, the
accuracy of this parametrization is within 15%.

B. Nucleus-nucleus interaction potential

To account properly for the particle number in Eq. (18), we
use the scaled strength C0 = C ′

0ρ10ρ20/ρ
2
0 , where ρ10 and ρ20

are defined by Eq. (23) for interacting nuclei. The constant
C ′

0 = 339 MeV/fm3 is related to ρ0 = 0.16 fm−3 [25], the
parameters Fex, α, σ , and γ are chosen such that nuclear
properties are described. The NN interaction corresponding
to Eq. (18) is

F = δ2Ev
norm(x)

δx2
= C0

Fex

2(1 + γ x)3 {2 + 2αxσ

+ασxσ (1 + γ x)[3 + σ + γ x(1 + σ )]}. (27)

This expression is obtained by taking the second derivative
of Eq. (18) with respect to x. At x → 0 we get external NN
interaction and F → C0Fex . The NN interaction at saturation
density is found for x → 1.

Varying the parameters in Eq. (27), one can obtain different
forms of the NN interaction. For example, at γ = 0 and σ = 1,

F = C0[Fex + (Fin − Fex)x] (28)

has the Migdal form [25] with Fin = Fex(1 + 3α).
The nucleus-nucleus interaction potential V is represented

as the sum [23]

V (R) = VC(R) + VN (R) + VR(R) (29)

of the Coulomb VC, nuclear VN , and centrifugal potentials.
While VC and VR have the analytical forms, the calculation
of the potential VN (R) is the most difficult. We calculate it in
accordance with the double-folding procedure as

VN (R) =
∫

dr1dr2 ρ1(r1)ρ2(R − r2)F (r2 − r1). (30)

The effective NN forces, Eq. (28),

F (r2−r1) = C0{Finx(r1)+Fex[1 − x(r1)]}δ(r2−r1), (31)

depend on the total nuclear density ρ(r1) = ρ1(r1) + ρ2(R −
r2). The interaction strengths are defined by the Landau–
Migdal parameters Fin = 0.09 and Fex = −2.59, C0 =
300 MeV fm3 (ρ0 = 0.17 fm3) were determined from a fit to
experimentally measured properties of nuclei [25]. The values
employed in our previous calculations with Eq. (31) fell within
the range r0 = 1.15–1.16 fm for the nuclear radii and within
the range a = 0.53–0.56 fm for the diffuseness parameters,
depending on the nuclear mass. For the α particle, r0 =
1.01 fm and a = 0.47 fm were used. These values allow us to
describe rather well the height VB of the Coulomb barriers in
various reactions. However, in several reactions the Coulomb
barriers are underestimated in our calculations. For example,
in the 58Ni +58Ni reaction the calculated VB was about 3 MeV
smaller than the experimental value. As shown, for example
in Ref. [23], the tail of the total nucleon density ρ mainly
influence the value of VN . The role of ρ1 is less important
because its contribution to VN is proportional to (N − Z)/A.

FIG. 12. Comparison of nucleus-nucleus potentials calculated
with Eq. (27) and using nucleon densities of method I (solid lines),
and with Eq. (31) and adopted ρ (dashed lines) for the reactions
indicated. The parameters are given in the text.

As seen, the values of a and r0 found in the present work
are smaller than those used in our previous calculations of
the nucleus-nucleus potential with Eq. (31). If they were used
with the interaction (31), the Coulomb barrier barrier would
be higher than those resulting from the experimental data. By
using the values of a and r0 found, we calculate the nucleus-
nucleus potential with F defined in the general form (27). As
in Ref. [26], we set σ = 1/3 and look for the values of Fex, α,
and γ which provide a good description of the Coulomb barrier
heights.

As found, with Fex = −10.8, α = −0.534, γ = 0.4, and
nucleon densities obtained with method I, the calculated
nucleus-nucleus potentials provide correct values of the
Coulomb barrier height and are close to those obtained with
the Migdal interaction (31). In the 64Ni +208Pb reaction, the
present potential and that calculated previously with Eq. (31)
almost coincide (Fig. 12). In the 58Ni +58Ni reaction (Fig. 12),
the shapes of the potentials are almost the same but the present
calculation results in a 3 MeV higher Coulomb barrier that is
closer to that required to describe the fusion excitation function
at energies near the barrier [51]. Note that the height of the
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FIG. 13. The same as in Fig. 12, but for the asymmetric reactions
indicated. The dotted line is obtained with the same parameters as the
solid line, but with a = 0.39 fm for 4He.

Coulomb barrier is precisely defined by measuring the fusion
excitation function.

With the parameters used we obtain Fin = 0.062, which is
relatively close to the internal constant of the interaction (31).
The strength |Fex | of the external nucleon-nucleon interaction
is larger than in the Migdal interaction. Indeed, the calculated
nucleon density distribution has smaller diffuseness because
of the larger nucleon-nucleon attraction used.

For the systems 32S +208Pb and 4He +208Pb, the nucleus-
nucleus potentials obtained with nucleon densities discussed
in this paper are quite similar to those calculated with the

prescription of Ref. [23] for asymmetric nuclear systems
(Fig. 13). The calculations with self-consistent nucleon
densities result in 2.3–6.5 MeV deeper potential pocket in
the nucleus-nucleus potential and in slightly smaller height,
0.3–1 MeV, of the Coulomb barrier. Because we did not
calculate the diffuseness for 4He, the sensitivity of the results
to its variation is demonstrated in Fig. 13.

IV. SUMMARY

Two energy density functional methods were applied for
obtaining the nucleon density distributions in spherical nuclei.
One of them is partially ab initio method based on Ref. [11].
The second, the Fayans EDF method [5,26,27], is completely
phenomenological. The nucleon density profiles were fit with
the Fermi-type expression and the isotopic dependencies of
its parameters were explored. The isotopic dependence of the
parameter of the nuclear radius is found to be weak, while
the value of the nuclear diffuseness quite strongly depends
on the neutron number. If the neutron shell is closed by the
level with large orbital angular momentum, the dependence
a(N ) would have a minimum at this magic number. Thus, the
centrifugal barrier for nucleons suppresses the diffuseness of
nuclear surface. The simple parametrization of a(N ), which is
proportional to 1/

√
Sn, was suggested.

As shown, the value of the diffuseness is related to the
attraction strength (the external constant Fex) of the NN
interaction. The external constant of the density-dependent
NN forces mainly predetermines the height of the Coulomb
barrier, which is a measurable value. The nucleus-nucleus
potential is defined by the density-dependent NN interaction
and nucleon density profiles. The calculation with larger
diffuseness and smaller |Fex | could result in the same barrier
height as the calculation with smaller a and larger |Fex |. Thus,
if the parameters of the EDF or of the corresponding effective
NN interaction were fit to nuclear ground-state characteristics,
one should check whether this interaction is able to reproduce
the height of the Coulomb barrier between two interacting
nuclei.
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