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Shape phase mixing in critical point nuclei
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Spectral properties of nuclei near the critical point of the quantum phase transition between spherical and
axially symmetric shapes are studied in a hybrid collective model which combines the γ -stable and γ -rigid
collective conditions through a rigidity parameter. The model in the lower and upper limits of the rigidity
parameter recovers the X(5) and X(3) solutions respectively, while in the equally mixed case it corresponds to
the X(4) critical point symmetry. Numerical applications of the model on nuclei from regions known for critical
behavior reveal a sizable shape phase mixing and its evolution with neutron or proton numbers. The model also
enables a better description of energy spectra and electromagnetic transitions for these nuclei.
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I. INTRODUCTION

The single-particle degrees of freedom constitute the
natural basis for any nuclear theory. However, bulk properties
which are more important in medium- and heavy-mass nuclei
are traditionally described by means of collective models. In
particular, the Bohr-Mottelson model [1,2] (BMM) of nuclear
surface oscillations provides an intuitive phenomenology as
well as a geometric classification of the collective motion. Al-
ternatively, a group theoretical description of nuclear collective
properties is offered by the interacting boson model (IBM) [3],
which is basically a pair coupling model, with coherent
monopole and quadrupole pairs of fermions approximated as
bosons. The most general IBM Hamiltonian can be expressed
in terms of the geometrical shape variables of BMM by means
of an intrinsic coherent state [4,5]. The resulted differential
equation is, however, far more involved, bearing only a
marginal equivalence to the Bohr Hamiltonian [6–8]. This is
not surprising given the conceptual distinction between the two
models. Indeed, whereas BMM is purely geometrical, IBM is
actually a large truncation of the shell model. However, in
the earlier attempts to relate the two approaches [4,5,9], it
was found that the limiting dynamical symmetries U(5) [10],
SU(3) [11], and O(6) [12], identified as subgroup chains of the
SU(6) symmetry of IBM, have analogues in BMM represented
by its solvable instances corresponding to the shape phases
describing a spherical vibrator [2], an axially symmetric
rotor [1], and a γ -soft rotor [13] respectively. The search for
explicit mappings between the two models in their solvable
limits revealed that a large range of BMM results can be
reproduced in various contraction limits of the IBM [14–16].
The fact that, besides the microscopical upbringing, IBM can
be understood also as a compactification of BMM serves as a
bridge between the single-particle degrees of freedom and the
purely geometrical collective variables defining the shape of
the nuclear surface.

The presence of a symmetry is directly related to the exact
solvability of the associated Hamiltonian, whose solutions
can be indexed by many-body quantum numbers. This is a
simpler explanation for the equivalence of the IBM dynamical
symmetries with BMM solvable limits. Therefore, a lot of
effort was directed to find other exactly solvable cases of

the BMM [17–19] and their corresponding symmetries. As
a result, it was found that variations of the BMM with a
square well potential have analytical solutions adequate for
a similar algebraic description of the critical points of the
transitions between the aforementioned dynamical symme-
tries. Indeed, the solutions E(5) [20] and X(5) [21], associated
with the critical points of the transition lines U(5) → O(6)
and U(5) → SU(3), are closely related to the five-dimensional
Euclidean symmetry. More precisely, it is exactly realized in
the former and only partially in the latter [22–24]. The elusive
group structure of the X(5) critical point at first glance might
be ascribed to the adopted approximations. However, the same
algebraic properties are found in its γ -rigid counterpart, the
X(3) model [25], which is exactly separable and solvable
but acts in a reduced three-dimensional shape phase space.
Thus, regardless of the description associated with the γ
shape variable, the relation of the critical point solutions
for the transition between spherical and axially symmetric
shapes with the Euclidean group is invariable. This aspect
together with the phenomenological compatibility between
the γ -stable and γ -rigid conditions inspired a relaxation of the
X(5) critical point solution in terms of a γ -rigidity parameter.
Basically, the measure of the γ -rigidity combines the quantum
treatments of the collective excitations corresponding to the
limiting shape phase spaces of X(3) and X(5) solutions. The
intermediary situation obviously involves a mixed shape phase
space, i.e., something between three and five dimensions. In
this paper we will show that some of the known critical point
axially symmetric nuclei prefer this arrangement. Moreover,
the degree of the shape phase mixing have a rather smooth
evolution in well defined sequences of nuclei. A similar
program was used to define the X(4) critical point solution [24]
as well as to combine some exactly separable variations of the
X(5) model to their γ -rigid limits [26,27].

II. SHAPE PHASE SPACE MIXING

The general Bohr model [2] for quadrupole shapes has
in total five variables: two associated with the nuclear shape
oscillations and three Euler angles describing the rotational
motion. Restricting the γ shape variable to certain values, one
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can obtain more simple models [25,28] due to smaller number
of degrees of freedom. Indeed, the fixed γ variable becomes a
simple parameter, and the quantum Hamiltonian associated
with such a case will have a different structure according
to the Pauli quantization prescription [29]. An interesting
situation arises in more restrained conditions of a prolate
γ -rigid system (γ = 0) [25]. Due to the symmetry properties,
its rotational motion can be described by only two Euler angles,
and therefore the whole system will have just three variables
instead of five as in the usual Bohr model.

The small-angle approximations made on the γ shape
variable in γ -stable models is quite similar to the γ -rigid
conditions. This correspondence led to the idea of a hybrid
model based on the interplay between γ -stable and γ -rigid col-
lective excitations [24,26,27]. It was achieved by introducing a
control parameter 0 � χ < 1 called γ rigidity, which mediates
a coupling between the two types of collective excitations:

H = χT̂r + (1 − χ )T̂s + V (β,γ ), (2.1)

where V (β,γ ) is the potential energy. The usual five-
dimensional kinetic operator of a γ -soft Bohr Hamiltonian
reads

T̂s = − �
2

2B

[
1

β4

∂

∂β
β4 ∂

∂β
+ 1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

− 1

4β2

3∑
k=1

Q2
k

sin2
(
γ − 2

3πk
)]

, (2.2)

where Qk (k = 1,2,3) denote the three projections of the
angular momentum on the principal axes of the intrinsic frame
of reference. Here, γ softness is related to the propensity of
the system to have nonaxial fluctuations around an equilibrium
geometry. Further, depending on the potential energy, one
can have γ -stable or γ -unstable conditions. In the first case
the potential has a single localized minimum in the γ shape
variable, while in the latter it does not depend on γ at all. This
terminology is unfortunately often misused, but very clear
definitions can be found in Ref. [17]. In contradistinction,
the prolate γ -rigid kinetic energy operator [25] defined in a
three-dimensional shape phase space,

T̂r = − �
2

2B

[
1

β2

∂

∂β
β2 ∂

∂β
− Q2

1 + Q2
2

3β2

]
, (2.3)

is associated with a potential energy with an extremely sharp
γ minimum which practically does not allow fluctuations. The
lack of the third component of angular momentum in the above
equation is due to the quantum mechanical restriction that the
rotation cannot take place around the symmetry axis.

For the purpose of this study, Tr and Ts will be associated
with the X(3) and X(5) models respectively, which share
the same infinite square well shape of the separated β
potential. The differences in the quantum description of the two
situations arising from different shape phase space dimensions
are resolved by a suitable weighting of the shape phase metric
associated with the full Hamiltonian (2.1). The origin of this
deformed shape phase space lies in the general definition of
the kinetic energy of the collective Hamiltonian as a Laplacian

operator in curvilinear coordinates [30]:

T̂ = −�
2

2
∇2 = −�

2

2

∑
lm

1

J

∂

∂xl
J Ḡlm ∂

∂xm
. (2.4)

J = √
det(g) is the Jacobian of the transformation from the

quadrupole coordinates {qk} to the curvilinear ones {xl}l=1,5 =
{β,γ,θ1,θ2,θ3} defined by the metric tensor:

glm =
∑

k

∂qk

∂xl

∂qk

∂xm
, (2.5)

while Glm is a symmetric positive-definite bitensor matrix. In
the general five-dimensional Bohr model, this bitensor is just
the transformation tensor glm up to a common mass parameter,
and the kinetic operator (2.4) acquires the well known form
of the Laplace-Beltrami operator [31]. This is no longer valid
if one wants to introduce the rigidity dependence. However,
it can be easily shown that the χ dependent weighting factor
arises naturally in the definition of the β wave function if one
considers the following mass tensor components in the general
collective Hamiltonian:

Glm = 0, l �= m, Gββ = B, Gγγ = B

1 − χ
,

Gkk = 4Bβ2

1 − χδk,3
sin2 γk, γk = γ − 2kπ

3
, k = 1,2,3.

(2.6)

In this way one will have, in the axial rigid limit, infinite
inertial parameters for the conjugate momentum of the γ shape
variable and the angular velocity ω3 = θ̇3 around the third
intrinsic axis [32].

III. APPLICATION TO X(D) CRITICAL POINTS

As the aim of the paper is to study critical point nuclei, one
will treat the Schrödinger equation associated with (2.1) as in
case of the well known X(5) model [21], where an approximate
separation of β and γ angular variables is achieved through
a series of approximations conditioned by the following
separated form for the total reduced potential:

u(β,γ ) = 2B

�2
V (β,γ ) = u(β) + (1 − χ )v(γ ). (3.1)

In case of a very sharp γ potential centered around γ = 0,
the rotational term from (2.2) can be very well approximated
by

3∑
k=1

Q2
k

sin2
(
γ − 2

3πk
) ≈ 4

3
Q2 + Q2

3

(
1

sin2 γ
− 4

3

)
, (3.2)

where Q is the total angular momentum vector
operator.

Assuming a factorized total wave function 
(β,γ,�) =
ξ (β)η(γ )DL

MK (�), where DL
MK are Wigner functions of

total angular momentum L and its projections M and K
on the body-fixed and laboratory-fixed z axis respectively,
the associated Schrödinger equation is separated into β
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and γ parts:[
− ∂2

∂β2
− 2(2 − χ )

β

∂

∂β
+ L(L + 1)

3β2
+ u(β)

]
ξ (β)

= εβξ (β), (3.3)

(1 − χ )

[
− 1

β2
0 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

+ K2

4β2
0

(
1

sin2 γ
− 4

3

)
+ v(γ )

]
η(γ ) = εγ η(γ ), (3.4)

where ε = εβ + εγ = 2B
�2 E. β0 is a static “average” of β which

assures an approximated adiabatic separation of the β and γ
surface oscillations. The advantages and shortcomings of this
approximation were extensively analyzed in Ref. [33]. The
angular dependence was extracted through averaging on the
Wigner states. The γ equation is treated as in the usual γ -stable
case [21] by applying a harmonic approximation with respect
to γ = 0 for the involved trigonometric functions. The lowest
order symmetry obeying γ potential v(γ ) = a(1 − cos 3γ )
gets the same treatment such that constant a will acquire the
role of the γ oscillation stiffness. As a result, the γ differential
equation becomes[

− 1

β2
0γ

∂

∂γ
γ

∂

∂γ
+

(
K

2

)2 1

β2
0γ 2

+ (3a)2 γ 2

2

]
η(γ )

= ε′
γ η(γ ), ε′

γ = εγ

1 − χ
+ K2

3β2
0

. (3.5)

Its similarity with the radial equation for a two-dimensional
harmonic oscillator is obvious, such that one readily obtains
the corresponding solutions as

ε′
γ = 3a

β0
(nγ + 1), nγ = 0,1,2, . . . , (3.6)

ηnγ K (γ ) = NnKγ | K
2 |e−3a γ 2

2 L
| K

2 |
n (3aγ 2), (3.7)

where NnK is a normalization constant, n = (nγ − |K|/2)/2
with K = 0,±2nγ for nγ even and K = ±2nγ for nγ odd,
respectively.

In accordance to X(5) [21] and X(3) [25] critical point
solutions, one will consider here an anharmonic behavior
reflected into a square well shape of the potential:

u(β) =
{

0, β ≤ βW ,
∞, β > βW,

(3.8)

with βW indicating the position of the infinite wall. Making the
change of variable ξ (β) = βχ− 3

2 f (β), equation (3.3) is written
as a Bessel differential equation:[

∂2

∂β2
+ 1

β

∂

∂β
+

(
k2 − ν2

β2

)]
f (β) = 0, (3.9)

where

ν =
√

L(L + 1)

3
+

(
3

2
− χ

)2

. (3.10)

The associated wave function must satisfy the boundary
condition f (βW ) = 0, from which one extracts the β energy
spectrum in terms of the sth zero xs,ν of the Bessel function
Jν(xs,νβ/βW ) [34]:

ε
β
Lnβ

=
(

xnβ+1,ν

βW

)2

. (3.11)

At this point we assigned the β vibration quantum number by
nβ = s − 1. Completing the β eigensystem are the β variable
wave functions given as:

ξLnβ
(β) = Nnβνβ

χ− 3
2 Jν(xnβ+1,νβ/βW ). (3.12)

Nnβν is the normalization constant which is computed using
the properties of the Bessel functions:

(Nnβν)−2 =
∫ βW

0
β[Jν(xnβ+1,νβ/βW )]2dβ

= β2
W

2
[Jν+1(xnβ+1,ν)]2. (3.13)

FIG. 1. The low-lying energy spectrum of ground and first two β excited bands (a) and few �K = 0 B(E2) transition probabilities
[(b) and (c)] are given as functions of the rigidity parameter χ .
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TABLE I. Theoretical results for ground, γ , and first two β band energies normalized to the energy of the first excited state 2+
g are compared

with the available experimental data for 148Ce [58], 150Nd [59], 156Dy [60], and 158Er [61]. The dimensionless parameters χ and α are also
given together with the corresponding deviation σ defined by (4.2). Values in parentheses denote states with uncertain assignment of angular
momentum and therefore were excluded from the fits.

L 148Ce 150Nd 156Dy 158Er

Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor.

2+
g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4+
g 2.86 2.66 2.93 2.85 2.93 2.81 2.74 2.61

6+
g 5.30 4.77 5.53 5.29 5.59 5.15 5.05 4.65

8+
g 8.14 7.27 8.68 8.22 8.82 7.97 7.77 7.07

10+
g 11.30 10.16 12.28 11.62 12.52 11.22 10.79 9.85

12+
g 14.69 13.43 16.27 15.46 16.59 14.91 13.95 13.00

14+
g 18.22 17.06 20.59 19.74 20.96 19.01 17.56 16.49

16+
g 21.86 21.05 25.19 24.44 25.57 23.52 20.95 20.34

18+
g 25.66 25.39 29.58 30.33 28.43 24.32 24.52

20+
g 29.57 30.09 35.13 35.27 33.75 27.96 29.05

22+
g 33.52 35.15 41.10 40.45 39.46 33.91

24+
g 40.55 47.48 45.94 45.57 39.11

26+
g 46.29 54.27 51.76 52.07 44.65

0+
β1 4.86 3.87 5.19 5.20 4.90 4.81 4.20 3.63

2+
β1 5.90 5.77 6.53 7.02 6.01 6.65 5.15 5.54

4+
β1 7.72 8.66 8.74 10.20 7.90 9.76 6.54 8.35

6+
β1 12.08 11.83 14.12 10.43 13.55 11.67

8+
β1 15.96 18.63 13.49 17.89 15.41

10+
β1 20.25 23.66 16.81 22.72 19.55

0+
β2 10.03 (13.35) 13.10 (10.00) 12.20 (7.22) 9.46

2+
β2 12.81 15.74 14.88 12.27

2+
γ (6.25) 6.24 8.16 8.35 6.46 7.03 4.27 4.59

3+
γ 7.05 7.01 9.22 9.20 7.42 7.86 5.43 5.34

4+
γ 7.91 10.39 10.21 8.48 8.84 6.16 6.20

5+
γ 8.98 8.91 11.36 9.69 9.95 7.48 7.17

6+
γ 10.01 12.64 11.07 11.18 8.27 8.24

7+
γ 11.27 11.22 14.05 12.55 12.53 9.96 9.40

8+
γ 12.52 15.57 14.22 14.00 10.51 10.65

9+
γ 13.88 13.92 17.22 15.91 15.57 12.00

10+
γ 15.41 18.97 17.77 17.26 12.95 13.44

11+
γ 16.87 16.99 20.84 19.69 19.04 14.97

χ 0.605 0.145 0.276 0.696
α 45.36 53.80 46.09 32.21
No. states 18 14 28 20
σ 0.777 0.859 1.794 0.639

Note that in the above scalar product we used the modified
integration measure which accounts for the shape phase
mixing [27].

Finally, the total excitation energy of the system in respect
to the ground state is defined as

ELKnβnγ
= �

2

2B

[
ε

β
Lnβ

+ ε
γ
Knγ

− ε
β
00 − (1 − χ )

3a

β0

]
. (3.14)

While the total solution of the Hamiltonian (2.1) is given by
the normalized and symmetrized product of angular, β, and γ
wave functions [21,35,36]:


LMKnβnγ
(β,γ,�) = ξLnβ

(β)ηnγ |K|(γ )

√
2L + 1

16π2(1 + δK,0)

× [
DL

MK (�) + (−)LDL
M−K (�)

]
. (3.15)
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FIG. 2. Theoretical ground state to ground state E2 transition probabilities normalized to the 2+
g → 0+

g transition are compared with the
available experimental data corresponding to all considered nuclei and with the X(3) [25], X(4) [24], and X(5) [21] predictions. All the data
are gathered from Nuclear Data Sheets [58–63,65,66,68,69], with the exception of 176,178Os and 180Pt nuclei, whose experimental values are
extracted from Refs. [38,70] and [71] respectively. Also the E2 rate for the 2+

g → 0+
g transition of 178Pt was taken from Ref. [72].
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Transition rates can then be calculated by employing the
general expression for the quadrupole transition operator,

T (E2)
μ = tβ

[
D2

μ0 cos γ + 1√
2

(
D2

μ2 + D2
μ−2

)
sin γ

]
, (3.16)

where t is a scaling factor. The transition probability can also
be given in a factorized form as [36,37]:

B(E2,LKnβnγ → L′K ′n′
βn′

γ )

= 5t2

16π

(
CL 2 L′

KK ′−KK ′B
Lnβ

L′n′
β
G

Knγ

K ′n′
γ

)2
. (3.17)

G is the integral over the γ shape variable of only the second
term from (3.16),

G
Knγ

K ′n′
γ

=
∫ π/3

0
sin γ ηnγ Kηn′

γ K ′ | sin 3γ |dγ, (3.18)

because in the present model γ is very small and consequently
cos γ ≈ 1 [36]. C is the Clebsch-Gordan coefficient dictating
the angular momentum selection rules, while B is defined as

B
Lnβ

L′n′
β

=
∫ βW

0
ξLnβ

(β)ξL′n′
β
(β)β5−2χdβ. (3.19)

IV. NUMERICAL RESULTS

In order to find experimental counterparts of the shape phase
space mixing, a thorough analysis is required on the evolution
of its spectral properties as function of χ . Besides χ , the total
energy function (3.14), expressed in �

2/(2B) units, depends
also on a and β0 through the γ energy contribution. However,
the excitation energies of the ground and β band states are
independent of a and β0, while the γ band (nγ = 1,K = 2) is
shifted by the amount

α = (1 − χ )

(
3a

β0
− 4

3β2
0

)
. (4.1)

Therefore, we visualized in Fig. 1 the evolution of the energy
spectrum corresponding to the ground and β bands and few
strong �K = 0 transition probabilities only as a function of
χ . The energy spectrum depicted in Fig. 1(a) shows that the
energy of all ground and β states decreases linearly with χ .
Although not shown, the evolution of the even L γ band states
follows those of the ground band states with a constant shift
in energy. The slope of the energy level curves is almost the
same for states belonging to the same vibrational band, with a
variable increase with the energy of the state depending on the
band. As a result, the steepest decrease in energy is associated
to the highest vibrational quantum number. Due to different
rates of energy decreasing, some levels belonging to different
vibrational bands intersect each other at some values of the
rigidity χ . For example at χ = 0.103, 0+

β1 and 6+
g states are

degenerate, while the degeneracy of the 0+
β2 and 10+

g states
happens at χ = 0.560. The last intersection is very close to
the case of X(4) where the γ -rigid/γ -stable mixing is equal.
Regarding this special case, one can see that its 8+

g state, which
was shown in Ref. [24] that satisfies exactly the Euclidean
dynamical symmetry E(4), is positioned right in the middle
between 2+ and 4+ states of the first excited β band. For

smaller values of χ , the 8+
g energy level shifts toward 2+

β1, and
when χ is increased it gets closer to the 4+

β1 state. Although this
observation is just a numerical peculiarity, it serves as another
example of the median role played by the X(4) model in the
relation between X(3) and X(5).

As all states decrease in energy when χ increases, it is
expected that the quadrupole transition probabilities would
gain in value. Indeed, as can be seen from Fig. 1(b), all �K = 0
transitions connecting the low-lying states have greater prob-
abilities for increased values of χ . In contradistinction to
the energy levels, the B(E2) rates all have distinct mostly
nonlinear evolution from χ = 0 to χ → 1. The transition most
sensitive to χ variation is 0+

β2 → 2+
g , which might be taken as

a distinguishable observable instead of the purely theoretical
rigidity parameter. On the other hand, the most insensitive
transitions are the first in-band transitions from the two β
bands. Moreover, their evolution with χ shown in Fig. 1(c) is
not even monotonic, but has maximum points in the region of
χ = 0.7.

The model is applied to X(5) and X(3) nuclei as well as
to their isotopic and isotonic neighbors. The experimental
ground, γ , and available β band energies normalized to the
excitation energy of the 2+

g state are fitted against rigidity χ ,
which completely describes the ground and β excited bands,
and the parameter α (4.1) fixing the γ band energy shift in
respect to the ground state. The fitness of the present theoretical
description is judged by the standard error

σ =
√√√√ 1

N − 1

N∑
i=1

[
Ei(Theor)

E2+
g
(Theor)

− Ei(Expt)

E2+
g
(Expt)

]2

. (4.2)

As the minimization of the above quantity tends to be
disadvantageous for the low energy states, we consider for the
fitting procedure for the ground band only experimental data
up to L = 26. Such a restriction assures an overall realistic fit
of the involved free parameters.

FIG. 3. The fitted values of χ from Table I for the N = 90 nuclei
as well as the two χ = 0 values obtained for two other N = 90 X(5)
nuclei are plotted as function of atomic number Z.
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TABLE II. Same as in Table I but for 174Os [62], 176Os [63,64], 178Os [65], and 180Os [66].

L 174Os 176Os 178Os 180Os

Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor.

2+
g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4+
g 2.74 2.57 2.93 2.82 3.01 2.89 3.09 2.88

6+
g 4.90 4.54 5.50 5.20 5.76 5.39 6.02 5.35

8+
g 7.39 6.87 8.57 8.05 9.04 8.40 9.52 8.34

10+
g 10.20 9.56 12.10 11.35 12.73 11.90 13.38 11.81

12+
g 13.33 12.59 16.05 15.08 16.81 15.86 17.48 15.73

14+
g 16.75 15.96 20.39 19.24 21.24 20.27 21.76 20.10

16+
g 20.43 19.66 25.03 23.81 25.97 25.13 26.45 24.90

18+
g 24.35 23.69 29.75 28.80 31.36 30.42 31.30 30.14

20+
g 28.53 28.06 34.67 34.19 36.83 36.14 36.50 35.81

22+
g 32.99 32.74 39.96 39.98 42.30 42.30 42.02 41.91

24+
g 37.75 37.75 45.50 46.18 48.61 48.88 47.87 48.42

26+
g 42.79 43.09 (51.54) 52.77 55.89 54.08 55.36

0+
β1 3.44 3.41 4.45 4.93 4.93 5.50 5.57 5.40

2+
β1 (4.36) 5.33 5.50 6.77 5.84 7.31 6.29 7.22

4+
β1 6.24 8.07 7.59 9.90 7.75 10.53 7.97 10.42

6+
β1 8.98 11.28 10.60 13.73 10.58 14.55 10.44 14.41

8+
β1 14.89 18.13 19.19 19.01

0+
β2 8.93 12.48 13.79 13.56

2+
β2 11.77 15.15 16.40 16.18

2+
γ 5.34 6.06 6.39 6.99 6.54 8.01 6.59 7.70

3+
γ 6.64 6.79 7.68 7.82 7.81 8.87 7.74 8.55

4+
γ 7.91 7.63 9.06 8.81 9.19 9.90 9.06 9.58

5+
γ 9.16 8.57 10.43 9.94 10.83 11.08 10.64 10.75

6+
γ 9.59 11.19 14.87 12.40 12.32 12.05

7+
γ 10.72 12.56 14.86 13.84 14.24 13.49

8+
γ 11.93 14.04 15.41 15.04

9+
γ 13.23 15.64 17.10 18.25 16.72

χ 0.781 0.235 0.046 0.079
α 47.19 45.15 49.70 47.98
No. states 19 19 21 23
σ 1.674 1.122 1.419 1.386

There are two regions of the nuclide chart where such
critical phenomena are expected. The first is the set of
rare-earth nuclei around N = 90 where the X(5) behavior
was originally found. The other domain is localized around
N = 100 and consists of Os and Pt isotopes where X(3)
candidates were pointed out [25] and a second island of X(5)
experimental realization was predicted [38]. In what follows
we will present the results of the fits in part for each of these
groups of nuclei.

A. N = 90 nuclei

The best results with nonvanishing γ rigidity were obtained
in the N = 90 region for 148Ce, 150Nd, 156Dy, and 158Er. One
can see that the selected nuclei encompass two other N = 90

nuclei, 152Sm and 154Gd, which along with 150Nd [39] and
156Dy [40] are well known X(5) candidates [21,41]. The fitting
of their experimental energy spectra within the present model
provided χ = 0, a fact which confirms their complete γ -stable
softness. Although not considered X(5) representatives, the
criticality of the marginal N = 90 isotopes, 148Ce and 158Er
nuclei, is also well known [42–44]. The comparison of the
theoretical and experimental energy spectra made in Table I
shows that the best agreement is obtained especially for
these two nuclei. Their deviation from X(5) symmetry is also
supported by their high values of χ which shows a more
accentuated γ -rigid structure. Although the β band states are
the main source of discrepancies for all four N = 90 nuclei,
the model predicts quite well the positions of the first and even
second β bandhead states for 150Nd and 156Dy. Especially
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TABLE III. Same as in Table I but for 178Pt [67], 180Pt [66], 182Pt [68], and 184Pt [69].

L 178Pt 180Pt 182Pt 184Pt

Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor.

2+
g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4+
g 2.51 2.54 2.68 2.73 2.71 2.65 2.67 2.54

6+
g 4.49 4.47 4.94 4.96 5.00 4.73 4.90 4.46

8+
g 6.92 6.75 7.71 7.62 7.78 7.21 7.55 6.74

10+
g 9.76 9.37 10.93 10.69 10.96 10.07 10.47 9.36

12+
g 12.97 12.34 14.55 14.15 14.47 13.30 13.53 12.32

14+
g 16.52 15.63 18.55 18.01 18.27 16.89 16.73 15.61

16+
g 20.31 19.25 22.88 22.25 22.33 20.83 20.14 19.22

18+
g 24.13 23.19 27.76 26.87 26.42 25.13 23.74 23.16

20+
g 27.91 27.45 32.54 31.87 30.51 29.78 27.57 27.42

22+
g 31.89 32.03 37.39 37.24 34.87 34.78 31.70 31.99

24+
g (36.17) 36.93 42.76 42.99 39.54 40.12 36.18 36.88

26+
g 42.14 48.52 49.10 44.56 45.80 41.02 42.09

0+
β1 2.47 3.27 3.12 4.31 3.22 3.80 3.02 3.27

2+
β1 3.84 5.20 5.62 6.18 5.53 5.70 5.18 5.20

4+
β1 6.21 7.90 8.15 9.18 8.00 8.57 7.57 7.90

6+
β1 8.67 11.05 10.77 12.79 10.64 11.96 11.04 11.03

8+
β1 12.90 14.58 16.89 13.66 15.79 14.56

0+
β2 8.62 (7.69) 11.05 (7.43) 9.86 8.60

2+
β2 11.48 13.78 12.65 11.46

2+
γ 5.16 4.42 5.51 4.31 5.37 3.98 5.16

3+
γ (5.88) 5.88 6.28 6.32 6.08 6.13 5.77 5.87

4+
γ 6.70 6.85 7.25 6.67 7.02 6.31 6.69

5+
γ 7.62 8.58 8.31 8.42 8.01 8.02 7.61

6+
γ 8.63 9.48 9.28 9.10 8.97 8.62

7+
γ 9.72 11.27 10.75 11.17 10.30 10.62 9.71

8+
γ 10.91 12.13 11.58 10.90

9+
γ 12.18 14.35 13.62 12.97 12.52

χ 0.833 0.448 0.632 0.836

α 39.71 36.73 38.24 39.70
No. states 15 22 23 22
σ 1.079 0.728 0.931 0.691

good reproduction is obtained in all cases for the γ band states.
For the ground to ground E2 transition rates compared in
Fig. 2, the nonvanishing χ values obtained in the fits for 150Nd
and 158Er offer excellent agreement with experimental data.
The poorer agreement with experimental spectrum for 156Dy
is perpetuated also to the E2 transition probabilities. Looking
once again in Table I at the fitted χ values, one observes that
there is a regular evolution of the γ rigidity among the N = 90
nuclei. As can be seen from Fig. 3, the maximal γ -stable
softness is obviously at the two purely X(5) nuclei, 152Sm
and 154Gd, which starts to abate in both directions towards
148Ce and 158Er nuclei, exhibiting the highest χ values. The
χ values of the latter two nuclei are not exceedingly high but
actually just above the χ = 0.5 value, a fact which indicated
these nuclei as possible candidates of the X(4) symmetry
[24].

B. Os and Pt isotopes

The A = 180 region provided similarly good results from
fits of the γ rigidity. The rms values from Table II are,
however, lower than those reported for Pt isotopes in Table III.
Once again, the first β bandhead is well reproduced, with
exceptional matches in the cases of 174,180Os and 184Pt. The
major distinction from the results of the N = 90 nuclei is the
larger deviation from experimental γ band states, which is
ascribed to the possible triaxial deformation of these nuclei.
Also, while the values of parameter α are highly variable in
N = 90 isotones, for Os and Pt isotopes these are almost
constant for each chain, with a lower average in the case
of Pt nuclei. This is in agreement with the conspicuously
constant structure of the observed low energy spectra for
these nuclei [45–48]. Moreover, their isotopic trajectory in the
IBM symmetry triangle was found to be quiet concentrated
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FIG. 4. The fitted values of χ from Tables II and III for the Os
and Pt isotopes as well as the two χ = 1 values corresponding to
the X(3) nuclei 172Os and 186Pt are plotted as functions of neutron
number N .

and positioned centrally near the shape phase transition
region [45,46]. This aspect shows why these nuclei are
found as experimental realisations of very different theoretical
approaches.

Studying now the obtained χ values, one can see that the
Os isotopes, with an exception, prefer small rigidity, while
all considered Pt nuclei are highly γ -rigid. The lowest χ
values for Pt isotopes are obtained for 180Pt and 182Pt, which
are near the χ = 0.5 instance of the X(4) model. It is then
not surprising that these nuclei were considered as good
experimental realizations of the X(4) model [24]. On the other
hand, the small values of χ obtained for 176,178,180Os supports
their candidacy for the X(5) model proposed in Ref. [38].
176Os nucleus have however a non-negligible shape phase
mixing. Moreover, its lighter neighbor have an even higher
γ -rigidity. This ascending trend of γ -rigidity with decreasing
neutron number N shown in Fig. 4 continues to the fully
γ -rigid nucleus 172Os which is one of the best X(3) model
candidates [25]. It is worth mentioning that a similar fitting
of the 172Os energy spectrum confirmed its complete rigidity.
The same is true for the other X(3) candidate nucleus, 186Pt,
from which γ rigidity subsides when N decreases. As can be
seen from the same Fig. 4, this evolution is even smoother than
in the Os nuclei, being almost linear, but does not continue to
178Pt. Although its fitting results are satisfactory, the latter
nucleus completely falls out of this trend with a very high γ
rigidity. This change makes the 180Pt nucleus a singular or a
terminal point in the evolution of γ rigidity throughout this
specific isotopic interval. A similar but less striking minimum
is observed in the 178Os nucleus with respect to its isotopic
chain, which has a slightly smaller χ value in comparison to
both its neighboring isotopes. Moreover, both critical nuclei,
180Pt and 178Os, have the same neutron number N = 102 and
their χ values are the closest realizations of X(4) and X(5)
limits, respectively. While the evolution of γ rigidity in Os
isotopes is in agreement with the IBM results of Ref. [45], the

FIG. 5. The quadrupole deformation β2, calculated with RMF
and the ground state average of β (3.19) scaled to reproduce the
relativistic mean-field value for the nucleus with the best rms value,
is given as a function of Z for N = 90 nuclei (a) and as functions of
N for Os (b) and Pt (c) isotopes.

increase in γ rigidity for Pt isotopes is in contradiction with
recent studies and the classical conception about heavier Pt
isotopes as good O(6) realizations. Indeed, the same interval
of Pt isotopes exhibits an increasing γ -unstable softness for
higher neutron numbers in the results obtained within the
self-consistent Hartree-Fock-Bogoliubov approximation [49]
and IBM with [50] and without configuration mixing [45,46].
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It is opportune to remark here about the close similarities
between the spectral properties of the γ -unstable and γ -
rigid collective models [28,51,52], which originate in the
common γ independence of the collective potential. In the
first case it is by choice, whereas in the later it is due to
mathematical constraint. On the other hand, some spectral
characteristics, for example γ -band staggering, in some of
the heavier Pt isotopes which are historically identified as γ
unstable can be reproduced only by considering some degree
of γ -rigid [28,52,53] or nondynamical triaxiality [43,54,55].
γ -rigid-like triaxial rotations with nonvanishing K but without
the compulsory dynamical triaxiality were suggested also
for the N = 90 nuclei [56,57]. These arguments show that
γ rigidity is a useful concept in understanding the shape
evolution in the regions of the nuclide chart considered in
the present study.

The comparison of theoretical and experimental electro-
magnetic transitions within the ground state band for these
nuclei offers additional information about the evolution of
the γ rigidity in these two intervals of nuclei. First of all,
one must mention the excellent agreement with experiment in
the cases of 176,178Os and 182Pt. The available experimental
data for the Os isotopes are found to be consistent with the
evolution of their calculated γ rigidities. Indeed, because the
χ value of the 180Os nucleus still deviates, although very little,
from the uniform decrease of γ rigidity with neutron number,
the corresponding electromagnetic properties do not fall into
the present theoretical description. A similar discordance is
observed for the already discussed 178Pt nucleus, while its
heavier isotope shows just some signs of redressment. It
is worth mentioning that both nuclei are known to exhibit
evidence of shape coexistence [46,48]. The χ value of
180Pt recommends it as a typical X(4) candidate. However
182Pt seems a more suitable X(4) representative in view of
the additional accord between theoretical and experimental
transition probabilities [24]. An interesting situation is also
obtained in the 184Pt nucleus, where the energy spectrum fits
prefer high rigidity while the electromagnetic transitions are
of the γ -stable type.

The three sets of nuclei, N = 90 isotones, Os, and Pt
isotopes show a regular evolution of the γ rigidity. While the
N = 90 nuclei present a γ -stable valley at 152Sm and 154Gd
nuclei, the Os and Pt isotopes have monotonic decreasing and
increasing γ rigidities, respectively, as functions of neutron
number N , with some irregular isotopes at the end and
start respectively of the considered intervals of nuclei. These
findings are also supported by the evolution of deformation in
these isotonic and isotopic chains. Indeed, as can be seen from
Fig. 5, the average deformation calculated within the present
model is in a qualitative agreement with the deformation
β2 calculated in the framework of the relativistic mean-field
(RMF) theory [73]. Due to the scaled nature of the Bohr model

results, the average of the β deformation is calculated here
with Eq. (3.19), by fixing the position βW of the infinite wall
to reproduce the RMF β2 value of the nucleus with the best
fit regarding energy spectrum. In this way, the ground state
average deformation will depend only on the geometry of the
shape phase space by means of parameter χ , just like the
spectral properties of the ground and β bands.

V. CONCLUSIONS

The combination of prolate γ -rigid and γ -stable rotation-
vibration kinetic operators in connection with a flat potential
was used to formulate a hybrid critical point model which has
as limiting cases the X(3) and X(5) solutions. The relative
strength of the rigid and stable components is managed
through a so-called rigidity parameter χ . This parameter
serves as a weighting measure which bridges the three-
dimensional and five-dimensional shape phase spaces of its
limiting realizations. The analytical consequences of the shape
phase mixing was briefly discussed in general and extensively
explained when applied to the critical point solutions. As a
result, we obtained a relaxation of the X(5) critical point model
through its γ rigidity. In this way, we not only improved
the agreement with experiment for the well known critical
point nuclei but also identified new candidates. Because
of the adopted approximations regarding the separation of
variables, the energy spectrum of ground and β bands of the
resulting model depends only on the rigidity χ , while the γ
band has an additional adjustable energy shift. The numerical
applications of the model were directed toward nuclei known
to exhibit critical behavior in the transition from spherical
to axially deformed shapes. As a result, many nuclei from
N = 90 isotonic and Z = 76,78 isotopic chains were found
to have nonvanishing γ rigidity, pointing to a sizable shape
phase space mixing. Moreover, specific regularities within its
evolution with neutron or proton numbers were evidenced and
confirmed by experimental data regarding energy spectra and
electromagnetic properties as well as RMF calculations of the
ground state deformation.

This result might be used to draw some conclusions about
the microscopic structure of these nuclei. Indeed, the γ rigidity
influences specific mass inertial parameters of the general
collective Hamiltonian, which depend on the choice of a
particular microscopic nuclear energy density functional or
effective interaction when a microscopic theory is mapped
into collective variables [74–76].
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[76] T. Nikšić, D. Vretenar, and P. Ring, Prog. Part. Nucl. Phys. 66,

519 (2011).

054306-11

https://doi.org/10.1103/PhysRevLett.44.1747
https://doi.org/10.1103/PhysRevLett.44.1747
https://doi.org/10.1103/PhysRevLett.44.1747
https://doi.org/10.1103/PhysRevLett.44.1747
https://doi.org/10.1016/0375-9474(80)90492-3
https://doi.org/10.1016/0375-9474(80)90492-3
https://doi.org/10.1016/0375-9474(80)90492-3
https://doi.org/10.1016/0375-9474(80)90492-3
https://doi.org/10.1103/PhysRevLett.44.1744
https://doi.org/10.1103/PhysRevLett.44.1744
https://doi.org/10.1103/PhysRevLett.44.1744
https://doi.org/10.1103/PhysRevLett.44.1744
https://doi.org/10.1016/0375-9474(80)90387-5
https://doi.org/10.1016/0375-9474(80)90387-5
https://doi.org/10.1016/0375-9474(80)90387-5
https://doi.org/10.1016/0375-9474(80)90387-5
https://doi.org/10.1016/0003-4916(82)90034-3
https://doi.org/10.1016/0003-4916(82)90034-3
https://doi.org/10.1016/0003-4916(82)90034-3
https://doi.org/10.1016/0003-4916(82)90034-3
https://doi.org/10.1103/PhysRevLett.35.1069
https://doi.org/10.1103/PhysRevLett.35.1069
https://doi.org/10.1103/PhysRevLett.35.1069
https://doi.org/10.1103/PhysRevLett.35.1069
https://doi.org/10.1016/0003-4916(76)90097-X
https://doi.org/10.1016/0003-4916(76)90097-X
https://doi.org/10.1016/0003-4916(76)90097-X
https://doi.org/10.1016/0003-4916(76)90097-X
https://doi.org/10.1016/0003-4916(78)90228-2
https://doi.org/10.1016/0003-4916(78)90228-2
https://doi.org/10.1016/0003-4916(78)90228-2
https://doi.org/10.1016/0003-4916(78)90228-2
https://doi.org/10.1016/0003-4916(79)90347-6
https://doi.org/10.1016/0003-4916(79)90347-6
https://doi.org/10.1016/0003-4916(79)90347-6
https://doi.org/10.1016/0003-4916(79)90347-6
https://doi.org/10.1103/PhysRev.102.788
https://doi.org/10.1103/PhysRev.102.788
https://doi.org/10.1103/PhysRev.102.788
https://doi.org/10.1103/PhysRev.102.788
https://doi.org/10.1016/j.nuclphysa.2005.06.001
https://doi.org/10.1016/j.nuclphysa.2005.06.001
https://doi.org/10.1016/j.nuclphysa.2005.06.001
https://doi.org/10.1016/j.nuclphysa.2005.06.001
https://doi.org/10.1140/epja/i2009-10810-x
https://doi.org/10.1140/epja/i2009-10810-x
https://doi.org/10.1140/epja/i2009-10810-x
https://doi.org/10.1140/epja/i2009-10810-x
https://doi.org/10.1016/j.nuclphysa.2012.09.002
https://doi.org/10.1016/j.nuclphysa.2012.09.002
https://doi.org/10.1016/j.nuclphysa.2012.09.002
https://doi.org/10.1016/j.nuclphysa.2012.09.002
https://doi.org/10.1140/epjad/i2005-07-115-8
https://doi.org/10.1140/epjad/i2005-07-115-8
https://doi.org/10.1140/epjad/i2005-07-115-8
https://doi.org/10.1140/epjad/i2005-07-115-8
https://doi.org/10.1103/RevModPhys.82.2155
https://doi.org/10.1103/RevModPhys.82.2155
https://doi.org/10.1103/RevModPhys.82.2155
https://doi.org/10.1103/RevModPhys.82.2155
https://doi.org/10.1088/0954-3899/43/9/093003
https://doi.org/10.1088/0954-3899/43/9/093003
https://doi.org/10.1088/0954-3899/43/9/093003
https://doi.org/10.1088/0954-3899/43/9/093003
https://doi.org/10.1103/PhysRevLett.85.3580
https://doi.org/10.1103/PhysRevLett.85.3580
https://doi.org/10.1103/PhysRevLett.85.3580
https://doi.org/10.1103/PhysRevLett.85.3580
https://doi.org/10.1103/PhysRevLett.87.052502
https://doi.org/10.1103/PhysRevLett.87.052502
https://doi.org/10.1103/PhysRevLett.87.052502
https://doi.org/10.1103/PhysRevLett.87.052502
https://doi.org/10.1103/PhysRevLett.101.022501
https://doi.org/10.1103/PhysRevLett.101.022501
https://doi.org/10.1103/PhysRevLett.101.022501
https://doi.org/10.1103/PhysRevLett.101.022501
https://doi.org/10.1103/PhysRevC.80.034311
https://doi.org/10.1103/PhysRevC.80.034311
https://doi.org/10.1103/PhysRevC.80.034311
https://doi.org/10.1103/PhysRevC.80.034311
https://doi.org/10.1016/j.physletb.2016.06.002
https://doi.org/10.1016/j.physletb.2016.06.002
https://doi.org/10.1016/j.physletb.2016.06.002
https://doi.org/10.1016/j.physletb.2016.06.002
https://doi.org/10.1016/j.physletb.2005.10.060
https://doi.org/10.1016/j.physletb.2005.10.060
https://doi.org/10.1016/j.physletb.2005.10.060
https://doi.org/10.1016/j.physletb.2005.10.060
https://doi.org/10.1088/0954-3899/42/8/085103
https://doi.org/10.1088/0954-3899/42/8/085103
https://doi.org/10.1088/0954-3899/42/8/085103
https://doi.org/10.1088/0954-3899/42/8/085103
https://doi.org/10.1140/epja/i2015-15126-8
https://doi.org/10.1140/epja/i2015-15126-8
https://doi.org/10.1140/epja/i2015-15126-8
https://doi.org/10.1140/epja/i2015-15126-8
https://doi.org/10.1016/j.physletb.2005.06.047
https://doi.org/10.1016/j.physletb.2005.06.047
https://doi.org/10.1016/j.physletb.2005.06.047
https://doi.org/10.1016/j.physletb.2005.06.047
https://doi.org/10.1088/0954-3899/36/12/123101
https://doi.org/10.1088/0954-3899/36/12/123101
https://doi.org/10.1088/0954-3899/36/12/123101
https://doi.org/10.1088/0954-3899/36/12/123101
https://doi.org/10.1103/PhysRevC.72.054323
https://doi.org/10.1103/PhysRevC.72.054323
https://doi.org/10.1103/PhysRevC.72.054323
https://doi.org/10.1103/PhysRevC.72.054323
https://doi.org/10.1016/j.physletb.2006.12.080
https://doi.org/10.1016/j.physletb.2006.12.080
https://doi.org/10.1016/j.physletb.2006.12.080
https://doi.org/10.1016/j.physletb.2006.12.080
https://doi.org/10.1103/PhysRevC.76.064312
https://doi.org/10.1103/PhysRevC.76.064312
https://doi.org/10.1103/PhysRevC.76.064312
https://doi.org/10.1103/PhysRevC.76.064312
https://doi.org/10.1103/PhysRevC.68.064304
https://doi.org/10.1103/PhysRevC.68.064304
https://doi.org/10.1103/PhysRevC.68.064304
https://doi.org/10.1103/PhysRevC.68.064304
https://doi.org/10.1088/0954-3899/31/10/008
https://doi.org/10.1088/0954-3899/31/10/008
https://doi.org/10.1088/0954-3899/31/10/008
https://doi.org/10.1088/0954-3899/31/10/008
https://doi.org/10.1103/PhysRevLett.88.232501
https://doi.org/10.1103/PhysRevLett.88.232501
https://doi.org/10.1103/PhysRevLett.88.232501
https://doi.org/10.1103/PhysRevLett.88.232501
https://doi.org/10.1103/PhysRevC.66.054310
https://doi.org/10.1103/PhysRevC.66.054310
https://doi.org/10.1103/PhysRevC.66.054310
https://doi.org/10.1103/PhysRevC.66.054310
https://doi.org/10.1103/PhysRevC.69.034334
https://doi.org/10.1103/PhysRevC.69.034334
https://doi.org/10.1103/PhysRevC.69.034334
https://doi.org/10.1103/PhysRevC.69.034334
https://doi.org/10.1016/j.physletb.2014.03.017
https://doi.org/10.1016/j.physletb.2014.03.017
https://doi.org/10.1016/j.physletb.2014.03.017
https://doi.org/10.1016/j.physletb.2014.03.017
https://doi.org/10.1016/j.physletb.2015.10.082
https://doi.org/10.1016/j.physletb.2015.10.082
https://doi.org/10.1016/j.physletb.2015.10.082
https://doi.org/10.1016/j.physletb.2015.10.082
https://doi.org/10.1103/PhysRevC.69.014302
https://doi.org/10.1103/PhysRevC.69.014302
https://doi.org/10.1103/PhysRevC.69.014302
https://doi.org/10.1103/PhysRevC.69.014302
https://doi.org/10.1103/PhysRevC.71.054306
https://doi.org/10.1103/PhysRevC.71.054306
https://doi.org/10.1103/PhysRevC.71.054306
https://doi.org/10.1103/PhysRevC.71.054306
https://doi.org/10.1103/PhysRevC.71.061301
https://doi.org/10.1103/PhysRevC.71.061301
https://doi.org/10.1103/PhysRevC.71.061301
https://doi.org/10.1103/PhysRevC.71.061301
https://doi.org/10.1016/j.nuclphysa.2009.04.003
https://doi.org/10.1016/j.nuclphysa.2009.04.003
https://doi.org/10.1016/j.nuclphysa.2009.04.003
https://doi.org/10.1016/j.nuclphysa.2009.04.003
https://doi.org/10.1103/PhysRevC.84.014331
https://doi.org/10.1103/PhysRevC.84.014331
https://doi.org/10.1103/PhysRevC.84.014331
https://doi.org/10.1103/PhysRevC.84.014331
https://doi.org/10.1103/PhysRevC.81.024310
https://doi.org/10.1103/PhysRevC.81.024310
https://doi.org/10.1103/PhysRevC.81.024310
https://doi.org/10.1103/PhysRevC.81.024310
https://doi.org/10.1103/PhysRevC.89.034313
https://doi.org/10.1103/PhysRevC.89.034313
https://doi.org/10.1103/PhysRevC.89.034313
https://doi.org/10.1103/PhysRevC.89.034313
https://doi.org/10.1016/j.physletb.2014.10.031
https://doi.org/10.1016/j.physletb.2014.10.031
https://doi.org/10.1016/j.physletb.2014.10.031
https://doi.org/10.1016/j.physletb.2014.10.031
https://doi.org/10.1016/j.aop.2016.09.011
https://doi.org/10.1016/j.aop.2016.09.011
https://doi.org/10.1016/j.aop.2016.09.011
https://doi.org/10.1016/j.aop.2016.09.011
https://doi.org/10.1103/PhysRevC.91.014306
https://doi.org/10.1103/PhysRevC.91.014306
https://doi.org/10.1103/PhysRevC.91.014306
https://doi.org/10.1103/PhysRevC.91.014306
https://doi.org/10.1016/j.physletb.2004.03.029
https://doi.org/10.1016/j.physletb.2004.03.029
https://doi.org/10.1016/j.physletb.2004.03.029
https://doi.org/10.1016/j.physletb.2004.03.029
https://doi.org/10.1103/PhysRevC.76.024306
https://doi.org/10.1103/PhysRevC.76.024306
https://doi.org/10.1103/PhysRevC.76.024306
https://doi.org/10.1103/PhysRevC.76.024306
https://doi.org/10.1140/epja/i2011-11005-8
https://doi.org/10.1140/epja/i2011-11005-8
https://doi.org/10.1140/epja/i2011-11005-8
https://doi.org/10.1140/epja/i2011-11005-8
https://doi.org/10.1103/PhysRevC.91.034330
https://doi.org/10.1103/PhysRevC.91.034330
https://doi.org/10.1103/PhysRevC.91.034330
https://doi.org/10.1103/PhysRevC.91.034330
https://doi.org/10.1016/j.nds.2014.02.001
https://doi.org/10.1016/j.nds.2014.02.001
https://doi.org/10.1016/j.nds.2014.02.001
https://doi.org/10.1016/j.nds.2014.02.001
https://doi.org/10.1016/j.nds.2013.04.001
https://doi.org/10.1016/j.nds.2013.04.001
https://doi.org/10.1016/j.nds.2013.04.001
https://doi.org/10.1016/j.nds.2013.04.001
https://doi.org/10.1016/j.nds.2012.10.003
https://doi.org/10.1016/j.nds.2012.10.003
https://doi.org/10.1016/j.nds.2012.10.003
https://doi.org/10.1016/j.nds.2012.10.003
https://doi.org/10.1016/j.nds.2004.02.001
https://doi.org/10.1016/j.nds.2004.02.001
https://doi.org/10.1016/j.nds.2004.02.001
https://doi.org/10.1016/j.nds.2004.02.001
https://doi.org/10.1006/ndsh.1999.0015
https://doi.org/10.1006/ndsh.1999.0015
https://doi.org/10.1006/ndsh.1999.0015
https://doi.org/10.1006/ndsh.1999.0015
https://doi.org/10.1016/j.nds.2006.03.001
https://doi.org/10.1016/j.nds.2006.03.001
https://doi.org/10.1016/j.nds.2006.03.001
https://doi.org/10.1016/j.nds.2006.03.001
https://doi.org/10.1088/0954-3899/38/2/025102
https://doi.org/10.1088/0954-3899/38/2/025102
https://doi.org/10.1088/0954-3899/38/2/025102
https://doi.org/10.1088/0954-3899/38/2/025102
https://doi.org/10.1103/PhysRevC.80.054319
https://doi.org/10.1103/PhysRevC.80.054319
https://doi.org/10.1103/PhysRevC.80.054319
https://doi.org/10.1103/PhysRevC.80.054319
https://doi.org/10.1016/j.nds.2015.05.002
https://doi.org/10.1016/j.nds.2015.05.002
https://doi.org/10.1016/j.nds.2015.05.002
https://doi.org/10.1016/j.nds.2015.05.002
https://doi.org/10.1016/j.nds.2009.05.002
https://doi.org/10.1016/j.nds.2009.05.002
https://doi.org/10.1016/j.nds.2009.05.002
https://doi.org/10.1016/j.nds.2009.05.002
https://doi.org/10.1016/j.nds.2015.11.002
https://doi.org/10.1016/j.nds.2015.11.002
https://doi.org/10.1016/j.nds.2015.11.002
https://doi.org/10.1016/j.nds.2015.11.002
https://doi.org/10.1016/j.nds.2010.01.001
https://doi.org/10.1016/j.nds.2010.01.001
https://doi.org/10.1016/j.nds.2010.01.001
https://doi.org/10.1016/j.nds.2010.01.001
http://nbn-resolving.de/urn:nbn:de:hbz:38-43702
https://doi.org/10.1103/PhysRevC.93.044310
https://doi.org/10.1103/PhysRevC.93.044310
https://doi.org/10.1103/PhysRevC.93.044310
https://doi.org/10.1103/PhysRevC.93.044310
https://doi.org/10.1103/PhysRevC.90.047302
https://doi.org/10.1103/PhysRevC.90.047302
https://doi.org/10.1103/PhysRevC.90.047302
https://doi.org/10.1103/PhysRevC.90.047302
https://doi.org/10.1006/adnd.1998.0795
https://doi.org/10.1006/adnd.1998.0795
https://doi.org/10.1006/adnd.1998.0795
https://doi.org/10.1006/adnd.1998.0795
https://doi.org/10.1016/S0370-1573(99)00119-2
https://doi.org/10.1016/S0370-1573(99)00119-2
https://doi.org/10.1016/S0370-1573(99)00119-2
https://doi.org/10.1016/S0370-1573(99)00119-2
https://doi.org/10.1088/0954-3899/37/6/064018
https://doi.org/10.1088/0954-3899/37/6/064018
https://doi.org/10.1088/0954-3899/37/6/064018
https://doi.org/10.1088/0954-3899/37/6/064018
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1016/j.ppnp.2011.01.055



