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Neutron matter from chiral two- and three-nucleon calculations up to N3LO
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Neutron matter is an ideal laboratory for nuclear interactions derived from chiral effective field theory since all
contributions are predicted up to next-to-next-to-next-to-leading order (N3LO) in the chiral expansion. By making
use of recent advances in the partial-wave decomposition of three-nucleon (3N ) forces, we include for the first
time N3LO 3N interactions in many-body perturbation theory (MBPT) up to third order and in self-consistent
Green’s function theory (SCGF). Using these two complementary many-body frameworks we provide improved
predictions for the equation of state of neutron matter at zero temperature and also analyze systematically
the many-body convergence for different chiral EFT interactions. Furthermore, we present an extension of the
normal-ordering framework to finite temperatures. These developments open the way to improved calculations
of neutron-rich matter including estimates of theoretical uncertainties for astrophysical applications.
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I. INTRODUCTION

Progress in chiral effective field theory (EFT) for nuclear
forces [1,2] and advances in many-body theory [3–10] offers
new paths to systematically improvable calculations of nuclear
many-body systems [11,12]. In recent years infinite nuclear
matter has been studied based on chiral EFT interactions
within various frameworks like many-body perturbation theory
(MBPT) [13–16], in-medium chiral perturbation theory [17],
self-consistent Green’s function (SCGF) framework [18],
coupled-cluster theory [19], the Brueckner-Hartree-Fock ap-
proach [20,21], and quantum Monte Carlo methods [22–25].

So far, the employed chiral EFT nucleon-nucleon (NN )
and three-nucleon (3N ) interactions in these calculations were
all derived within Weinberg’s power counting scheme [1,2].
Here the leading 3N forces appear at next-to-next-to-leading
order (N2LO) and contain two unknown low-energy couplings,
cD and cE , which need to be determined by fits to few- or
many-body observables. In contrast, subleading 3N forces at
N3LO do not contain any new low-energy couplings [26,27]
and are thus completely predicted. Hence, including these
contributions in calculations offers the possibility to probe
systematically the validity of chiral power counting in nuclear
systems and to provide estimates of theoretical uncertainties.

Full N3LO calculations of neutron matter were first per-
formed in Refs. [28,29]. These works showed that 3N forces at
N3LO provide surprisingly large contributions to the equation
of state especially in symmetric matter. Similar results were
found for few-body systems in Ref. [30]. These findings
raise fundamental questions concerning the convergence of
the chiral expansion for 3N forces within the employed
regularization and power counting scheme.
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Generally, the treatment and inclusion of 3N forces is still
a challenge in many-body calculations. In particular, due to
the complexity and rich analytical structure of 3N forces at
N3LO [26,27] so far it was possible to include effects from 3N
interactions only at the Hartree-Fock level in Refs. [28,29].
While this approximation is expected to be reliable for neutron
matter, higher-order terms in the many-body expansion are
expected to become significant as soon as the proton fraction
becomes sufficiently large. In the present paper we address
this issue by making use of two recent advances: a) the
development of a novel framework that makes it possible to
compute matrix elements of 3N interactions in a partial-wave
momentum basis [30] and the availability of matrix elements
up to N3LO and large model spaces, and b) the development
of a novel normal-ordering framework based on partial-wave
matrix elements [16] that allows to systematically include
these 3N interactions in calculations of nuclear matter for
arbitrary isospin asymmetry. By combining these two advances
it is now possible to include general 3N forces that are available
in form of plane-wave partial-wave matrix elements and to
treat 3N forces on the same footing as NN forces in the
many-body expansion. Furthermore, these developments play
an important role in view of future calculations that will
employ simultaneous evolution of NN and 3N interactions
in a momentum basis via similarity renormalization group
techniques [31,32].

In this paper we will exploit and combine these new
capabilities and perform improved calculations of neutron
matter up to N3LO in MBPT and SCGF. We benchmark
results of these two complementary many-body framework
against each other and present a generalization of the normal-
ordering framework to finite temperatures. The extension of
the present N3LO calculations to arbitrary proton fractions is
in principle straightforward but requires reliable fit values for
the low-energy couplings cD and cE at this order [33,34]. This
is work in progress. In neutron matter these short-range and
midrange topologies do not contribute within the employed
regularization scheme.
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The paper is organized as follows. In Sec. II we specify
the set of employed chiral EFT Hamiltonians and describe
the novel normal-ordering framework that allows to include
general 3N interactions in calculations of nuclear matter.
In addition we briefly discuss the many-body frameworks
we used for our calculations. In Sec. III we present our
results based on three different sets of Hamiltonians, with
a special focus on the effects of 3N forces beyond the Hartree-
Fock approximation. Furthermore, we analyze the many-body
convergence in MBPT by comparing with SCGF results.
Finally we present a generalization of our normal-ordering
framework to finite temperatures and benchmark results for
the energy against exact Hartree-Fock results. In Sec. IV we
conclude with a summary and an outlook.

II. CALCULATIONAL DETAILS

A. Chiral EFT Hamiltonians

We consider unevolved NN and 3N forces up to N3LO and
calculate the energy per particle of infinite neutron matter in
the frameworks of MBPT and SCGF. The Hamiltonian takes
the form

H = T + VNN + V3N + . . . , (1)

where T , VNN , and V3N denote the kinetic energy, the NN and
3N interactions, respectively. So far, in most calculations of
nuclear matter NN and 3N forces were not included consis-
tently up to the same order in the chiral expansion due to the
complex structure of 3N forces at N3LO [26,27]. Only recently
an efficient partial-wave decomposition of these contributions
was developed in Ref. [30]. In Refs. [28,29] the N3LO 3N
contributions were evaluated exactly for neutron matter and
symmetric nuclear matter in Hartree-Fock approximation. It
was somewhat unexpected that the subleading 3N forces
provide significant contributions to the energy. The findings
suggest that it is mandatory to investigate these contributions
more systematically by including higher-order effects in the
many-body expansion.

We note that, considering only NN and 3N forces at
N3LO in Eq. (1) is still not fully consistent in the chiral
expansion. In fact, four-nucleon (4N ) forces also contribute
at this order. However, Refs. [28,29,35] demonstrated that
the 4N contributions to the energy in neutron matter in the
Hartree-Fock approximation are very small compared to the
overall uncertainty, E4N/N ∼ −180 keV at saturation density.
Therefore, 4N contributions only lead to a small shift for all
Hamiltonians and do not affect the relative comparison of
MBPT and SCGF. Consequently, if not stated otherwise, we
neglect 4N (and higher-body) contributions in Hamiltonian (1)
and focus on the improvement of subleading 3N forces.

Normal-ordering with respect to a reference state is a well-
known method to include 3N contributions in terms of density-
dependent effective NN forces, which can then be directly
included in NN frameworks. Usually, the remaining residual
3N Hamiltonian leads to small contributions in pure neutron
matter and is thus neglected (see, e.g., Ref. [19]). Following
Refs. [36,37] we obtain the effective NN interaction V

as
3N by

summing one particle over the occupied states of the reference

state, i.e.,

V
as
3N = Trσ3

∫
dk3

(2π )3
A123V3N nk3

∣∣∣∣
nnn

, (2)

with the momentum-distribution function nk and A123 is
the antisymmetrizer. At zero temperature it is common to
approximate the distribution function by the free Fermi gas
function nk = �(kF − |k|), with Fermi momentum kF. It
was demonstrated that the inclusion of correlations in the
reference state leads to small effects in observables [38]. In this
article, we also discuss the extension of the normal-ordering
framework to finite temperatures.

The 3N interactions V3N are regularized using non-
local regulators of the form fR(p,q) = exp[−((p2 +
3q2/4)/�2

3N )4] with respect to the Jacobi momenta p,q. In
the literature, Eq. (2) has been first evaluated directly based
on the operatorial form of the 3N forces at N2LO [13,36,37].
Since this procedure becomes rather involved for subleading
3N forces, so far only leading 3N interactions could be
considered in this approach. One way to solve this is to make
use of the recently developed partial-wave decomposition of
the 3N interactions [30] and evaluate Eq. (2) in a partial-wave
momentum basis of the form

|pqα〉 ≡
∣∣∣∣pq;

[
(LS)J

(
l
1

2

)
j

]
J

(
T

1

2

)
T

〉
. (3)

The quantum numbers L, S, J , and T = 1 (for neutron
matter) denote the relative orbital angular momentum, spin,
total angular momentum, and isospin of particles 1 and 2
with relative momentum p. The quantum numbers l and
j , respectively, are the orbital angular momentum and total
angular momentum of particle 3 relative to the center of mass
of the pair with relative momentum p. The quantum numbers
J and T = 3/2 define the total 3N angular momentum and
isospin. The 3N matrix elements are provided by Ref. [30]
with total three- and two-body quantum numbersJ � 9/2 and
J � 6, respectively. The size of this model space is sufficient
to ensure convergence for calculations of nuclear matter in the
Hartree-Fock approximation [16,30] (see also Sec. III D). The
resulting effective NN interaction is then added to the NN
interactions:

V as
NN+3N = V as

NN + ζV
as
3N . (4)

We refer to Refs. [16,36,38] for detailed discussions on the
combinatorial normal-ordering factor ζ . We also note that
the summation in Eq. (2) results in a dependence of V

as
3N

on the total momentum P of the two particles, which is not
the case for free-space NN forces due to Galilean invariance.
This additional momentum makes the effective NN potential
(2) computationally involved. Commonly, the approximation
P = 0 is applied, e.g., in Refs. [18,36,37]. In Ref. [16], an
additional approximation that averages over all directions of P
opposed to P = 0 is studied. It is shown that the resulting
3N Hartree-Fock energies are in reasonable agreement in
particular below saturation density. Since the dependence on
P is currently not implemented in the SCGF code and since
we focus on the benchmark of MBPT to this nonperturbative
method we focus here on the P = 0 approximation for V

as
3N .
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Finally, we note that once reasonable fit values for cD and cE

are available at N3LO, the described methods can be directly
applied beyond neutron matter.

B. Many-body frameworks

We calculate the energy per neutron at zero temperature
up to third order in MBPT. The following notation is used to
distinguish interaction energies and total energies at a given
order in perturbation theory:

E(HF)

N
= T

N
+ E(1)

N
, (5a)

E
(2)
tot

N
= E(HF)

N
+ E(2)

N
, (5b)

E
(3)
tot

N
= E

(2)
tot

N
+ E(3)

N
. (5c)

Particle-hole contributions are neglected at third-order simi-
larly to Refs. [16,29,39]. In order to estimate the uncertainties
due to neglected higher-order contributions we perform calcu-
lations with a free and a Hartree-Fock single-particle spectrum.
We refer to Refs. [16,36] for details of the calculation. We
assess the many-body convergence order-by-order by compar-
ing to SCGF. In the SCGF method, the energy per neutron
is calculated nonperturbatively via knowledge of a dressed
one-body Green’s function [40]. The energy is obtained in
the so-called ladder approximation, where an infinite sum of
particle-particle and hole-hole diagrams is performed [41,42].
Similar to the MBPT calculations, particle-hole contributions
are neglected. The SCGF approach has been recently extended
to self-consistently include 3N forces [43]. In this extension,
the ladder resummation and the self-energy are redefined
incorporating normal-ordered 3N terms with respect to a
dressed reference state. Residual 3N contributions are also
neglected in this approach. In this extended approach, the
modified sum rule to obtain the total energy per particle in
neutron matter reads [43]

E

N
= 2

n

∫
dk

(2π )3

∫
dω

2π

1

2

{
k2

2m
+ ω

}
A(k,ω)f (ω) − 〈W 〉

2
,

(6)

where n the total density of the system and f (ω) corresponds
to the Fermi-Dirac distribution function. A(k,ω) is the spectral
function; this quantity gives the probability of adding or
removing a particle with momentum k which causes an
excitation in energy dω in the many-body system. 〈W 〉 is the
expectation value of the 3N operator (see Ref. [38] for details).
Throughout the paper we will refer to Eq. (6) as ESCGF/N . The
present implementation of SCGF is not capable of treating the
appearance of pairing below a critical temperature, for this rea-
son calculations are always performed at finite T . The pairing
instability does not affect the MBPT calculations because the
energy diagrams are evaluated directly, for which the pairing
singularity is integrable. The zero-temperature results in SCGF
are extrapolated using the Sommerfeld expansion [41]. In this
expansion, the energy can be written as a quadratic expansion
in terms of T/εF, where εF is the Fermi energy, as long as

T/εF � 1. A more sophisticated computational method to
numerically extrapolate self-energies, spectral functions, and
thermodynamical properties from finite to zero temperature
has been recently presented in Ref. [44].

In order to extend the effective NN interaction V
as
3N

to finite temperatures, we extend the framework presented
in Ref. [16] and evaluate Eq. (2) at finite temperature
using the general Fermi-Dirac distribution function, nk =
[exp(β(εk − μ)) + 1]−1. Given a total density n, we compute
the chemical potential μ(n) by solving the nonlinear density
relation

n = 1

π2

∫ ∞

0
dk k2nk(μ) . (7)

We consider here the free single-particle energy, i.e., εk =
k2/(2m). Higher-order corrections to the self energy include
contributions from the effective NN potential itself and
would require thus an involved self-consistent solution for
the spectrum. It has been shown in Ref. [38] that the energy
per particle in pure neutron matter shows only at higher
densities a dependence on the momentum distribution used
in Eq. (2). Such high densities are not considered in this work,
but it will be important to check this approximation at high
temperatures.

III. RESULTS

A. Comparison of MBPT and SCGF

We show in Fig. 1 the energy per particle as a function
of density in neutron matter at zero temperature. From left
to right, the first row shows the results for the N3LO NN
potentials EM 500 MeV [45], EGM 450/500 MeV, and
EGM 450/700 MeV [46] with leading N2LO 3N forces. The
momentum scales attached to the potentials correspond to
different regulator cutoffs: first, the cutoff in the Lippmann-
Schwinger equation and second, if not dimensionally regu-
larized, the cutoff in the two-pion-exchange spectral-function
regularization. Analogously, the second row shows the results
for the same NN potentials but including 3N forces up to
N3LO. We consider two sources of uncertainties: from the
chiral Hamiltonian and from considering only a finite order in
MBPT. As stated in Fig. 1, the theoretical uncertainties due to
the Hamiltonian are estimated by parameter variation in the 3N
forces, i.e., the cutoff �3N and the low-energy constants c1 and
c3. The ci values need to be refit at each chiral order, however,
to investigate the net effect of N3LO forces, we take here
solely the ci range recommended for N3LO calculations [47].
In addition to the uncertainties in the Hamiltonian, we estimate
the neglected higher-order contributions in the many-body
expansion by varying the single-particle energies at third order
using a free and a Hartree-Fock spectrum. These bands are
colored in dark blue in Fig. 1. Moreover, following Ref. [29] we
include the results at second order in MBPT using a Hartree-
Fock spectrum to the uncertainty estimate. This extension of
the pure third-order equation of state is indicated by light-blue
bands. In summary, for a given Hamiltonian we perform in total
three calculations in MBPT: two third-order calculations using
the two single-particle spectra and a second-order calculation
using a Hartree-Fock spectrum. Light- and dark-blue bands
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FIG. 1. The energy per particle in neutron matter for three different N3LO NN potentials with N2LO (top) and N3LO (bottom) 3N forces,
respectively. The uncertainty bands are due to the given ci and 3N cutoff variation. For the MBPT results, we consider in addition the maximum
range of third-order calculations with a free and a Hartree-Fock spectrum (dark-blue band) plus the change from a second-order calculation
with a Hartree-Fock spectrum, which is indicated by the light-blue extension of the pure third-order uncertainty band. The two bands together
define the total uncertainty estimate of MBPT. The region between the two red-dashed lines denotes the uncertainty band of the SCGF method,
which we do not fill for a better view. In each panel the energy range at saturation density obtained in MBPT is given.

together characterize the total uncertainty estimate of MBPT
in each panel. The actual energy range of MBPT is given in
each panel of Fig. 1 at saturation density n0 (dashed vertical
line), with n0 = 0.16 fm−3.

Let us focus on the results with leading 3N forces, as shown
in the first row of Fig. 1. The qualitative description does not
change for the calculations with subleading 3N forces (second
row in Fig. 1). Whereas the results for the two EGM potentials
are almost independent of the many-body details, the effects
of the variation of spectra and many-body order in MBPT
are much more pronounced for EM 500 MeV: at saturation
density the many-body uncertainties provide contributions of
about ∼ −2.5 MeV for this Hamiltonian (see light-blue band in
Fig. 1). Including subleading 3N forces leads basically only to
an overall shift of the bands as shown by the given energy range
at saturation density. More specifically, the net 3N contribution
leads to more attraction for the EGM potentials while the effect
on EM 500 MeV is slightly repulsive.

To quantify the many-body convergence in more detail
we compare to the results obtained in the SCGF method
which are given by the region between the red-dashed lines
in Fig. 1. The results in SCGF are considered to be converged
in the many-body expansion (at the ladder level) and thus
include only the uncertainty due to the Hamiltonian (including

variations of the low-energy constants c1,c3). We focus again
on the different NN potentials rather than on discussing
the effect of subleading 3N forces. Considering the total
uncertainty estimate of MBPT we find for the potentials EM
500 MeV and EGM 450/700 MeV completely overlapping
bands and similar trends in density. In the case of EM 500
MeV the extended uncertainty (light-blue band) is however
needed to obtain more attraction and consequently fully
overlapping bands, whereas for EGM 450/700 MeV the pure
third-order energy is already in remarkable agreement. In
addition to the above discussion on the size of the light-blue
bands this suggests that contributions beyond third-order are
small for EGM 450/700 MeV and become significant for EM
500 MeV.

For EGM 450/500 MeV we observe a slightly different
density dependence between the MBPT and the SCGF curves,
leading to an almost total overlap at saturation density but
less agreement in the region around n ∼ 0.1 fm−3. Here, the
equation of state in SCGF is slightly more repulsive. We
recall that the SCGF results are extrapolated down to zero
temperature from calculations performed at T = 2 MeV for
n � 0.05 fm−3 and at T = 5 MeV for densities above. We
have tested whether this discrepancy is related to the extrapo-
lation to zero-temperature lowering the temperature down to
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FIG. 2. The energy per particle at different orders of MBPT is shown, up to Hartree-Fock (EHF
tot /N ), second order (E(2)

tot /N ), and third order
(E(3)

tot /N ), respectively, in comparison to the energies obtained from the SCGF method (ESCGF/N ) at n0 (first row) and n0/2 (second row),
respectively. The N3LO NN potentials are given in each panel. Three-body effects are included at N2LO (blue) and at N3LO (red), respectively.
The dashed lines connecting the data points are in order to guide the eyes. The error bars are due to the ci and �3N variations. In this plot, the
third-order calculation does not include the additional many-body uncertainty (the light-blue band in Fig. 1).

T = 3,4 MeV in densities between 0.05 and 0.10 fm−3, and
have found no dependency on the extrapolation.

Combining the discussions on the size of the additional
many-body uncertainty and the comparison of MBPT vs.
SCGF we conclude from Fig. 1 that the perturbativeness
improves from EM 500 MeV to EGM 450/500 MeV to
EGM 450/700 MeV. It is remarkable that a third-order MBPT
calculation compares so well with the nonperturbative case
for these chiral NN potentials. We study the many-body
convergence as well as the effect of subleading 3N forces
in more details in the next section.

B. Many-body convergence

In Fig. 2 we address again the many-body convergence and
show order-by-order in MBPT the total energy per neutron at
n0 (first row) and n0/2 (second row), analogously to Fig. 1.
More specifically, we show the total energy in Hartree-Fock
approximation E

(HF)
tot /N (“HF”), second order (“2nd”), and

third order (“3rd”), E
(2)
tot /N and E

(3)
tot /N , respectively, in

comparison to the results obtained in the SCGF method,
ESCGF/N (“SCGF”). The uncertainties are obtained as in Fig. 1
through variations of the 3N parameters and the single-particle
energies. However, to study the many-body convergence the
third-order bands do not include here the additional many-body

uncertainty (the light-blue bands of Fig. 1). The blue (red) data
points correspond to N2LO (N3LO) 3N forces.

For all six panels in Fig. 2 we observe similar overall
patterns: comparing order-by-order to the SCGF method we
observe that the second order adds always too much attraction
which then is compensated by the third-order repulsion.
However, the specific behavior is different for EM 500 MeV
and the two EGM potentials. In the case of EM 500 MeV the
large third order overcompensates the second-order repulsion.
In contrast, the third-order contribution is much smaller and
less repulsive for the EGM potentials as can be seen in Fig. 2
(second and third columns). In particular, this is pronounced
in the calculations based on EGM 450/700 MeV, which agree
remarkably well with the SCGF result.

As already discussed in the description of Fig. 1, including
N3LO 3N forces has only a small repulsive effect on the
energies based on EM 500 MeV, whereas the effect on
the EGM potentials is larger but attractive. This behavior
can be traced back to NN -3N mixing terms that enter the
calculation when including 3N forces beyond the HF level.
We also note that the values of the low-energy constants
CS and CT , which enter N3LO 3N contributions, differ for
all three potentials. However, the many-body convergence is
not altered by including contributions from subleading 3N
interactions.
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FIG. 3. The energy per particle of neutron matter at N3LO for the three different NN potentials (this work: blue bands) in comparison to
Ref. [29] [Krüger et al. (2013): black lines]. The second row combines the results of the first row. In each panel, we give the energy range at
saturation density obtained within the improved calculations presented in this work. See text for details.

C. Comparison to previous calculations at N3LO

The authors of Refs. [28,29] performed the first consistent
calculations at N3LO including NN , 3N , and 4N forces
in MBPT. In the cited works N3LO NN and N2LO 3N
forces have been considered up to third order in MBPT in
terms of effective NN potentials [36], whereas subleading
3N interactions could only be included in the Hartree-
Fock approximation since no 3N -force partial-wave matrix
elements were available at that time. Thanks to the advances
discussed in this paper we are now in the position to revisit
and systematically improve these calculations.

In Fig. 3 we show our improved results for the energy
of neutron matter (blue bands) for the three Hamiltonians
EM 500 MeV, EGM 450/500 MeV, and EGM 450/700 MeV
(first row) and the total band merged from the previous panels
(second row). The uncertainty bands cover again variations of
the 3N parameters (as given in the figure), the single-particle
spectrum, and the additional many-body uncertainty (see
also discussion of Fig. 1). We furthermore include the 4N
Hartree-Fock results, as given in Ref. [29], and vary the 4N
cutoff analogously to the 3N forces. In addition, we show
the results of Ref. [29]1 depicted by the black solid lines.

1For completeness, we have corrected a small error in the routines
of Ref. [29] for the computation of the second- and third-order

For a better view we do not fill this region. We give in each
panel the energy range at saturation density obtained within
the improved calculations presented in this work.

We observe that the effect of adding the N3LO 3N con-
tributions beyond Hartree-Fock varies significantly between
the EM 500 MeV and the two EGM potentials. For EM
500 MeV these contributions leave the uncertainty band almost
unaffected. For the two EGM potentials the upper uncertainty
limits remains the same while the lower increase by ∼ 1 MeV
(∼0.2 MeV) for EGM 450/500 MeV (EGM 450/700 MeV),
hence decreasing the width of the uncertainty band. These
findings are consistent with the observations in Ref. [29],
which stated that the N3LO 3N Hartree-Fock energy is smaller
for EM 500 MeV while it is much larger for the two EGM
potentials (see Fig. 6 of Ref. [29]). We emphasize, however,
that NN and effective NN forces get mixed at second order
and beyond, and therefore the net effect of these subleading 3N
contributions cannot be easily disentangled in the many-body
calculation. Combining all bands we find a total uncertainty
of E

N
(n0) = (14.7–21.1) MeV in neutron matter at saturation

density. Compared to the corrected total band of Ref. [29]

contribution of the N3LO NN plus N2LO 3N forces as well as the
N3LO 3N Hartree-Fock energy corresponding to the ring topology.
Moreover, we are using the typo-corrected values for β̄8,9 (see
Ref. [48] for details).
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FIG. 4. Comparison of the leading 3N Hartree-Fock energies
at saturation density for several temperatures obtained using the
effective NN potential in terms of 3N operators (blue) and the
partial-wave approach (red). We include 3N matrix elements up to
J � 9/2 and J � 6. For the uncertainty estimate we use the same
parameter variation in the 3N forces as in Fig. 1.

E
N

(n0) = (14.3–21.1) MeV, we obtain a slight reduction of
the lower limit of the uncertainty band. As suggested in
Refs. [28,29], these effects are indeed rather small. However,
we expect the effects to be much more important as soon as
the proton fraction is finite (see also discussion of symmetric
nuclear matter in Ref. [29]).

D. Normal-ordering at finite temperatures

We have extended the recently developed framework for
computing effective NN potentials in a partial-wave basis [16]
to finite temperatures. Besides being a necessary step in
order to include these matrix elements in the SCGF method
(due to the extrapolation from finite temperatures), this is
also a crucial step for future MBPT calculations of nuclear
matter at finite temperatures. In Fig. 4 we show the resulting
N2LO 3N Hartree-Fock energies E(1)/N(n0,T ) at six different
temperatures in the range of T = (0–50) MeV. We benchmark
our new values (red) against previous results (blue) obtained
via an operatorial approach [38]. The uncertainty bands are
obtained through 3N parameter variation analogously to
Figs. 1 and 2. The single-particle spectrum does not contribute
to the uncertainties since the Fermi-Dirac distribution in Eq. (2)
is computed using a free spectrum. A similar benchmark at
N3LO is not possible since no matrix elements are currently
available based on the operatorial evaluation of 3N forces at
N3LO. We note that the 3N interaction energy decreases with
temperature as shown in Fig. 4. Including also kinetic energy
contributions would lead to a total increase in energy with
increasing temperature. From Fig. 4 we can conclude that the

FIG. 5. Momentum-space diagonal matrix elements of the
density-dependent effective NN potentials at N2LO for a selection
of four partial-wave channels and two temperatures.

two different methods for the normal-ordering agree very well
at zero and finite temperature up to T = 50 MeV.

In addition to the 3N Hartree-Fock energies, we also
benchmark the underlying interaction matrix elements of
the effective potential V

as
3N . The results for a selection of

four partial-wave channels and two temperatures are shown
in Fig. 5. These matrix elements contribute to the energy
presented in Fig. 4. The ones obtained in the partial-wave
(operatorial) approach are plotted as dashed (solid) lines. We
select a representative set of channels, 1S0 ,3P0 , 3P1, and 3P2,
and temperatures T = 10,50 MeV. We have also compared
higher partial waves up to J = 6 and momentum off-diagonal
matrix elements for �3N = (2.0–2.5) fm−1. As in Ref. [16],
we find indications of an incomplete partial-wave convergence
only for partial-waves channels with J > 4, We also checked
that the agreement can be systematically improved by in-
creasing the 3N model space, i.e., by including channels with
J = 11/2 and 13/2. We found that contributions from these
higher partial-wave channels provide �50 keV to the energy
of neutron matter per particle at saturation density. Overall,
we find excellent agreement of the two methods at the level of
matrix elements and at finite-temperatures. This shows that the
computed matrix elements of the effective interactions at finite
temperature at N2LO and N3LO are correct and numerically
stable and are hence suitable for future calculations of nuclear
matter for astrophysical applications [49].
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IV. SUMMARY AND OUTLOOK

In this work we have calculated the zero-temperature
equation of state of neutron matter in the framework of
MBPT and SCGF based on chiral NN and 3N forces up
to N3LO. In addition, we included contributions from 4N
interactions at N3LO in the Hartree-Fock approximation.
For the inclusion of 3N interactions we have utilized our
generalized normal-ordering framework first presented in
Ref. [16]. We demonstrated that this framework is able to treat
general 3N interactions that are provided in a partial-wave
representation and can be extended to finite temperatures.

We have systematically improved previous calculations
of neutron matter in MBPT at N3LO [28,29] by including
subleading 3N contributions beyond the Hartree-Fock approx-
imation. Specifically, we have obtained the neutron-matter
energy based on three different NN plus 3N interactions
derived within chiral EFT, comparing calculations including
only leading to up-to-subleading 3N forces. For the N3LO
NN potentials EGM 450/500 MeV and EGM 450/700 MeV
we found additional attractive subleading 3N contributions of
about ∼2 MeV for the energy per particle at saturation density,
while for the EM 500 MeV potential these contributions are
smaller in size and repulsive, of the order of ∼500 keV. In order
to assess the many-body convergence we have benchmarked
our MBPT results for three commonly used N3LO NN
potentials plus leading and also subleading 3N forces against
results obtained within the SCGF framework. Since the current
implementation of SCGF does not account for Cooper pairing,
the zero-temperature limit was obtained by extrapolation. We
found a systematic convergence of the MBPT results to the

SCGF results at third order in MBPT, whereas the detailed
convergence pattern depends on details of the NN and 3N
interactions.

Finally, we have successfully benchmarked results for the
effective NN potential at finite temperature. At order N2LO in
the chiral expansion we obtain excellent agreement between
results obtained using our novel normal-ordering framework
and previous results for 3N Hartree-Fock energy contributions
as well as on the level of partial-wave matrix elements. These
benchmarks demonstrate that we are now in the position to
perform calculations of general isospin-asymmetric matter
including all NN and 3N contributions up to N3LO at zero
and finite temperatures. Since all 3N topologies contribute for
these systems, reliable fits of the 3N low-energy constants cD

and cE are required. This is currently a work in progress. The
availability of different sets of Hamiltonians using different
regulator choices (see also Refs. [50,51]) and different fitting
strategies (see, e.g., Refs. [52,53]) will make it possible to
probe systematically the order-by-order convergence in the
chiral expansion. In turn, this will advance our understanding
of the dense matter equation of state.
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We thank T. Krüger, A. Rios, A. Polls, and I. Tews for useful
discussions. This work was supported by the ERC Grant No.
307986 STRONGINT, the Deutsche Forschungsgemeinschaft
through Grant No. SFB 1245. A.C. acknowledges support by
the Alexander von Humboldt Foundation through a Humboldt
Research Fellowship for Postdoctoral Researchers.

[1] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev. Mod.
Phys. 81, 1773 (2009).

[2] R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).
[3] V. Somà, A. Cipollone, C. Barbieri, P. Navrátil, and T. Duguet,

Phys. Rev. C 89, 061301(R) (2014).
[4] S. Binder, J. Langhammer, A. Calci, and R. Roth, Phys. Lett. B

736, 119 (2014).
[5] J. D. Holt, J. Menéndez, J. Simonis, and A. Schwenk, Phys. Rev.

C 90, 024312 (2014).
[6] T. A. Lähde, E. Epelbaum, H. Krebs, D. Lee, U.-G. Meiner, and

G. Rupak, Phys. Lett. B 732, 110 (2014).
[7] G. Hagen, T. Papenbrock, M. Hjorth-Jensen, and D. J. Dean,

Rep. Prog. Phys. 77, 096302 (2014).
[8] A. Signoracci, T. Duguet, G. Hagen, and G. R. Jansen, Phys.

Rev. C 91, 064320 (2015).
[9] E. Dikmen, A. F. Lisetskiy, B. R. Barrett, P. Maris, A. M.

Shirokov, and J. P. Vary, Phys. Rev. C 91, 064301 (2015).
[10] H. Hergert, S. K. Bogner, T. D. Morris, A. Schwenk, and

K. Tsukiyama, Phys. Rep. 621, 165 (2016).
[11] H.-W. Hammer, A. Nogga, and A. Schwenk, Rev. Mod. Phys.

85, 197 (2013).
[12] K. Hebeler, J. D. Holt, J. Menéndez, and A. Schwenk, Annu.

Rev. Nucl. Part. Sci. 65, 457 (2015).
[13] K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga, and

A. Schwenk, Phys. Rev. C 83, 031301(R) (2011).

[14] L. Coraggio, J. W. Holt, N. Itaco, R. Machleidt, L. E. Marcucci,
and F. Sammarruca, Phys. Rev. C 89, 044321 (2014).

[15] C. Wellenhofer, J. W. Holt, N. Kaiser, and W. Weise, Phys. Rev.
C 89, 064009 (2014).

[16] C. Drischler, K. Hebeler, and A. Schwenk, Phys. Rev. C 93,
054314 (2016).

[17] J. W. Holt, N. Kaiser, and W. Weise, Prog. Part. Nucl. Phys. 73,
35 (2013).

[18] A. Carbone, A. Polls, and A. Rios, Phys. Rev. C 88, 044302
(2013).

[19] G. Hagen, T. Papenbrock, A. Ekström, K. A. Wendt, G.
Baardsen, S. Gandolfi, M. Hjorth-Jensen, and C. J. Horowitz,
Phys. Rev. C 89, 014319 (2014).

[20] M. Kohno, Phys. Rev. C 88, 064005 (2013).
[21] F. Isaule, H. F. Arellano, and A. Rios, Phys. Rev. C 94, 034004

(2016).
[22] A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler,

A. Nogga, and A. Schwenk, Phys. Rev. Lett. 111, 032501
(2013).

[23] G. Wlazlowski, J. W. Holt, S. Moroz, A. Bulgac, and K. J.
Roche, Phys. Rev. Lett. 113, 182503 (2014).

[24] A. Roggero, A. Mukherjee, and F. Pederiva, Phys. Rev. Lett.
112, 221103 (2014).

[25] J. E. Lynn, I. Tews, J. Carlson, S. Gandolfi, A. Gezerlis, K. E.
Schmidt, and A. Schwenk, Phys. Rev. Lett. 116, 062501 (2016).

054307-8

https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1016/j.physletb.2014.07.010
https://doi.org/10.1016/j.physletb.2014.07.010
https://doi.org/10.1016/j.physletb.2014.07.010
https://doi.org/10.1016/j.physletb.2014.07.010
https://doi.org/10.1103/PhysRevC.90.024312
https://doi.org/10.1103/PhysRevC.90.024312
https://doi.org/10.1103/PhysRevC.90.024312
https://doi.org/10.1103/PhysRevC.90.024312
https://doi.org/10.1016/j.physletb.2014.03.023
https://doi.org/10.1016/j.physletb.2014.03.023
https://doi.org/10.1016/j.physletb.2014.03.023
https://doi.org/10.1016/j.physletb.2014.03.023
https://doi.org/10.1088/0034-4885/77/9/096302
https://doi.org/10.1088/0034-4885/77/9/096302
https://doi.org/10.1088/0034-4885/77/9/096302
https://doi.org/10.1088/0034-4885/77/9/096302
https://doi.org/10.1103/PhysRevC.91.064320
https://doi.org/10.1103/PhysRevC.91.064320
https://doi.org/10.1103/PhysRevC.91.064320
https://doi.org/10.1103/PhysRevC.91.064320
https://doi.org/10.1103/PhysRevC.91.064301
https://doi.org/10.1103/PhysRevC.91.064301
https://doi.org/10.1103/PhysRevC.91.064301
https://doi.org/10.1103/PhysRevC.91.064301
https://doi.org/10.1016/j.physrep.2015.12.007
https://doi.org/10.1016/j.physrep.2015.12.007
https://doi.org/10.1016/j.physrep.2015.12.007
https://doi.org/10.1016/j.physrep.2015.12.007
https://doi.org/10.1103/RevModPhys.85.197
https://doi.org/10.1103/RevModPhys.85.197
https://doi.org/10.1103/RevModPhys.85.197
https://doi.org/10.1103/RevModPhys.85.197
https://doi.org/10.1146/annurev-nucl-102313-025446
https://doi.org/10.1146/annurev-nucl-102313-025446
https://doi.org/10.1146/annurev-nucl-102313-025446
https://doi.org/10.1146/annurev-nucl-102313-025446
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevC.89.044321
https://doi.org/10.1103/PhysRevC.89.044321
https://doi.org/10.1103/PhysRevC.89.044321
https://doi.org/10.1103/PhysRevC.89.044321
https://doi.org/10.1103/PhysRevC.89.064009
https://doi.org/10.1103/PhysRevC.89.064009
https://doi.org/10.1103/PhysRevC.89.064009
https://doi.org/10.1103/PhysRevC.89.064009
https://doi.org/10.1103/PhysRevC.93.054314
https://doi.org/10.1103/PhysRevC.93.054314
https://doi.org/10.1103/PhysRevC.93.054314
https://doi.org/10.1103/PhysRevC.93.054314
https://doi.org/10.1016/j.ppnp.2013.08.001
https://doi.org/10.1016/j.ppnp.2013.08.001
https://doi.org/10.1016/j.ppnp.2013.08.001
https://doi.org/10.1016/j.ppnp.2013.08.001
https://doi.org/10.1103/PhysRevC.88.044302
https://doi.org/10.1103/PhysRevC.88.044302
https://doi.org/10.1103/PhysRevC.88.044302
https://doi.org/10.1103/PhysRevC.88.044302
https://doi.org/10.1103/PhysRevC.89.014319
https://doi.org/10.1103/PhysRevC.89.014319
https://doi.org/10.1103/PhysRevC.89.014319
https://doi.org/10.1103/PhysRevC.89.014319
https://doi.org/10.1103/PhysRevC.88.064005
https://doi.org/10.1103/PhysRevC.88.064005
https://doi.org/10.1103/PhysRevC.88.064005
https://doi.org/10.1103/PhysRevC.88.064005
https://doi.org/10.1103/PhysRevC.94.034004
https://doi.org/10.1103/PhysRevC.94.034004
https://doi.org/10.1103/PhysRevC.94.034004
https://doi.org/10.1103/PhysRevC.94.034004
https://doi.org/10.1103/PhysRevLett.111.032501
https://doi.org/10.1103/PhysRevLett.111.032501
https://doi.org/10.1103/PhysRevLett.111.032501
https://doi.org/10.1103/PhysRevLett.111.032501
https://doi.org/10.1103/PhysRevLett.113.182503
https://doi.org/10.1103/PhysRevLett.113.182503
https://doi.org/10.1103/PhysRevLett.113.182503
https://doi.org/10.1103/PhysRevLett.113.182503
https://doi.org/10.1103/PhysRevLett.112.221103
https://doi.org/10.1103/PhysRevLett.112.221103
https://doi.org/10.1103/PhysRevLett.112.221103
https://doi.org/10.1103/PhysRevLett.112.221103
https://doi.org/10.1103/PhysRevLett.116.062501
https://doi.org/10.1103/PhysRevLett.116.062501
https://doi.org/10.1103/PhysRevLett.116.062501
https://doi.org/10.1103/PhysRevLett.116.062501


NEUTRON MATTER FROM CHIRAL TWO- AND THREE- . . . PHYSICAL REVIEW C 94, 054307 (2016)

[26] V. Bernard, E. Epelbaum, H. Krebs, and Ulf.-G. Meißner, Phys.
Rev. C 77, 064004 (2008).

[27] V. Bernard, E. Epelbaum, H. Krebs, and Ulf.-G. Meißner, Phys.
Rev. C 84, 054001 (2011).
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