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Wobbling motion in 135Pr within a collective Hamiltonian
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The recently reported wobbling bands in 135Pr are investigated by the collective Hamiltonian, in which the
collective parameters, including the collective potential and the mass parameter, are respectively determined from
the tilted axis cranking (TAC) model and the harmonic frozen alignment (HFA) formula. It is shown that the
experimental energy spectra of both yrast and wobbling bands are well reproduced by the collective Hamiltonian.
It is confirmed that the wobbling mode in 135Pr changes from transverse to longitudinal with the rotational
frequency. The mechanism of this transition is revealed by analyzing the effective moments of inertia of the three
principal axes, and the corresponding variation trend of the wobbling frequency is determined by the softness
and shapes of the collective potential.
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I. INTRODUCTION

The triaxial shape has been a long-standing subject in
nuclear physics. The appearance of the wobbling bands [1,2]
and the chiral doublet bands [3,4] has provided unambiguous
experimental evidence of triaxiality. The wobbling mode was
first proposed by Bohr and Mottelson in the 1970s [1]. It
exists in a triaxial nucleus when the total spin of the nucleus
does not align along any of the principal axes, but precesses and
wobbles around one of the axes, in analogy to an asymmetric
deformed top [5].

The wobbling bands were first observed in 163Lu [2,6].
Since then, seven more wobbling nuclei have been reported,
including 161Lu [7], 165Lu [8], 167Lu [9], and 167Ta [10] in
A∼160, 135Pr [11] in A∼130, and even-even 112Ru [12] and
114Pd [13] in the A∼110 mass regions. Among the odd-A
wobblers, 135Pr is the only one out of the A∼160 mass region,
which is built on a proton h11/2 configuration with a moderate
deformation (β ∼ 0.17), while the others in A∼160 involve a
proton i13/2 configuration with significantly large deformation
(β ∼ 0.40).

The excitation energy of a wobbling motion is characterized
by wobbling frequency. In the originally predicted wobbler
for a pure triaxial rotor (simple wobbler) [1], the wobbling
frequency increases with spin. However, decreasing wobbling
frequencies with spin were observed in the Lu and Ta isotopes
as shown in Ref. [14]. To clarify this contradiction, Frauendorf
and Dönau [15] distinguished two types of wobbling motions,
longitudinal and transverse wobblers, for a triaxial rotor cou-
pled with a high-j quasiparticle. For the longitudinal wobbler,
the quasiparticle angular momentum and the principal axis
with the largest moment of inertia (MOI) are parallel; for the
transverse one, they are perpendicular. They demonstrated that
the wobbling frequency of a longitudinal wobbler increases
with spin, while that of a transverse one decreases with spin
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[15]. Therefore, the wobbling bands in the Lu and Ta isotopes
are interpreted as transverse wobbling bands.

Theoretically, the triaxial particle rotor model (PRM)
[1,15–22] and the cranking model plus random phase approx-
imation (RPA) [23–32] have been widely used to describe
the wobbling motion. Recently, based on the cranking mean
field and treating the nuclear orientation as collective degree of
freedom, a collective Hamiltonian was constructed and applied
for the chiral [33] and wobbling modes [34]. Usually, the
orientation of a nucleus in the rotating mean field is described
by the polar angle θ and azimuth angle ϕ in spherical coordi-
nates. In the collective Hamiltonian for wobbling modes, the
azimuth angle ϕ is taken as the collective coordinate since
the motion along the ϕ direction is much easier than in the
θ direction [34]. The quantum fluctuations along ϕ are taken
into account to go beyond the mean-field approximation. Using
this model, the simple, longitudinal, and transverse wobblers
were systematically studied and the variation trends of their
wobbling frequencies were confirmed [34].

With the successes of the collective Hamiltonian, it is
interesting to extend its applications. In 135Pr [11], not
only the transverse wobbling mode but also its transition to
the longitudinal wobbling were observed. The experimental
observations have already been investigated by tilted axis
cranking (TAC) with the Strutinsky micro-macro method and
the PRM in Ref. [11]. Here the collective Hamiltonian will be
applied to investigate the wobbling motions in 135Pr.

II. THEORETICAL FRAMEWORK

The adopted collective Hamiltonian was introduced in
detail in Refs. [33,34]. Choosing the azimuth angle ϕ as the
collective coordinate, the collective Hamiltonian reads

Ĥcoll = − �
2

2
√

B(ϕ)

∂

∂ϕ

1√
B(ϕ)

∂

∂ϕ
+ V (ϕ), (1)

where the collective potential V (ϕ) is extracted by minimizing
the total Routhian E′(θ,ϕ) of TAC calculations with respect to
the polar angle θ for given ϕ [33,34]. For a high j , the TAC
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Hamiltonian reads [3]

ĥ′ = ĥdef − ω · ĵ ,

ω = (ω sin θ cos ϕ,ω sin θ sin ϕ,ω cos θ ), (2)

where ĵ is the single particle angular momentum and ĥdef is
the single-j shell Hamiltonian,

ĥdef = 1

2
C

{(
ĵ 2

3 − j (j + 1)

3

)
cos γ + 1

2
√

3
(ĵ 2

+ + ĵ 2
−) sin γ

}
.

(3)

In Eq. (3), the parameter C is proportional to the quadrupole
deformation parameter β, and γ is triaxial deformation
parameter. Diagonalizing the cranking Hamiltonian, one ends
up with the total Routhian

E′(θ,ϕ) = 〈h′〉−1

2

3∑
k=1

Jkω
2
k, Jk : moments of inertia, (4)

and then the collective potential V (ϕ).
To obtain the mass parameter, one can expand the collective

potential V (ϕ) with respect to ϕ at ϕ = 0◦ up to ∼ϕ2 terms to
extract the stiffness parameter (labeled K) of V (ϕ) [34], and
then

B = K

�2
, (5)

with � the wobbling frequency. For example, for a simple
wobbler, its stiffness parameter is K = ω2(J1 − J2) [34], and
its wobbling frequency can be calculated by the triaxial rotor
model [1]:

�� = �ω

√
(J1 − J2)(J1 − J3)

J3J2
, (6)

with ω the rotational frequency. Thus, according to Eq. (5),
the mass parameter is [34]

B = J2J3

J1 − J3
. (7)

For an odd-A wobbler, one further introduces the harmonic
frozen alignment (HFA) approximation [15,32]; i.e., the odd
particle is assumed to be firmly aligned with axis 1 (see left
panel of Fig. 1), and its angular momentum is considered
as a constant number j . Such an assumption leads to an ω-
dependent effective MOI for axis 1 with j/ω. Therefore, the

FIG. 1. Sketch of the angular momentum vector of the proton
particle with respect to the principal axis frame.

Eq. (7) is replaced by [34]

B(ω) = J2J3

J ∗
1 (ω) − J3

, J ∗
1 (ω) = J1 + j

ω
. (8)

If the angular momentum of the odd particle tilts from axis
1 toward axis 2, as illustrated in the right panel of Fig. 1, the
effective MOI induced should be modified accordingly. If the
tilted angle is ϕ, the effective MOIs for axes 1 and 2 are

J ∗
1 (ω) = J1 + j cos ϕ

ω
, (9)

J ∗
2 (ω) = J2 + j sin ϕ

ω
. (10)

Correspondingly, the mass parameter (8) should be rewritten
as

B(ω) = J ∗
2 (ω)J3

J ∗
1 (ω) − J3

. (11)

With the collective potential from the TAC model [33,34]
and the mass parameter from the HFA formula (11), the collec-
tive Hamiltonian (1) is constructed. Similar to Refs. [33,34],
the collective Hamiltonian is solved by diagonalization. Since
the collective Hamiltonian is invariant with respect to the
ϕ → −ϕ transformation, one chooses the following bases:

ψ (1)
n (ϕ) =

√
2

π (1 + δn0)

cos 2nϕ

B1/4(ω)
, n � 0, (12)

ψ (2)
n (ϕ) =

√
2

π

sin 2nϕ

B1/4(ω)
, n � 1, (13)

which satisfy

ψ (1)
n (−ϕ) = ψ (1)

n (ϕ), ψ (2)
n (−ϕ) = −ψ (2)

n (ϕ), (14)

and the periodic boundary condition as

ψ (1)
n (ϕ) = ψ (1)

n (ϕ + π ), ψ (2)
n (ϕ) = ψ (2)

n (ϕ + π ). (15)

III. NUMERICAL DETAILS

In the following calculations, the configuration of the wob-
bling bands in 135Pr is adopted as π (1h11/2)1. The quadrupole
deformation parameters follow Refs. [11,15] as β = 0.17
and γ = −26.0◦. Accordingly, the axes 1, 2, and 3 are
respectively the short, intermediate, and long axes. The MOIs
for the three principal axes are taken asJ1,J2,J3 = 13.0,21.0,
4.0 �

2/MeV [15]. It is seen that all the parameters are the same
as in previous works [11,15], and no adjustable parameters are
introduced in the present calculations.

IV. RESULTS AND DISCUSSION

In recent reported transverse wobbling partners in
the A∼130 mass region, 135Pr, the wobbling frequency
decreases with spin, and the �I = 1 interband transitions
between the partner bands display primarily E2 character
[11]. In Refs. [11,15], the TAC Strutinsky micro-macro
calculations adopt the deformation parameters β = 0.17 and
γ = −26.0◦ and the PRM (or so-called quasiparticle triaxial
rotor model) adopts the MOIs as J1,J2,J3 = 13.0,21.0,
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FIG. 2. Contour plots of the total Routhian surface calculation E′(θ,ϕ) for 135Pr at the frequencies �ω = 0.10, 0.30, 0.50, and 0.70 MeV.
All energies at each rotational frequency are normalized with respect to the absolute minimum.

4.0 �
2/MeV, respectively. In the present collective

Hamiltonian calculations, we also use the same parameters
[11,15], and no additional parameters.

The total Routhian surfaces E′(θ,ϕ) calculated by the TAC
model for 135Pr at the rotational frequencies �ω = 0.10, 0.30,
0.50, and 0.70 MeV are shown in Fig. 2, where the minima are
labeled with red stars. It can be seen that all the total Routhian
surfaces are symmetric with respect to the ϕ = 0◦ and θ = 90◦
lines, as a result of the invariance of the intrinsic quadrupole
moments with respect to the D2 symmetry.

It is shown that the θ values of the minima always locate at
θ = 90◦. This is because axis 3 is of the smallest MOI and, as a
consequence, the angular momentum prefers to align in the 1-2
plane. With the increase of rotational frequency, the ϕ values of
the minima gradually deviate from a vanishing value to finite
angles. As a result, the number of the minima changes from
one to two. This implies the rotational mode changes from
a principal axis rotation at low frequencies (e.g., �ω = 0.10
and 0.30 MeV) to a planar rotation at high frequencies (e.g.,
�ω = 0.70 and 0.90 MeV). These features provide a hint of
the existence of the transverse wobbling mode [34].

To see more clearly, ϕmin, i.e., the ϕ which minimizes
the total Routhian surface, is shown in Fig. 3 as a function
of rotational frequency. ϕmin is zero below �ω = 0.40 MeV,
and is bifurcate above this rotational frequency. Thus �ω =
0.40 MeV is the critical rotational frequency at which the
rotational mode changes. For �ω > 0.40 MeV, ϕmin gradually

FIG. 3. ϕmin, i.e., the ϕ which minimizes the total Routhian
surface, as a function of rotational frequency and the extracted
collective potential V (ϕ) at �ω = 0.30, 0.50, and 0.70 MeV.

deviates from zero and, at �ω = 0.70 MeV, reaches ∼ ± 65◦. It
is expected that it would approach to ±90◦ with the increasing
rotational frequency. In that case, the rotational mode changes
from a planar rotation to a principal axis rotation around
axis 2.

In Fig. 3, we also show the collective potential V (ϕ)
obtained by minimizing the total Routhian E′(θ,ϕ) with
respect to θ for a given ϕ at �ω = 0.30, 0.50, and 0.70 MeV.
As the rotational frequency increases, V (ϕ) changes from
a potential shaped like a harmonic oscillator, with one
minimum at ϕmin = 0◦ for �ω = 0.30 MeV, to one shaped
like a sombrero, with two identical minima at ϕmin 
= 0◦ for
�ω = 0.50 and 0.70 MeV. The two symmetric minima are
separated by a potential barrier. The height of the barrier can
be defined as �V = V (0) − V (ϕmin). It is found that �V
increases with rotational frequency, e.g., from 0.09 MeV at
�ω = 0.50 MeV to 0.65 MeV at �ω = 0.70 MeV. It is expected
that, if the rotational frequency continuously increases, �V
would become larger and drive the minima to approach ±90◦,
which then changes the rotational mode from a planar rotation
to a principal axis rotation around axis 2.

The obtained energy spectra and the �ω-I relation from the
TAC are given in Fig. 4, in comparison with the experimental
values of yrast band as well as the wobbling band [11]. In
TAC, the spin I is calculated with the quantal correction 1/2,
I = J − 1/2 [35], where J is J =

√
J 2

1 + J 2
2 + J 2

3 with Jk the
sum of the angular momenta of the particle jπk = 〈ĵπk〉 and
the rotor Rk = Jkωk as Jk = jπk + Rk . The energy spectra
are calculated by E = E′ + ωJ . It is shown that both the
�ω-I relation and energy spectra of the yrast band are well
reproduced by the TAC calculations. There is a kink in the
I -�ω relation at �ω = 0.4 MeV (∼10�). This is attributed to
the reorientation of the core angular momentum from axis 1
toward axis 2, as shown in Fig. 3. As the wobbling band cannot
be given by the TAC calculations, the collective Hamiltonian
method will be applied.

The mass parameter in the collective Hamiltonian is
calculated by the HFA approximation formula (11), where
the effective MOIs induced by the proton particle are taken
into account. The obtained mass parameter as well as the
effective MOIs of the three principal axes are shown in
Fig. 5 as functions of rotational frequency. It is seen that the
MOI of axis 3, J3, remains constant, as the proton particle
angular momentum has no component along axis 3 in the HFA
approximation. The effective MOI of axis 2, J ∗

2 , is a constant
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FIG. 4. Rotational frequency (upper panel) and rotational energy
spectra (lower panel) of the yrast band in 135Pr as functions of the
angular momentum calculated by TAC (open squares) in comparison
with the data (solid dots) of Ref. [11]. In the TAC calculations,
the quantal correction 1/2 has been extracted for the angular
momenta [35].

at �ω � 0.40 MeV, and increases after �ω = 0.40 MeV. The
reason is that the proton particle angular momentum deviates
from axis 1, moving toward axis 2 at �ω > 0.40 MeV. The ef-
fective MOI of axis 1, J ∗

1 , decreases with rotational frequency
due to the factor 1/ω in Eq. (9). As a consequence, the mass
parameter increases with the rotational frequency as shown in
Fig. 5(a). At �ω = 0.40 MeV there is a kink, corresponding to
the transition from principal axis rotation to planar rotation.

FIG. 5. The calculated mass parameter (upper panel) as well as
the effective MOIs of the three principal axes J ∗

1 , J ∗
2 , and J3 (lower

panel) as a function of rotational frequency �ω. A diagrammatic
sketch of the angular momentum vector of the proton particle with
respect to the principal axis frame is also shown.

After obtaining the collective potential and the mass
parameter, the collective Hamiltonian (1) is constructed.
The diagonalization of the collective Hamiltonian yields the
collective energy levels and the corresponding collective
wave functions. The lowest collective level at each cranking
frequency corresponds to the yrast mode, and the second
lowest one corresponds to the one-phonon wobbling excitation
[34]. They are compared with the data [11] in Fig. 6(a), and
good agreement can be seen.

From the energy spectra, the wobbling frequency Ewob is
extracted by calculating the energy difference between the
yrast and wobbling bands. The obtained Ewob as a function of
spin is shown in Fig. 6(b), in comparison with the data [11].
At I � 14.5�, both the theoretical and experimental wobbling
frequencies decrease with spin, which provides the evidence
of transverse wobbling motion. The theoretical calculations
overestimate the data at I < 10.5�. The reason might be
attributed to the fact that the HFA approximation used to derive
the mass parameter is not a good approximation at low spins
[34]. At the high spin region (I � 14.5�), the experimental
wobbling frequency shows an increasing trend, indicating the
wobbling mode transition from transverse to longitudinal type
[11]. The collective Hamiltonian calculations well reproduce
this transition.

As mentioned in the Introduction, the PRM solutions
for 135Pr have been given in Refs. [11,15]. In Figs. 6(c)
and 6(d), the energy spectra and wobbling frequency obtained
by the collective Hamiltonian are compared with those by
the PRM. It is seen that the collective Hamiltonian can well
reproduce the PRM energy spectra, except the first two states
in the wobbling band. Also, for the wobbling frequency, the
collective Hamiltonian has good agreement with the PRM in
the high spin region (I � 12.5�), but overestimates in the low
spin region (I � 10.5�). This implies that the approximation
used in the present collective Hamiltonian in the high spin
region works better than that in the low spin region.

The transition of the wobbling mode can be understood
from the effective MOIs, J ∗

k . As shown in Fig. 5(b), J ∗
1 is

much larger than J ∗
2 and J3 at �ω � 0.40 MeV. As a result,

the total angular momentum favors axis 1. This corresponds to
rotation about the short axis (axis 1) and forms the transverse
wobbling mode. In the large rotational frequency region,
however, J ∗

2 becomes larger than J ∗
1 and J3. This leads to

the tilt of the total angular momentum toward axis 2, and
the transverse wobbling mode changes to the longitudinal
wobbling mode.

It is interesting to understand the variation of the wobbling
frequency from the calculations of the collective Hamiltonian.
In Fig. 7, the collective potentials as well as the obtained
yrast and wobbling energy levels at rotational frequencies
�ω = 0.20, 0.30, 0.40, 0.50, 0.60, and 0.70 MeV are shown.
The wobbling frequency Ewob for each rotational frequency is
also presented. For �ω � 0.40 MeV, the collective potential is
of a harmonic oscillator shape with its bottom part becoming
flatter with the increase of the rotational frequency. This, in
combination with the increase of the mass parameter [see
Fig. 5(a)], makes the wobbling excitation easier, and thus the
wobbling frequency decreases, e.g., from Ewob = 0.86 MeV
at �ω = 0.20 MeV to Ewob = 0.53 MeV at �ω = 0.40 MeV.
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FIG. 6. Energy spectra of the yrast and wobbling bands (a) and the corresponding wobbling frequency (b) in 135Pr as functions of the
angular momentum calculated by the collective Hamiltonian in comparison with the data of Ref. [11]. In the collective Hamiltonian results,
the angular momenta are calculated from the TAC model. Similar comparisons with PRM are shown in (c) and (d).

At �ω = 0.50 and 0.60 MeV, there appear two symmetric
minima and a potential barrier between them. The continuous
decrease of wobbling frequency is attributed to the appearance
and increase of the barrier, which will suppress the tunneling
probability between the two minima [34]. When �ω � 0.70
MeV, the minima of the collective potential gradually approach
ϕ = ±90◦. The potential barriers at ±90◦ become much lower
than that at 0◦, and will eventually disappear at a large enough
rotational frequency. As a result, the potential at ±90◦ becomes
stiffer, and the wobbling excitations become harder. Thus, the
wobbling frequency here shows an increasing trend.

The obtained wave functions of the yrast and wobbling
bands at different rotational frequencies are shown in Fig. 8.
It is seen that the wave functions are symmetric for the yrast
band and antisymmetric for the wobbling band with respect to
ϕ → −ϕ transformation. Thus the broken signature symmetry
in the TAC model is restored in the collective Hamiltonian by
the quantization of wobbling angle ϕ and the consideration of
quantum fluctuation along the ϕ motion. The peak of the wave
function of yrast state is located at ϕ = 0◦ at �ω � 0.40 MeV,
and deviates from ϕ = 0◦ at �ω > 0.40 MeV. This reflects the
transition from the principal axis rotation to planar rotation.

FIG. 7. Collective potential calculated by TAC model and two lowest collective energy levels obtained from the collective Hamiltonian at
rotational frequencies �ω = 0.20-0.70 MeV. The wobbling frequency Ewob for each rotational frequency is also shown.
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FIG. 8. Collective wave functions obtained from the collective Hamiltonian at rotational frequency �ω = 0.20-0.70 MeV.

For the wave functions of wobbling states, which correspond to
one-phonon excitations, they are odd functions, and the values
at ϕ = 0◦ and ±90◦ are all zero.

V. SUMMARY AND PERSPECTIVE

In summary, the collective Hamiltonian based on the TAC
model is applied to describe the recently observed wobbling
bands in 135Pr. The collective parameters in the collective
Hamiltonian, including the collective potential and the mass
parameter, are calculated by the TAC model and the HFA
formula, respectively.

For the yrast band, the energy spectra together with the
relations between the spin and the rotational frequency can
be reproduced by the TAC model with the configuration
π (1h11/2)1. Beyond the TAC mean field approximation, the
collective Hamiltonian reproduces the energy spectra of both
the yrast and wobbling bands well. It is confirmed that
the wobbling mode in 135Pr changes from the transverse to
longitudinal one with the increase of rotational frequency.
This transition is understandable by analyzing the effective
MOIs of the three principal axes. It is pointed out that the

effective MOI caused by the valence particle is of importance
for forming different type of wobbling mode, and the softness
and shapes of the collective potential determine the variation
trends of the wobbling frequency.

Here, the collective Hamiltonian is constructed based on
a simple single-j shell model. The success of the collective
Hamiltonian here guarantees its application for more realistic
TAC calculations, e.g., the TAC covariant density functional
theory [36–38]. After such a TAC model is implemented, the
collective potential and the mass parameters in the collective
Hamiltonian can be obtained in a fully microscopic manner.
Works along this direction are in progress.
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