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Background: Deformed neutron-rich magnesium isotopes constitute a fascinating territory where the interplay
between collective rotation and single-particle motion is strongly affected by the neutron continuum. The unbound
fp-shell nucleus 39Mg is an ideal candidate to study this interplay.
Purpose: In this work, we predict the properties of low-lying resonant states of 39Mg, using a suite of realistic
theoretical approaches rooted in the open quantum system framework.
Method: To describe the spectrum and decay modes of 39Mg we use the conventional shell model, Gamow
shell model, resonating group method, density matrix renormalization group method, and the nonadiabatic
particle-plus-rotor model formulated in the Berggren basis.
Results: The unbound ground state of 39Mg is predicted to be either a J π = 7/2− state or a 3/2− state. A
narrow J π = 7/2− ground-state candidate exhibits a resonant structure reminiscent of that of its one-neutron
halo neighbor 37Mg, which is dominated by the f7/2 partial wave at short distances and a p3/2 component at
large distances. A J π = 3/2− ground-state candidate is favored by the large deformation of the system. It can be
associated with the 1/2−[321] Nilsson orbital dominated by the � = 1 wave; hence its predicted width is large.
The excited J π = 1/2− and 5/2− states are expected to be broad resonances, while the J π = 9/2− and 11/2−

members of the ground-state rotational band are predicted to have very small neutron decay widths.
Conclusion: We demonstrate that the subtle interplay between deformation, shell structure, and continuum
coupling can result in a variety of excitations in an unbound nucleus just outside the neutron drip line.
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I. INTRODUCTION

Weakly bound and unbound nuclei in the vicinity of the
neutron drip line offer a unique window into the interplay
between single-particle (s.p.) degrees of freedom, collective
motion, and a variety of couplings to the continuum of
scattering and decay channels. While many phenomena found
in systems close to the neutron or two-neutron drip lines,
such as the appearance of halo structures [1,2], clustering
effects [3–6], many-neutron correlations [7,8], and di-neutron
radioactivity [9–11], are general to all open quantum systems,
every new case sheds light on intricate threshold couplings
governing the existence of nuclei on the verge of particle
stability.

The region of “inversion” in the neutron-rich territory
between the conventional magic gaps N = 20 and N = 28
is characterized by large quadrupole deformations rich in
phenomena associated with shape coexistence [12,13]. The
case of unbound 39Mg [14,15] is of particular interest in this
context, because of the unique position of this nucleus in the
nuclear landscape. Indeed, 39Mg lies at the neutron-rich side
of the Mg chain, just one neutron away from the deformed
N = 28 isotope 40Mg [16]. It is one of the heaviest neutron-
rich unbound systems experimentally available before the next
generation of rare isotope beam facilities comes online [17];
hence, it represents a bridge between the well-known halo
structures in the light psd nuclei and the suspected halos in
medium-mass nuclei [18,19].

From a theoretical point of view, the description of
39Mg is challenging because of two interrelated aspects of
this open quantum system. First, the even-even magnesium
isotopes 36,38,40Mg are relatively weakly bound [16,20] and
are predicted to have a similar quadrupole deformation of
about β2 = 0.3 [21–24]. The addition of a neutron to 36Mg
leads to the one-neutron halo nucleus 37Mg [25,26]; hence, a
p-wave dominated structure is also expected in 39Mg, but just
above the one-neutron threshold. This particular situation is
of interest for the studies of “deformed” halo systems, such
as 17C, 31Ne, and 37Mg [27,28], because 39Mg can provide an
insight on how deformed halo structures evolve as the neutron
chemical potential dives into the particle continuum.

Second, the competition between the s and d partial waves
known from the one-neutron halo system 11Be translates into
a competition between the f and p shells, which results
in the unbound ground state (g.s.) of 39Mg. In both cases,
an odd-A nucleus can be viewed in terms of a neutron
coupled to a deformed core. Recently, within a model that
can account for the deformed character of the core and the
valence-particle continuum, we demonstrated that long-lived
unbound collective states can in fact exist in 11Be at high
excitation energy [29]. Whether a similar situation can occur
in a heavier 39Mg, where the notion of collective motion is
better founded, is an interesting question.

This article is organized as follows: Sec. II contains the
description of the models and methods used. In particular, it
discusses the advantages and disadvantages of each method for
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the description of 39Mg and describes the effective interactions
used as well as the related optimization procedure. Our
structural predictions are contained in Sec. III. Finally, the
summary and outlook are given in Sec. IV.

II. MODELS AND PARAMETERS

The theoretical description of 39Mg is demanding. The
presence of large quadrupole deformations in the neutron-
rich magnesium isotopes, complex many-body dynamics and
resulting shell evolution, and a pronounced coupling to the
neutron continuum, all require the use of diverse approaches.
In this study, we use the standard nuclear shell model
(SM); the Gamow shell model (GSM) [30]; the open-system
extension of the density matrix renormalization group method
(DMRG) [31,32]; the GSM in the resonating group method
formalism (RGM) [33,34]; and the nonadiabatic particle-plus-
rotor model (PRM) solved by using the Berggren expansion
method [29,35,36].

The deformation of the core is explicitly included only in
the PRM through the description of 38Mg by a quadrupole-
deformed Woods-Saxon (WS) potential. In other approaches,
the deformation enters indirectly through the configuration
mixing. Except for the SM, the continuum is explicitly
included using the Berggren expansion method, but at different
levels: While the PRM considers only one neutron in the
positive-energy continuum, GSM-based approaches allow
several particles to scatter into unbound levels.

A. Berggren basis

The s.p. Berggren ensemble is defined through the com-
pleteness relation including explicitly the Gamow (resonant)
states and the nonresonant scattering continuum [37,38]. For
each considered partial wave c = (�,j ) the completeness
relation takes the form,∑

i

|uc(ki)〉 〈ũc(ki)| +
∫
L+

c

dk |uc(k)〉 〈ũc(k)| = 1̂c, (1)

where |uc(ki)〉 are radial wave functions of the resonant
states and |uc(k)〉 are complex-energy scattering states along
a contour L+

c in the complex-momentum plane. In our
applications, L+

c starts at zero, surrounds the selected resonant
states in the fourth quadrant of the complex-momentum plane,
and extends to k → +∞ to ensure completeness. The tilde in
Eq. (1) means time-reversed, which translates into the complex
conjugation for unbound states. Thanks to Cauchy’s integral
theorem, the precise form of the contour L+

c is unimportant,
provided that all the selected discrete states lie between the
contour and the real-k axis. The selection of the discrete states
entering in Eq. (1) depends on the problem in hand.

The s.p. bound states entering Eq. (1) are normalized in the
usual way, while the decaying resonant states require the use of
the exterior complex scaling method [39,40]. The nonresonant
states are normalized to the Dirac delta distribution. In practice,
the integral along the contour L+

c in Eq. (1) is discretized using
Gauss-Legendre quadrature, and the selected scattering states
are renormalized by the quadrature weights, which results in
the Kronecker delta normalization.

In the following, the contour is always defined by three
segments, with the first one starting at the origin and ending at
kpeak = α − iβ with α,β > 0; the second one going from kpeak

to kmiddle (real); and the last one starting at kmiddle and ending
at kmax (real). The momentum cutoff kmax has to be sufficiently
large to ensure completeness.

B. Models

The GSM is the SM formulated in the complex-energy
plane [30] via the replacement of the usual harmonic oscillator
(HO) s.p. basis by the Berggren basis. While the GSM
Hamiltonian is Hermitian, the Hamiltonian matrix is complex
symmetric, leading to complex eigenvalues. The complex-
energy approach enables a general treatment of couplings
between bound and unbound states of the many-body system
rooted in a quasistationary picture.

In the SM, spurious center-of-mass excitations are removed
using the Lawson method [41,42]. In the GSM this method
does not apply, because Berggren wave functions are not
eigenstates of the HO potential. To circumvent the center-of-
mass effect, the GSM Hamiltonian is expressed in the intrinsic
nucleon-core coordinate of the cluster-orbital SM [43]:

Ĥ =
Nval∑
i=1

(
p̂2

i

2μi

+ Uc(r̂i)

)
+

Nval∑
i<j

(
V (r̂ i − r̂j ) + p̂i · p̂j

Mc

)
,

(2)

where Nval is the number of valence nucleons, Mc is the mass
of the core nucleus, and 1/μi = 1/Mc + 1/mi is the reduced
mass of a valence nucleon. The s.p. core potential acting on
valence nucleons Uc(r̂) is a sum of the nuclear and Coulomb
terms. The nuclear term is given by a WS potential with a spin-
orbit term [44], while the Coulomb potential is generated by the
Gaussian-shaped density of the Zc protons of the core [44]. In
the present work, the two-body interaction V (r̂ i − r̂j ) is taken
as the Furutani-Horiuchi-Tamagaki (FHT) finite-range two-
body interaction [45,46], which contains nuclear and Coulomb
terms (see Ref. [34] for a recent application).

In the GSM, the inherent configuration mixing makes
the identification of physical decay channels difficult. To
overcome this difficulty, the GSM can be formulated in the
RGM representation [34], where incoming and outgoing decay
channels are explicit components of wave functions. In the
RGM picture, the “target” as well as the “projectile” are
described in the GSM, and the structure of the total system
is obtained by solving the coupled-channel equations.

The RGM variant of the GSM can thus be viewed as an
alternative to the continuum shell model and the shell model
embedded in the continuum [47–49], and can be used to
describe both the nuclear structure and reactions in a unified
framework. Within this approach the many-body correlations
in the target are all included, at least up to the model space
considered, and the Schrödinger equation formulated in the
coupled-channel formalism is solved via direct integration,
which means that the target-projectile continuum is treated
exactly.

Another way to solve the nuclear many-body problem in the
continuum is the DMRG approach [31,32,50], which relies on
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the fact that in most cases the nonresonant continuum plays a
perturbative role in shaping the many-body eigenstates of the
Hamiltonian. This method constitutes a powerful truncation
scheme to tame the dramatic increase of the Hilbert space in
both the GSM and the no-core GSM [51]. In DMRG, instead of
constructing the full Hamiltonian matrix H as in the GSM, one
considers a zero-order approximation H0 of the full problem,
obtained by considering the truncated Berggren basis that only
contains discrete resonant states (poles). The eigenstates of
H0 form the reference space and the remaining many-body
states containing contributions from nonresonant s.p. states
form the complement space. The eigenstates of H are obtained
by adding the continuum degrees of freedom gradually, as
dictated by the density matrix in the complement space.

Recently, the DMRG approach was augmented by the use
of natural orbitals for the ab initio description of 6Li [52]. This
technique significantly improves convergence with the number
of included shells and is thus suitable when a large model
space has to be considered. The DMRG is thus the tool of
choice to extend GSM calculations into a region where a direct
diagonalization of the Hamiltonian matrix is not feasible.

Another complementary approach used in this work is the
nonadiabatic PRM solved in the Berggren basis [29]. In the
PRM picture, the core is described by a deformed WS potential
with a spin-orbit term, and the continuum of the valence
particle is fully taken into account by expanding the channel
wave functions in the Berggren basis or by directly integrating
the coupled channel equations. This model is a simplification
of RGM, with the collectivity explicitly included. However,
because a rigid core is assumed, the many-body dynamics
related to the core is neglected in the PRM, and the core-
particle antisymmetrization is treated approximately.

The two classes of methods, i.e., structure-oriented (SM,
GSM, DMRG) and decay- or reaction-oriented (RGM, PRM),
form the backbone of the present theoretical description of
39Mg. They allow for a comprehensive study of spectroscopy
and decay channels of 39Mg that includes s.p. and collective
effects in a consistent way. The feasibility of this approach
is based on the assumptions that the deformed magnesium
isotopes 34−40Mg are bound, and that in the cases of 37,39Mg
there is an approximate separation of scale between the energy
associated with the rotational motion of the bound core and
the s.p. energy of the valence neutron. For that reason, the
core potential and the two-body interaction used are taken
from an SM-based optimization for all the magnesium isotopes
considered. The continuum is taken into account in the GSM,
RGM, and DMRG calculations for 37,39Mg. An agreement
between our configuration interaction (CI) models and the
collective PRM, whose Hamiltonian is fitted independently, is
a necessary condition for validating our assumptions.

C. Optimized interactions

To make reliable predictions for neutron resonances, reli-
able input is needed as resonance widths are sensitive to the
threshold energy. The optimization of the GSM interaction
was performed by considering the doubly magic 28O core,
with four valence protons and from two to eight valence
neutrons (34−40Mg). While a 28O core may not be suitable

when considering a small number of valence nucleons, one
may expect this choice to be justified for larger numbers of
valence particles. The model space is defined by the 0d5/2,
1s1/2, and 0d3/2 HO shells (poles) for the protons, and the 0f7/2,
1p3/2, 0f5/2, and 1p1/2 HO shells (poles) for the neutrons,
with five additional HO neutron shells above 0f7/2, and four
additional HO neutron shells above 1p3/2, 0f5/2, and 1p1/2.
To reduce the size of the model space, truncations on the
number of particle-hole excitations were imposed. Up to four
particle-hole excitations were allowed within the pole shells,
and only one neutron at a time was allowed to access the higher
HO shells. The 28O core is described as a WS potential defined
separately for protons and neutrons, which was optimized
together with the two-body interaction. For feasibility reasons,
the optimization of the GSM interaction was carried out at the
SM level, i.e., the continuum coupling was neglected during
the fitting process. This assumption is expected to primarily
impact low-J states, which contain large contributions from
low-� partial waves.

Among the parameters involved in the interaction fit are
the depth V0 and the spin-orbit strength Vso of the one-body
proton and neutron WS potentials. The diffuseness and radius
of the WS potentials have been fixed at a = 0.65 fm and
R0 = 3.85 fm, respectively, and the charge radius was set to
Rc = 3.85 fm. The remaining parameters involved in the fit
are the eight parameters of the FHT interaction, including all
the spin and isospin components of the central, spin-orbit,
and tensor parts of the interaction. This leads to a total of 12
parameters.

The optimization was carried out for two cases. In the
first variant (V1), we assumed the g.s. of 37Mg and 39Mg
to be a Jπ = 3/2− state and made no assumption about the
g.s. of 35Mg. This choice corresponds to a situation where
the g.s. of 37Mg and 39Mg are similar and dominated by p
waves, as suggested in Refs. [25,26]. To obtain a reasonable
quadrupole coupling, the energies of the Jπ = 0+

1 and 2+
1

states in 34,36,38Mg have been included in the fit, as well as
the g.s. of 40Mg. Because the masses of 38,39,40Mg are not
known experimentally, for these nuclei we used the Sn values
obtained from systematic trends as quoted in Ref. [53]. In the
second variant (V2), we assumed the g.s. of 35,37,39Mg to have
Jπ = 7/2−.

The first variant V1 of the fit gives the depths and
spin-orbit terms of the proton and neutron core potentials
V

p
0 = −67.5 MeV, V

p
so = 10.1 MeV, V n

0 = −42.9 MeV, and
V n

so = 5.96 MeV. These parameters are similar to the second
variant V2 of the fit: V

p
0 = −67.3 MeV, V

p
so = 10.0 MeV,

V n
0 = −38.1 MeV, and V n

so = 10.0 MeV, with a slightly lower
depth in the WS potential for neutrons. The values of the
parameters of the FHT interaction are given in Table I for both
fits, and the optimization outcome is shown in Fig. 1.

In both cases a reasonable agreement with experimental
data is obtained. The fit V1 yields a slightly better description
of the even-even isotopes than V2 but still predicts the g.s.
of 37,39Mg to be Jπ = 7/2− states. This is because the 1p3/2

neutron shell lies above the 0f7/2 shell and the p3/2 continuum
is neglected in the SM description. Because V2 provides a
better description of Sn in 37,39Mg, and—as discussed below—
the continuum coupling plays a major role in description
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TABLE I. Strengths of the central (c), spin-orbit (so), and tensor
(t) terms of the FHT interaction in different spin-isospin channels
obtained in the V1 and V2 variants. The values of V S,T

c and V S,T
so are in

MeV and V S,T
t is in MeV fm−2. The central term V 0,1

c = −0.08 MeV
and spin-orbit term V 1,0

so = 0.0 MeV are identical in both fits.

Fit V 1,1
c V 1,0

c V 0,0
c V 1,1

so V 1,1
t V 1,0

t

V1 −3.38 −2.74 3.48 −78.9 21.4 31.0
V2 −3.93 −3.65 2.27 −76.2 37.6 15.7

of the 3/2− state, in the following we choose to use this
parametrization in all our calculations.

D. Optimization of the deformed PRM potential

In the PRM, the interaction between the valence neutron
and the effective core is represented by a deformed WS
potential. The range of the WS parameters, i.e., the diffuseness
a, radius R0, strength V0, and the spin-orbit strength Vso,
spans a range of a = 0.67 ± 6% fm, R0 = 4.35 ± 11.5% fm,
V0 = 37.0 ± 5.5% MeV, and Vso = 8.1 ± 5% MeV. The
quadrupole deformation of the WS potential is in the range
β2 = 0.3 ± 0.02(6.67%), which is consistent with the Hartree-
Fock-Bogoliubov predictions of Refs. [23,24,54]. The g.s.
of 37Mg and 39Mg are independently considered during the
optimization process. In this way, the deformed WS potentials
for both systems are consistent with each other and have
reasonable quadrupole deformations.

The coupled-channel equations of the PRM [29] were
solved up to a maximal radius of Rmax = 30 fm and the
rotation point for the exterior complex scaling was fixed at

34 35 36 37 38 39 40
A
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-92
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E
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Core: 28O
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7/2−

0+

2+

7/2−
3/2−

0+

2+

7/2−
3/2−

0+

2+

FIG. 1. Fit of the GSM effective interaction for 34−40Mg carried
out at the SM level. Experimental data [53] are denoted by stars.
Because the masses of 38,39,40Mg have not yet been measured, for
these nuclei we used the Sn values (marked by filled stars) obtained
from systematic trends, as quoted in Ref. [53]. The results of the
optimization variants V1 and V2 are marked by blue and red lines,
respectively.

TABLE II. Parameters of the WS potentials for the 37Mg and
39Mg nuclei obtained in this work.

Nucleus a R0 V0 Vso β2

(fm) (fm) (MeV) (MeV)

37Mg 0.690 4.211 −35.77 7.884 0.293
39Mg 0.728 4.206 −35.00 8.000 0.300

Rrot = 20 fm. The valence space was assumed to consist of
the 0f7/2, 1p3/2, 0f5/2, and 1p1/2 neutron resonant shells,
which were augmented by the corresponding nonresonant
partial waves. For each partial wave, the complex-energy
scattering states entering the Berggren basis (1) were selected
along a contour L+

c defined in the complex-momentum plane
by the points (0,0), (0.2,−0.2), (0.5,0), and (3.5,0) (all in
fm−1). The contour was discretized with 70 points using a
Gauss-Legendre quadrature. The rotational energies of the
core nuclei were fixed at their experimental values [53] of
E(2+

1 ) = 0.660 MeV and E(4+
1 ) = 2.016 MeV for 36Mg, and

E(2+
1 ) = 0.656 MeV and E(4+

1 ) = 2.016 MeV for 38Mg. For
the energies of higher-lying g.s. band members, we assumed
the moment of inertia corresponding to that of the 4+

1 state.
The antisymmetry between the core and the valence neutron
is partially enforced by excluding the core shells (0s1/2, 0p3/2,
0p1/2, 0d5/2, 1s1/2, and 0d3/2) from the valence space and
through the fit of the deformed WS potential. The resulting WS
parameters are listed in Table II. For both nuclei, the predicted
g.s. is Jπ = 3/2−, with a Jπ = 7/2− level being very close
in energy. As discussed below, the approximate treatment of
antisymmetry between the core and the valence neutron in the
PRM is responsible for lowering the energy of the Jπ = 3/2−

state.

III. LOW-ENERGY STRUCTURE OF 39Mg

A. Excitation spectrum

The energies and widths of low-lying states of 39Mg
predicted in different models are shown in Fig. 2. Only states
with J � 7/2 are calculated using CI models (SM, GSM,
RGM, DMRG) because the description of higher-J states
would require significantly larger model spaces.

The general properties of the level scheme are generally
consistent across the models: The Jπ = 1/2− and 5/2− states
lie higher in energy as compared to the 3/2− and 7/2−

levels. To understand this pattern let us first discuss the PRM
results, which have a simple interpretation in terms of the
large deformation of the core and the underlying spectrum
of deformed s.p. levels. Figure 3 shows the Nilsson diagram
obtained using the relativistic mean-field approach with the
complex-scaling method [55–57]. (For other deformed s.p.
level diagrams in this region, see Refs. [15,26,54,58–61].)

The results shown in Fig. 3 have been obtained using
the uniform complex-scaling with a rotation angle between
8 and 20 degrees. There are two features of the s.p. neutron
spectrum that are very relevant to properties of 39Mg. First,
the spherical 0f7/2, 1p3/2, and 1p1/2 shells appear close in
energy because of the concentration of the low-� s.p. strength
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FIG. 2. Excited states of 39Mg predicted in different models used
in this work (see text for more details).

around the zero-energy threshold [54,58–61]. This results
in a dramatic quenching of the spherical N = 28 neutron
gap. Second, as a result of the crossing between the Nilsson
levels 7/2−[303] and 1/2−[321] a large deformed N = 28
subshell closure appears around β2 = 0.3. This gap supports
the strongly deformed shape of 40Mg predicted by theory [54]
and suggests the Nilsson model assignment 1/2−[321] for
the g.s. of 39Mg. Because the rotational decoupling parameter
associated with the 1/2−[321] orbit is slightly below a = −1,
one would expect a Jπ = 3/2− g.s. assignment according
to the strong-coupling limit of the PRM [62]. This result is
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FIG. 3. Single-particle neutron Nilsson diagram for 39Mg from
the relativistic mean-field approach with the complex-scaling method.
The crossing between the deformed levels 7/2−[303] and 1/2−[321]
originating from the 0f7/2 and 1p3/2 shells, respectively, results in a
deformed subshell closure at N = 28 and β2 ≈ 0.3.

TABLE III. Contributions to the norm of J π states (in percent)
of 39Mg from the considered partial waves (�,j ) in the PRM.

J π nf7/2 np3/2 nf5/2 np1/2

1/2− 13 85 0 2
3/2− 32 62 1 5
5/2− 12 12 1 75
7/2− 62 36 0 2
9/2− 62 30 3 4
11/2− 80 19 0 1

nicely consistent with the nonadiabatic PRM result in Fig. 3,
which predicts the large signature splitting between the favored
[r = exp(−iπJ ) = i] and unfavored (r = −i) members of
the g.s. band of 39Mg as well as the presence of close-lying
Jπ = 3/2− and 7/2− levels.

The relative importance of various partial waves in a given
PRM state can be estimated from the norm of each channel
wave function by summing over the core angular momentum.
The resulting partial wave contributions to the norm are shown
in Table III and reveal that the Jπ = 1/2− and 3/2− states have
a large p3/2 component, the Jπ = 5/2− state has a large p1/2

component, and other states are mostly dominated by the f7/2

partial wave.
According to the PRM, the main components of the

Jπ = 7/2− state are |0+〉 ⊗ |f7/2〉 and |2+〉 ⊗ |p3/2〉 and
those for Jπ = 3/2− are |0+〉 ⊗ |p3/2〉 and |2+〉 ⊗ |f7/2〉.
The Jπ = 9/2− and 11/2− states are largely dominated by
the |2+〉 ⊗ |f7/2〉 channel (60%–80%; see Table III), and are
narrow resonances. These states are somehow analogous to the
narrow rotational resonances predicted in 11Be [29].

As seen in Fig. 2, the g.s. assignment consistently predicted
by all configuration-interaction models employed in this study
is Jπ = 7/2− while the position of the Jπ = 3/2− level
is strongly model dependent. To understand the difference
between the PRM and CI predictions for this state, we carried
out three sets of GSM calculations by steadily including more
continuum degrees of freedom.

The case indicated as GSM(a) in Fig. 2 corresponds to
the SM variant supplemented by the addition of the p3/2

continuum discretized with 15 points. The case marked
GSM(b) includes six additional HO shells for each of the f7/2,
p1/2, and f5/2 partial waves on top of GSM(a). Finally, GSM(c)
includes the 0f7/2 and 1p3/2 neutron poles as well as their
associated continua, each discretized with 15 points. It appears
clearly that, for the considered model space in SM/GSM, only
the f7/2 and p3/2 partial waves and their related continua are
important in the description of the Jπ = 3/2− state, because
the GSM(c) energy matches the RGM energy. In fact, we
checked that the RGM result for the Jπ = 3/2− state remains
unchanged if only the f7/2 and p3/2 states and related continua
are considered.

A significantly larger configuration space was employed in
the DMRG variant. Here, the reference space consisted of the
0f7/2 and 1p3/2 neutron shells and the 1d5/2 proton shell. The
complement space was made of the higher-lying neutron and
proton shells: ν(1p1/2,0f5/2) and π (1s1/2,0d3/2), respectively,
as well as the corresponding continua, each discretized with
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FIG. 4. Convergence of the DMRG energies for (a) J π = 7/2−

and (b) 3/2− states in 39Mg with respect to the number of
included shells. The use of natural orbitals greatly improves the
convergence and provides more consistent results when compared
to the traditional DMRG calculation in WS orbitals. The inclusion of
additional particle-hole excitations greatly improves the description
of the J π = 3/2− excited state, while it has little impact on the
J π = 7/2− g.s. The DMRG convergence criterion was assumed to
be ε = 10−8. The RGM results are marked by a dotted line.

15 points. No truncation on particle-hole excitations within
the resonant space was imposed; however, only one neutron
was allowed to occupy nonresonant states. The effect of the
increased model space in the DMRG is shown in Fig. 4 for the
Jπ = 7/2− and 3/2− states.

It is seen that the DMRG prediction for the Jπ = 7/2− level
is very close to the RGM result. This is perhaps not surprising
as this state is dominated by the |0+〉 ⊗ |f7/2〉 channel;
hence, collective effects have little impact on it. On the other
hand, a large deviation appears for the Jπ = 3/2− state,
which indicates the presence of large contributions from other
channels related to the quadrupole collectivity and continuum
coupling. Interestingly, the DMRG energy for this state is not
as low as the PRM prediction. This is presumably because
the antisymmetry between the core and the valence neutron is
treated approximately in the PRM as discussed below.

The PRM prediction that the f7/2 and p3/2 partial waves
are crucial for the structure of Jπ = 3/2− and 7/2− states is
confirmed by CI models. Because in a SM picture of 39Mg
most neutrons occupy the 0f7/2 shell, the sum of the weights
of configurations having a fixed number of neutrons in 0f7/2

gives an indication on the role of s.p. states above the 38Mg
core. The configuration weights are shown in Table IV for the
SM and GSM(c) calculations.

The dominant SM configurations are those with seven
neutrons in the 0f7/2 shell. The addition of the f7/2 and
p3/2 continua in GSM(c) leads to a drastic change for
the Jπ = 3/2− state, which becomes dominated by the
(0f7/2)61p3/2 configuration. While the occupation of the 1p3/2

TABLE IV. SM and GSM(c) weights of configurations (in
percent) corresponding to six 0f7/2 neutrons and one neutron in a
higher shell, and also for configurations with six and seven 0f7/2

neutrons. The SM weights for the J π = 1/2− and 5/2− states are
similar to the J π = 3/2− results. The 0f5/2 and 0p1/2 shells are not
included in GSM(c).

Configuration SM GSM(c)

3/2− 7/2− 3/2− 7/2−

(0f7/2)61p3/2 9 1 96 1
(0f7/2)61p1/2 0 0 – –
(0f7/2)60f5/2 1 1 – –

(0f7/2)6 19 12 96 0
(0f7/2)7 80 87 1 95

shell is strongly disfavored in the SM because of its high
excitation energy, the presence of the p3/2 continuum in
GSM(c) gives rise to a structure closer to the |0+〉 ⊗ |p3/2〉
channel in the PRM, which corresponds to a larger occupation
of the 1p3/2 shell. It now becomes apparent that the high
excitation of the Jπ = 3/2− SM level seen in Fig. 2 is
primarily because of the absence of continuum correlations.
This result illustrates the failure of the traditional closed-
system SM framework when it comes to nuclear excitations
above the particle threshold, involving low-� configurations.

Some part of the discrepancy between the PRM and the
DMRG for the Jπ = 3/2− state can be attributed to anti-
symmetry. Indeed, in CI models that include the one-neutron
continuum, the 0f7/2 shell is largely occupied; hence, the
Pauli principle reduces even further the weight of the (0f7/2)7

configuration with respect to the (0f7/2)61p3/2 configuration,
which is strongly influenced by the continuum. This effect
is absent in the PRM picture; it should result in a larger
contribution from the |0+〉 ⊗ |p3/2〉 channel.

B. Lifetimes

Even though our CI calculations suggest a Jπ = 7/2−

assignment for the g.s. of 39Mg, those results are based on
an interaction optimized at the SM level; hence, the addition
of neutron continuum in the fit may lead to a lower 3/2−

state. Moreover, the targeted binding energies for A > 36
magnesium isotopes have been taken from systematic trends,
which results in a considerable uncertainty. Consequently, in
this section we discuss the two alternative spin assignments
for the g.s. of 39Mg.

We begin with a Jπ = 7/2− g.s. scenario. The g.s. energy
of 39Mg (E ≈ 130 keV) was fitted independently in CI and the
PRM, which allows us to compute the decay width and lifetime
of the corresponding resonance. The one-neutron continuum
can be treated precisely within the RGM wherein the anti-
symmetrization between the valence neutron (projectile) and
the 38Mg core (target) is properly accounted for. The predicted
width of the narrow 7/2− resonance in the RGM is � ≈ 1.2 eV,
which is not too far from the PRM value of � ≈ 8.9 eV.

An advantage of the coupled-channel formalism is the
possibility to determine the preferred decay channels of the
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FIG. 5. Partial-wave contributions of the |0+〉 ⊗ |f7/2〉 and
|2+〉 ⊗ |p3/2〉 PRM channels to the decay width of the J π = 7/2−

resonance at 129 keV in 39Mg. The width corresponding to the
imaginary part of the complex energy eigenvalue obtained by the
direct diagonalization of the coupled-channel PRM equations is
indicated by a dotted line.

system using the so-called current expression [63–65]:

�c(r) = −�
2

μ

Im[u′
c(r)u∗

c (r)]∑
c′

∫ r

0 dr ′ |uc′ (r ′)|2 , (3)

where the channel wave functions are denoted by
uc(r) ≡ uJπ

c (r) and the total decay width is � = ∑
c �c(r).

Although values of �c(r) depend on r in the internal region
where the coupling potential terms are not negligible, the
total width � is independent of r , which reflects the flux
conservation. Figure 5 shows �c(r) for the Jπ = 7/2− PRM
state. According to Table III, the two dominant channels
are |0+〉 ⊗ |f7/2〉 and |2+〉 ⊗ |p3/2〉. Because the resonance’s
energy is less than E(2+

1 ) = 0.656 MeV in 38Mg, the decay
through the latter channel is blocked, as evidenced by its
vanishing contribution to �c(r) at large distances.

The small width of the Jπ = 7/2− resonance is expected
because of its threshold character and large � = 3 value.
This result is consistent with the dominance of the (0f7/2)7

configurations in GSM as shown in Table IV.
It is instructive to inspect the radial density of the valence

neutron in the Jπ = 7/2− resonance. Figure 6 shows the
PRM result. It is seen that the p3/2 component dominates
at large distances. Such a behavior is reminiscent of deformed
halo systems [27] whose asymptotic behavior is governed
by low-� partial waves. Because the neutron-bound 37Mg
is expected to be a one-neutron halo [25,26] because of
its appreciable p-wave neutron single-particle strength, a
low-lying Jπ = 7/2− resonance in 39Mg can be considered as
its structural unbound analog. Our RGM calculations for 37Mg
support the halo character of this nucleus, with the two weakly
bound Jπ = 5/2− and 7/2− states being the candidates for the
ground state, and an excited 3/2− state around the threshold.
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FIG. 6. One-body radial density of the valence neutron of the
J π = 7/2− resonance at 129 keV in 39Mg in the PRM. The dashed
and dotted lines represent the f7/2 and p3/2 contributions, respectively.

The neutron widths of J < 7/2 states in 39Mg can be
reliably predicted in the RGM. Because all those states are
strongly affected by the p-wave continuum, large widths over
1 MeV are expected; see Fig. 2.

We emphasize that the predicted lifetimes of the Jπ = 3/2−

and 7/2− g.s. candidates vary by many orders of magnitude.
The � = 1 continuum strongly impacts the structure of the
3/2− state and gives rise to a large width of about 2 MeV. In
contrast, the 7/2− state is predicted to be a narrow resonance
with a lifetime of about 10−17 s. Consequently, an experimental
assessment of the width of the g.s. of 39Mg is critical for
making a definite g.s. spin assignment.

IV. CONCLUSIONS

The low-energy structure of the unbound nucleus 39Mg was
investigated by means of several models of different fidelity.
We used the quantified interactions optimized to the binding
energies of neutron-rich Mg isotopes and 2+ excitations of
34,36,38Mg. While the large quadrupole deformations β2 = 0.3
predicted by the Hartree-Fock-Bogoliubov calculations repre-
sent a challenge to some of our CI models (SM, GSM, and
RGM) because of configuration-space limitations, the DMRG
approach nicely connects these calculations with the PRM by
significantly increasing the size of the model space. Except for
the SM, all our approaches are based on the complex-energy
open quantum system framework and hence can be used to
describe the structure of weakly bound or unbound states.

In spite of interaction uncertainties, largely related to
the unknown masses of A > 37 magnesium isotopes and
the intrinsic limitations of our models (configuration-space
truncations in CI approaches and a very approximate treatment
of the Pauli principle in the PRM), the achieved consistency
between the DMRG and PRM pictures make us believe that
our conclusions about the structure of 39Mg are robust. As
far as the g.s. structure of 39Mg is concerned, we predict two
candidates that lie within the current theoretical uncertainty.
The Jπ = 7/2− narrow resonance width � ≈ 8 eV in the PRM
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is expected to have a structure dominated by the |0+〉 ⊗ |f7/2〉
and |2+〉 ⊗ |p3/2〉 channels. Because the � = 1 partial wave
dominates at large distances, this state can be viewed as an
unbound analog of the neutron halo g.s. of 37Mg. The other g.s.
candidate, a broad Jπ = 3/2− resonance, is expected to have
structure dominated by the |0+〉 ⊗ |p3/2〉 and |2+〉 ⊗ |f7/2〉
PRM channels. This state can be associated with the 1/2−[321]
deformed Nilsson orbital. Our results. therefore, do not
support the Jπ = 5/2− g.s. assignment for 39Mg proposed
in Refs. [59,60] but are not inconsistent with the analysis of
Ref. [26] where a 1/2−[321] scenario was suggested.

The wave functions of the Jπ = 9/2− and 11/2− members
of the g.s. rotational band are dominated by the f7/2 partial
wave. These narrow resonances, for which the � = 1 neutron
decay is blocked, are similar to the rotational structures
embedded in the continuum predicted for 11Be [29].

In conclusion, we demonstrated how the intricate inter-
play between single-particle motion and collective rotation,
affected by the coupling to the particle continuum, impacts the

low-energy structure of 39Mg. Future experimental work, in
particular decay-width measurements, will hopefully discrim-
inate between the two g.s. scenarios proposed in this study.
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