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Background: The possible existence of a phase transition to a ferromagnetic state in neutron matter as origin
of the extremely high magnetic fields of neutron stars is still an open issue. Whereas many phenomenological
interactions predict this transition at densities accessible in neutron stars, microscopic calculations based on
realistic interactions show no indication of it. The existence or non-existence of this transition is a consequence
of the different role of nucleon-nucleon correlations in polarized and unpolarized neutron matter. Therefore, to
give a definite answer to this issue it is necessary to analyze the behavior of these correlations.
Purpose: Using the Hellmann–Feynman theorem we analyze the contribution of the different terms of the
nucleon-nucleon interaction to the spin symmetry energy of neutron matter with the purpose of identifying the
nature and role of correlations in polarized and unpolarized neutron matter.
Methods: The analysis is performed within the microscopic Brueckner–Hartree–Fock approach using the
Argonne V18 realistic potential plus the Urbana IX three-body force.
Results: Our results show no indication of a ferromagnetic transition as the spin symmetry energy of neutron
matter is always an increasing function of density. They show also that the main contribution to it comes from the
S = 0 channel, acting only in non-polarized neutron matter, in particular from the 1S0 and the 1D2 partial waves.
Three-body forces are found to play a secondary role in the determination of the spin symmetry energy.
Conclusions: By evaluating the kinetic energy difference between the correlated system and the underlying Fermi
sea to estimate the importance of correlations in spin-polarized neutron matter, we conclude that non-polarized
neutron matter is more correlated than totally polarized one.
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I. INTRODUCTION

The spin symmetry energy of neutron matter, defined as the
difference between the energy per particle of spin polarized
and unpolarized neutron matter, is the main ingredient to
understand the spin susceptibility of neutron matter, which
is basically proportional to the inverse of this quantity. Micro-
scopic calculations of the spin susceptibility, using realistic
interactions and a variety of many-body methods, show
that the correlations induced by these realistic interactions
considerably reduce the spin susceptibility with respect to the
underlying noninteracting Fermi seas [1–7]. This reduction
implies an increase of the spin-symmetry energy of neutron
matter. This prediction has also important consequences in the
description of situations of astrophysical interest, such as, for
instance, the calculation of the mean free path of neutrinos
in dense matter and, in general, the study of supernovae and
protoneutron stars [8].

In contrast with this scenario, it has been theoretically
speculated that the spin symmetry of neutron matter can
become zero, a fact that would indicate the existence of a phase
transition to a ferromagnetic state [9–21]. Notice, that looking
at the kinetic energies of the corresponding underlying Fermi
seas, at a given density the kinetic energy of the polarized
Fermi sea will always be larger than the unpolarized one.
Therefore, the hypothetical ferromagnetic transition should
be a consequence of the different role of the interactions

in polarized and unpolarized neutron matter. In fact, many
effective nuclear interactions of Skyrme [22,23] or Gogny [24]
type predict this transition at densities accessible in neutron
stars. However, in accordance with the reduction of the spin
susceptibility commented on above, microscopic calculations
based on realistic interactions do not predict such transition
at least in the wide range of densities which have been
explored [1–7]. The study of spin-polarization has also been
recently considered for nuclear matter and finite nuclei using
finite range effective interactions [25]. The possibility of a
ferromagnetic transition has also been discussed in the context
of hard-sphere systems in connection with ultracold atom
systems [26,27]. All these facts have motivated the interest
for the study of neutron matter and in particular of polarized
neutron matter.

It has also been pointed out that due to the large value of
the 1S0 scattering length, the behavior of neutron matter, at
densities where the physics is dominated by this partial wave,
should show some similarities with the behavior of a unitary
Fermi gas [28]. At the same time, the absence due to the Pauli
principle of the 1S0 channel in polarized neutron matter has
driven the question of up to which density polarized neutron
matter can behave as a weakly interacting Fermi gas [29].

Motivated by these questions, we have performed a micro-
scopic calculation, in the framework of Brueckner-Hartree-
Fock (BHF) approximation, of the magnetic susceptibility
of neutron matter employing the Argonne V18 (Av18)
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realistic nucleon-nucleon interaction [30] supplemented with
the Urbana IX three-body force [31], which for the use
in the BHF approach is reduced to an effective two-body
density-dependent interaction by averaging over the third
nucleon [32]. In order to identify the nature of the correlations
responsible for the behavior of the magnetic susceptibility we
have analyzed the contributions to the spin symmetry energy
of neutron matter of the different partial waves and also of
the different operatorial parts of the interaction. In addition,
the degree of correlation of the two systems, polarized and
unpolarized neutron matter, is discussed by comparing the
differences of the kinetic energy of the correlated system with
the ones of the underlying Fermi sea.

The paper is organized in the following way. In Sec. II
the Brueckner-Hartree-Fock approach to spin polarized neu-
tron matter and the Hellmann-Feynman theorem [33,34] are
shortly reviewed. Results for the magnetic susceptibility or,
equivalently, for the spin symmetry energy and its density
dependence are presented in Sec. III, where is also discussed
the contribution of the different partial waves. Finally, a short
summary and the main conclusions are given in Sec. IV.

II. BHF APPROACH OF SPIN-POLARIZED
NEUTRON MATTER

Spin-polarized neutron matter is an infinite nuclear system
made of two different fermionic components: neutrons with
spin up and neutrons with spin down, having densities ρ↑ and
ρ↓, respectively. The total density of the system is given by

ρ = ρ↑ + ρ↓ . (1)

The degree of spin polarization of the system can be expressed
by means of the spin polarization � defined as

� = ρ↑ − ρ↓
ρ

. (2)

Note that the value � = 0 corresponds to nonpolarized (NP)
or paramagnetic (ρ↑ = ρ↓) neutron matter, whereas � = ±1
means that the system is totally polarized (TP), i.e., all the
spins are aligned along the same direction. Partially polarized
states correspond to values of � between −1 and +1.

The energy per particle of spin-polarized neutron matter
does not change when a global flip of the spins is performed.
Therefore, it can be expanded on the spin polarization � as

E(ρ,�) = ENP (ρ) + Ssym(ρ)�2 + S4(ρ)�4 + O(6) , (3)

where ENP (ρ) ≡ E(ρ,0) is the energy per particle of nonpo-
larized neutron matter, Ssym(ρ) is defined as the spin symmetry
energy,

Ssym(ρ) = 1

2

∂2E(ρ,�)

∂�2

∣∣∣
�=0

(4)

and

S4(ρ) = 1

24

∂4E(ρ,�)

∂�4

∣∣∣
�=0

. (5)

It has been shown (see, e.g., Refs. [2–4]) that the energy
per particle of spin-polarized neutron matter is practically
parabolic in the full range of spin polarizations. Therefore,

contributions from S4(ρ) and other higher order terms can be
neglected, and one can, in good approximation, estimate the
spin symmetry energy simply as the difference between the
energy per particle of totally polarized, ET P (ρ) ≡ E(ρ, ± 1),
and nonpolarized neutron matter, i.e.,

Ssym(ρ) ∼ ET P (ρ) − ENP (ρ) . (6)

A particularly interesting macroscopic property of spin-
polarized neutron matter related to Ssym(ρ) is the magnetic
susceptibility χ (ρ) which, at each density, characterizes the
response of the system to an external magnetic field and gives a
measure of the energy required to produce a net spin alignment
in the direction of it. If the strength of the field is small χ (ρ)
can be obtained simply as (see, e.g., Ref. [2])

χ (ρ) = μ2ρ

∂2E(ρ,�)
∂�2

∣∣∣
�=0

= μ2ρ

2Ssym(ρ)
, (7)

where μ is the magnetic moment of the neutron and in the
second equality we have used Eq. (4).

The BHF description of spin-polarized neutron matter starts
with the construction of the neutron-neutron G matrix, which
describes in an effective way the interaction between two
neutrons for each one of the spin combinations ↑↑ , ↑↓ , ↓↑,
and ↓↓. This is formally obtained by solving the well-known
Bethe-Goldstone equation, written schematically as

G(ω)σ1σ2σ3σ4 = Vσ1σ2σ3σ4 + 1

�

∑
σiσj

Vσ1σ2σiσj

× Qσiσj

ω − εσi
− εσj

+ iη
G(ω)σiσj σ3σ4 , (8)

where σ = ↑,↓ indicates the spin projection of the two
neutrons in the initial, intermediate, and final states, V is
the bare nucleon-nucleon interaction, � is the (large) volume
enclosing the system, Qσiσj

is the Pauli operator taking into
account the effect of the exclusion principle on the scattered
neutrons, and ω is the so-called starting energy defined as the
sum of the nonrelativistic single-particles energies, ε↑(↓), of the
interacting neutrons. We note that Eq. (8) is a coupled channel
equation.

The single-particle energy of a neutron with momentum �k
and spin projection σ is given by

εσ (�k) = �
2k2

2m
+ Re[Uσ (�k)] , (9)

where the real part of the single-particle potential Uσ (�k)
represents the average potential “felt” by a neutron due to its
interaction with the other neutrons of the system. In the BHF
approximation Uσ (�k) is calculated through the “on-shell” G
matrix, and is given by

Uσ (�k) = 1

�

∑
σ ′ �k′

〈�kσ �k′σ ′|G(εσ (�k) + εσ ′(�k′))|�kσ �k′σ ′〉A , (10)
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where the sum runs over all neutron up and neutron down
occupied states and the matrix elements are properly antisym-
metrized. Once a self-consistent solution of Eqs. (8)–(10) is
achieved, the energy per particle in the BHF approximation
can be calculated as

EBHF (ρ,�) = 1

A

∑
σ

∑
|�k|�kFσ

�
2k2

2m

+ 1

2A

∑
σ

∑
|�k|�kFσ

Re[Uσ (�k)] , (11)

where the first term of the right-hand side is simply the
contribution of the free Fermi gas (FFG), and the second one is
sometimes called in the literature correlation energy. We note
that EBHF represents only the sum of two-hole-line diagrams
and includes only the effect of two-body correlations through
the G matrix. It has been shown by Song et al., [35] that
the contribution to the energy from three-hole-line diagrams
(which account for the effect of three-body correlations) is
minimized when the so-called continuous prescription [36]
is adopted for the single-particle potential when solving the
Bethe-Goldstone equation. This presumably enhances the
convergence of the hole-line expansion of which the BHF
approximation represents the lowest order. We adopt this
prescription in our BHF calculations which are done using
the Argonne V18 (Av18) potential [30] supplemented with
the Urbana IX three-nucleon force [31], which for the use in
the BHF approach is reduced first to an effective two-nucleon
density-dependent force by averaging over the coordinates of
the third nucleon [32,37].

The BHF approach does not give direct access to the
separate contributions of the kinetic and potential energies
because it does not provide the correlated many-body wave
function |�〉. However, it has been shown [38–41] that the
Hellmann-Feynman theorem [33,34] can be used to estimate
the ground-state expectation value of both contributions from
the derivative of the total energy with respect to a properly
introduced parameter. Writing the nuclear matter Hamiltonian
as H = T + V , and defining a λ-dependent Hamiltonian
H (λ) = T + λV , the expectation value of the potential energy
is given as

〈V 〉 ≡ 〈�|V |�〉
〈�|�〉 =

(
dE

dλ

)
λ=1

(12)

and the kinetic energy contribution 〈T 〉 can be simply obtained
by subtracting 〈V 〉 from EBHF .

III. RESULTS AND DISCUSSION

The discussion of our results starts by showing in Fig. 1
the density dependence of the kinetic 〈T 〉 and potential 〈V 〉
energy contributions to the energy per particle of both TP
[panel (a)] and NP [panel (b)] neutron matter as well as to
the spin symmetry energy [panel (c)] and its slope parameter
[panel (d)] defined as

LS(ρ) = 3ρ
∂Ssym(ρ)

∂ρ
, (13)
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FIG. 1. Kinetic 〈T 〉 and potential 〈V 〉 energy contributions to the
total energy per particle of totally polarized and nonpolarized neutron
matter [(a) and (b)], and to the spin symmetry energy and its slope
parameter [(c) and (d)] as a function of density. Notice the different
scale in the ordinates.

in analogy with the slope parameter of the nuclear symmetry
energy, L(ρ). The particular values of these contributions at
the empirical saturation density of symmetric nuclear matter,
ρ0 = 0.16 fm−3, are reported in Table I. The results have
been obtained by applying the Hellmann-Feynman theorem
as explained at the end of the previous section. As it can
be seen in the figure, the total energy of TP neutron matter
is always more repulsive than that of the NP one in all
the density range explored. This additional repulsion of TP
neutron matter can be understood, firstly, in terms of the kinetic
energy contribution, which is larger in the TP case than in
the NP one. Secondly, in terms of the potential energy one
because, due to symmetry arguments, all partial waves with
even orbital angular momentum L (some of them attractive,
as the important 1S0) are excluded in TP neutron matter (see
Table II). An interesting conclusion which can be inferred from
here, already pointed out in previous works of the authors
[2–4] and other studies [1,5–7], is that a spontaneous phase

TABLE I. Kinetic, 〈T 〉, and potential, 〈V 〉, contributions to the
total energy per particle of totally polarized (TP) and nonpolarized
(NP) neutron matter at the empirical saturation density of symmetric
nuclear matter, ρ0 = 0.16 fm−3. The contributions to the correspond-
ing spin symmetry energy Ssym and its slope parameter LS are reported
in the last two columns, respectively. 〈TFS〉 correspond to the results
of the underlying Fermi seas. Results are given in MeV.

ET P ENP Ssym LS

〈TFS〉 55.669 35.069 20.600 41.200
〈T 〉 64.452 47.827 16.625 25.225
〈V 〉 − 4.784 − 31.050 26.266 75.914
Total 59.668 16.777 42.891 101.139
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TABLE II. Spin channel and partial wave decomposition of the
potential energy of TP and NP neutron matter at ρ0 = 0.16 fm−3.
The decompositions of the potential energy contribution to the spin
symmetry and its slope parameter are also shown. Results are given
in MeV.

〈V 〉T P 〈V 〉NP S〈V 〉
sym L

〈V 〉
S

S = 0 0 −26.875 26.875 56.198
S = 1 −4.784 −4.175 −0.609 19.716
1S0 0.000 −21.432 21.432 32.086
3P0 −5.499 −4.624 −0.875 3.313
3P1 19.644 13.027 6.617 30.927
3P2 −19.915 −13.299 −6.616 −14.966
1D2 0.000 −4.787 4.787 21.185
3F2 −1.263 −0.574 −0.689 −2.655
3F3 3.109 1.639 1.470 5.253
3F4 −1.726 −0.597 −1.129 −5.492
1G4 0.000 −0.607 0.607 3.055
3H4 −0.042 0.012 −0.054 −0.094
3H5 0.699 0.186 0.513 1.889
3H6 −0.028 0.024 −0.052 −0.345
1I6 0.000 −0.059 0.059 0.116
3J6 0.051 0.024 0.027 0.370
3J7 0.107 −0.025 0.132 0.476
3J8 0.050 0.020 0.030 0.332
1K8 0.000 0.011 −0.011 0.245
3L8 0.029 0.011 0.018 0.219

transition to a ferromagnetic state is not to be expected. If
such a transition would exist, a crossing of energies of the
TP and NP systems, with the consequent change of the sign
of the spin symmetry energy, would be observed at some
density, indicating that the ground state of the system would
be ferromagnetic from that density on. Notice that there is no
sign of such a crossing on the figure and that, on the contrary,
it becomes less and less favorable as the density increases. As
it is seen in the figure the kinetic energy contribution to the
spin symmetry energy, although it is always smaller than that
of the potential energy one, is not negligible and, in particular,
amounts ∼38% of its total value at ρ0. This result is different
from what is found in the case of the nuclear symmetry
energy, Esym(ρ). In this case the kinetic energy contribution
to Esym(ρ) is very small (and even negative) due to the strong
cancellation of the kinetic energies of neutron and symmetric
nuclear matter [42,43]. Finally, note that the slope parameter
LS(ρ) is also clearly dominated in the whole density range by
the potential energy contribution (∼75% at ρ0) except at very
low densities where the kinetic energy one is of similar order.
Also interesting is the fact that in a significative density region
around ρo, Ls(ρ) is rather linear, indicating that the derivative
of Ssym(ρ) respect to the density is approximately constant [see
Eq. (13)].

To get a further physical insight on the role of the potential
energy, it is useful to look at the spin channel and partial wave
decomposition of its contribution to the energies of TP and NP
neutron matter as well as that to the spin symmetry energy and
its slope parameter. These contributions are denoted as 〈V 〉T P ,
〈V 〉NP , S

〈V 〉
sym, and L

〈V 〉
S , respectively, and their values at ρ0 are

0 0.1 0.2 0.3 0.4 0.5
Density ρ [fm-3]

0

20

40

60

80

K
in

et
ic

 e
ne

rg
y 

in
cr

ea
se

 Δ
T=

<T
> 

- E
FF

G
 [M

eV
]

NP neutron matter
TP neutron matter
Symmetric matter

FIG. 2. Increase of the kinetic energy per particle due to SRC
in TP and NP neutron matter as a function of density. The increase
in the kinetic energy of symmetric nuclear matter is also shown for
comparison.

shown in Table II. The main contribution to S
〈V 〉
sym and L

〈V 〉
S is

that of the S = 0 channel, acting only in NP neutron matter,
and, in particular, that of the 1S0 and 1D2 partial waves, which
at ρ0 amount ∼99% of S

〈V 〉
sym and ∼70% of L

〈V 〉
S . Notice that,

at this density, the contribution of the S = 1 channel to the
energies of TP and NP matter is very similar and, therefore,
the contribution of this channel to S

〈V 〉
sym is almost negligible.

This is mainly due to the strong compensation of the P and
the F waves which almost cancel completely, and to the small
contribution of the H , J , and L waves. Note also that, for
this reason, the contribution from those partial waves where
the tensor force is active (3P2,

3F2,
3F4,

3H4,
3H6,

3J6,
3J8,

3L8)
represents a small percentage of the total values of S

〈V 〉
sym and

L
〈V 〉
S . This can interpreted as an indication that the tensor force

plays a minor role in the determination of the spin symmetry
energy and its density dependence. This conclusion differs
from that drawn in the case of the nuclear symmetry energy
whose value at saturation and its density dependence is known
to be clearly dominated by the tensor force [44,45] (see also,
e.g., Ref. [46] and references therein).

A way of estimating the importance of correlations in a
fermionic system is simply to evaluate the difference between
the expectation value of the kinetic energy of the system and
the energy of a free Fermi gas with the same density and
constituents,

�T = 〈T 〉 − EFFG. (14)

The larger the value of �T , the more important the role of
the correlations. We show in Fig. 2 the density dependence of
�T for TP and NP neutron matter as well as for conventional
symmetric nuclear matter (SM). The increase of �T in the
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three cases indicates, as expected, that correlations become
more and more important when the density of the system
increases. Note that in the whole range of densities explored,
�TSM > �TNP > �TT P , reflecting the fact that SM is always
more correlated than neutron matter independently of its spin
polarization state, and that NP neutron matter is always more
correlated than TP one. However, the effect of correlations on
the kinetic energy of TP neutron matter cannot be discarded.
Note also that the difference �TSM − �TNP is larger than the
difference �TNP − �TT P up to ρ ∼ 0.45 fm−3. This can be
interpreted as an indication that the spin dependence of the
nucleon-nucleon correlations is less strong than its isospin one
at least in the low and medium density region.

To get a more quantitative idea of the spin dependence of
the nucleon-nucleon correlations in the following we analyze
the role played by the different terms of the nuclear force, and
in particular the spin dependent ones, in the determination of
S

〈V 〉
sym and L

〈V 〉
S . To such end, we apply the Hellmann-Feynman

theorem to the separate contributions of the Av18 potential
and the Urbana IX three-nucleon force. The Av18 has 18
components of the form vp(rij )Op

ij with

O
p=1,18
ij = 1, �τi · �τj , �σi · �σj , (�σi · �σj )(�τi · �τj ),

Sij , Sij (�τi · �τj ), �L · �S, �L · �S(�τi · �τj ),

L2,L2(�τi · �τj ), L2(�σi · �σj ), L2(�σi · �σj )(�τi · �τj ),

( �L · �S)2, ( �L · �S)2(�τi · �τj ),

Tij , (�σi · �σj )Tij , SijTij ,
(
τzi + τzj

)
, (15)

Sij is the usual tensor operator, �L the relative orbital angular
momentum, �S the total spin of the nucleon pair, and Tij =
3τziτzj − τi · τj the isotensor operator defined analogously
to Sij . Note that the last four operators break the charge
independence of the nuclear interaction.

As we said above, the Urbana IX three-body force is
reduced to an effective density-dependent two-body force
when used in the BHF approach. For simplicity, in the
following we refer to it as reduced Urbana force. This force is
made of three components of the type up(rij ,ρ)Op

ij , where

O
p=1,3
ij = 1, (�σi · �σj )(�τi · �τj ), Sij (�τi · �τj ) , (16)

introducing additional central, στ , and tensor terms (see, e.g.,
Ref. [32] for details).

The separate contributions of the various components of the
Av18 potential and the reduced Urbana force to the energy per
particle of TP and NP neutron matter, and to S

〈V 〉
sym and L

〈V 〉
S at

the empirical value of the nuclear saturation density are given
in Table III. Note that the largest contribution for both S

〈V 〉
sym and

L
〈V 〉
S comes from the �σi · �σj , (�σi · �σj )(�τi · �τj ), and L2 terms.

As we have already seen in Table II, the total interaction
energy for TP neutron matter is in absolute value much
smaller than for the NP one. This is the result of strong
cancellations between the contributions of the different pieces
of the potential. The contributions to S

〈V 〉
sym and L

〈V 〉
S are

TABLE III. Contributions of the various components of the Av18
potential (denoted as 〈Vi〉) and the reduced Urbana force (denoted as
〈Ui〉) to the total energy per particle of TP and NP neutron matter
and to the spin symmetry energy and its slope parameter at the
empirical saturation density of symmetric nuclear matter ρ0 = 0.16
fm−3. Results are given in MeV.

〈V 〉T P 〈V 〉NP S〈V 〉
sym L

〈V 〉
S

〈V1〉 −24.856 −26.415 1.559 −3.012
〈V�τi ·�τj

〉 −3.129 −4.157 1.028 0.506
〈V�σi ·�σj

〉 3.207 −0.438 3.645 9.147
〈V(�σi ·�σj )(�τi ·�τj )〉 13.046 −5.470 18.516 50.328
〈VSij

〉 −0.980 −0.608 −0.372 −1.075
〈VSij (�τi ·�τj )〉 −5.725 −4.219 −1.506 −3.625
〈V �L· �S〉 −8.638 −6.076 −2.562 −2.855
〈V �L· �S(�τi ·�τj )〉 −3.090 −2.148 −0.942 −3.303
〈VL2 〉 14.090 9.188 4.902 18.735
〈VL2(�τi ·�τj )〉 −2.899 −2.142 −0.757 −3.238
〈VL2(�σi ·�σj )〉 1.410 1.016 0.394 0.741
〈VL2(�σi ·�σj )(�τi ·�τj )〉 −0.787 0.017 −0.804 −5.024
〈V( �L· �S)2 〉 5.652 3.262 2.390 12.803
〈V( �L· �S)2(�τi ·�τj )〉 6.903 4.032 2.871 14.275
〈VTij

〉 0.006 0.002 0.004 0.022
〈V(�σi ·�σj )Tij

〉 −0.013 −0.015 0.002 −0.010
〈VSij Tij

〉 0.004 0.003 0.001 −0.102
〈V(τzi

+τzj
)〉 −0.055 −0.070 0.015 −0.054

〈U1〉 −0.019 1.744 −1.763 −6.967
〈U(�σi ·�σj )(�τi ·�τj )〉 −0.922 −0.708 −0.214 −0.872
〈USij (�τi ·�τj )〉 2.011 2.152 −0.141 −0.506

important when there is a difference in the behavior of the
interaction between TP and NP neutron matter. For instance,
the contribution of the central part 〈V1〉 is very similar in
TP and NP neutron matter and therefore its contribution
to S

〈V 〉
sym is small. Relevant contributions are associated to

〈V�σi ·�σj
〉, 〈V(�σi ·�σj )(�τi ·�τj )〉, and also to 〈VL2〉. On the other hand the

contributions of the three-body forces to the spin symmetry
energy are moderately small and of negative sign, at ρ0.

IV. SUMMARY AND CONCLUSIONS

We have calculated the kinetic and potential energy contri-
butions of the spin symmetry energy of neutron matter using
the realistic Argonne Av18 two-body interaction supplemented
with the Urbana IX three-body force averaged to provide a
two-body density dependent one suitable to be used in BHF
calculations. It has been shown that this realistic interactions do
not favor a ferromagnetic transition of neutron matter. As the
symmetry energy, the spin symmetry energy is an increasing
function of density, at least in the range of densities considered.
Both, the kinetic and the potential energy contributions, i.e.,
the difference of these energies between polarized and normal
neutron matter, are positive in the full range of densities
considered.

The contributions of the different pieces of the interaction
and its partial wave decomposition allow to understand the
origin of the different role of the interaction in TP and NP
neutron matter. In most of the cases, the Pauli principle,
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which forbids the interaction in certain partial waves in
totally polarized neutron matter is the origin of most of the
differences. The main contribution comes from the S = 0
forbidden channels in TP neutron matter, in particular from
the 1S0 and 1D2 partial waves. On the other hand, three-body
forces play a secondary role in the determination of the spin
symmetry energy.

Finally, we have quantitatively established that NP neutron
matter is more correlated than the TP one by looking at the
difference of their kinetic energies and the corresponding ones
of their underlying Fermi seas. In spite of being less correlated,

however, the role of correlations in totally polarized neutron
matter cannot be ignored when using realistic interactions.
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