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p + d → 3He +γ reaction with pionless effective field theory
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We study the proton radiative capture by a deuteron with the pionless effective field theory [EFT(π/)] formalism.
The calculation of the pd → 3He γ amplitude is considered for the incoming doublet and quartet channels leading
to the formation of a 3He. The strong and Coulomb scattering amplitudes for the proton-deuteron (pd) scattering
are included in this study. In this calculation, the properly normalized 3He wave function has been used at each
order. We evaluate both M1 and E1 transitions in the pd → 3He γ process up to NLO. We calculate the total cross
section for the pd → 3He γ process based on the cluster-configuration space and compare it with the experimental
data. The cross section results are presented for the incoming proton with the energy 0.5 � E � 3 MeV where the
lower and upper limits are chosen for the treatment of Coulomb effects perturbatively and the EFT(π/) breakdown
scale, respectively. No three-body force is needed to renormalize observables up to NLO other than those we
have introduced in the pd scattering amplitudes.
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I. INTRODUCTION

The pd → 3He γ reaction performs a prominent role in the
evolution of protostars. A reliable knowledge of the physics of
protostellar evolution is of fundamental importance [1,2]. The
study of astrophysical nucleosynthesis reactions like neutron-
deuteron (nd) and proton-deuteron (pd) radiative capture
reactions were pioneered at the low energies based on the
model-dependent approaches [3,4]. The model-independent
and precession controlled pionless effective field theory
[EFT(π/)] approach has successfully been used in the study of
nd → 3H γ up to N2LO. The magnetic dipole (M1) transition
at the very-low-energy regime is a dominant piece in the
amplitude of the nd → 3H γ process. The calculation of all
M1 diagrams have been performed recently for zero energy
in the nd → 3H γ reaction [5,6]. The experimental data of the
pd → 3He γ reaction in the low-energy regime indicate that
the electric dipole (E1) transition is dominated, and the M1,
E2 transitions have small contributions [7,8].

In the present study, we apply EFT(π/) to the low-
energy pd → 3He γ process. In this respect, the dominated
electromagnetic E1 transition is considered using one-body
currents up to next-to-leading order (NLO), but the magnetic
one- and two-body currents contribute in the M1 transi-
tion up to NLO. In addition to the strong interaction the
Coulomb interaction is also included. The pd scattering is
the building block of the pd → 3He γ transition. The pd
scattering amplitude is calculated based on the Coulomb
proton-proton (pp) scattering [9] and the cluster configuration
space constructed by two protons and one neutron [10–12].
In this paper to achieve cut-of independent observables, we
have used an analytical approximation form for the leading-
order (LO) three-body force (3BF) in the pd scattering.
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However, at the NLO we use the 3BF which is numerically
obtained by fixing the NLO correction to give the correct
3He binding energy. Recently, the analytical form of the
NLO 3BF for the pd scattering has been derived and the
assessment of the agreement between the analytical form and
the numerical fixing of the NLO three-body force has been
presented [13].

The formalism and results in this paper are as follows.
The electromagnetic (EM), strong and Coulomb interactions
are introduced in Sec. II. The pd scattering is introduced
in Sec. III. The formalism of pd → 3He γ is presented in
Sec. IV, and the numerical results for the pd radiative capture
is discussed in Sec. V. Finally we summarize the paper in
Sec. VI.

II. INTERACTIONS

The degrees of freedom in the pd → 3He γ process at the
low energies are neutron and proton. In this regime, the neutron
and proton momentums are as a low-momentum scale Q and
the high-momentum parameters are scaled by �̄ ∼ mπ with
mπ as the pion mass.

The interactions of the nucleons in the pd → 3He γ
transition can be classified as the strong, Coulomb, and EM
sectors. We initially explain briefly about these interactions up
to NLO in the following.

A. Strong

We follow the power counting and notations presented in
Ref. [5]. We consider the inverse of the scattering lengths
of the singlet and triplet nucleon-nucleon (NN ) systems,
1/(as = −23.714) fm−1 and 1/(at = 4.318) fm−1, as a low-
momentum scale Q, however, the inverse of the effective
ranges of the 1S0 and 3S1 NN states, 1/(ρs = 2.73) fm−1 and
1/(ρt = 1.765) fm−1, are related to the high-momentum scale
�̄. The strong interaction for the pd system in the EFT(π/)
formalism using a dibaryon auxiliary field are given by the

2469-9985/2016/94(5)/054004(12) 054004-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevC.94.054004


NEMATOLLAHI, BAYEGAN, MAHBOUBI, AND ARANI PHYSICAL REVIEW C 94, 054004 (2016)

S-wave Lagrangian [10,14]

Ls = N †
(

iD0 +
�D2

2mN

)
N + dA†

s

[
�s − c0s

(
iD0 +

�D2

4mN

+ γ 2
s

mN

)]
dA

s + di†
t

[
�t − c0t

(
iD0 +

�D2

4mN

+ γ 2
t

mN

)]
di

t

− (
ysd

A†
s (N †P AN ) + ytd

i†
t (N †P iN ) + H.c.

) + mNH (E,�)

6
N †(y2

t

(
di

t σi

)†(
d

j
t σj

) − [
ytys

(
di

t σi

)†(
dA

s σA

) + H.c.
]

+ y2
s

(
dA

s τA

)†(
dB

s σB

))
N + · · ·, (1)

where Dμ is the covariant derivative which acts on the nucleon
and dibaryon fields with ∂μ + ie 1+τ3

2 Aμ and ∂μ + ieCAμ

relations, respectively. Aμ and e are the external field and the
electron charge. We have C = 2,1, and 0 for proton-proton,
proton-neutron, and neutron-neutron dibaryons. In Eq. (1), N ,
di

t , and dA
s denote the nucleon, the deuteron, and the 1S0 NN

auxiliary fields, respectively.
The operators

P i = 1√
8
σ2σ

iτ2, P A = 1√
8
σ2τ2τ

A (2)

with τA (σi) as isospin (spin) Pauli matrices project the NN
system to the 3S1 and 1S0 states, respectively. mN represents
the nucleon mass and the three-nucleon force is introduced
by H (E,�), where E and � are the total energy and cutoff
momentum. The H (E,�) which absorbs all dependencies on
the cutoff as � → ∞ is given by [15–17]

H (E,�) = 2

�2

∞∑
m=0

H2m(�)

(
mNE + γ 2

t

�2

)m

= 2H0(�)

�2
+ 2H2(�)

�4

(
mNE + γ 2

t

) + · · ·, (3)

where the interactions proportional to H2m enter at
N2mLO [15].

We consider two coupling constants for the singlet and
triplet channels as y2

t,s = 8π

m2
Nρt,s

. The parameters �s/t and c0s/t

are given by matching the EFT(π/) NN scattering amplitude
to the effective range expansion (ERE) of the scattering
amplitude of two nonrelativistic nucleons around the iγs/t [10],
and γt = 45.702 MeV is the binding momentum of the
deuteron. We note that according to our power counting
�s/t ∼ Q enters at LO, however, the dimensionless parameter
c0s/t ∼ Q0 first appears at NLO since it comes with two powers
of momentum, c0s/tp

2 ∼ Q2. Using the Lagrangian (1), the
single nucleon propagator is given by the relation

i�N (E,q) = i

E − q2

2mN
− iε

, (4)

and we obtain the propagators of the triplet and singlet
auxiliary fields up to NnLO (n � 1) as

D
(n)
t (q0,q) = 4π

mNy2
t

1

γt −
√

q2

4 − mNq0 − iε

×
n∑

m=0

⎛
⎝ ρt

2

(
mNq0 − q2

4 + γ 2
t

)
γt −

√
q2

4 − mNq0 − iε

⎞
⎠

m

,

D(n)
s (q0,q) = 4π

mNy2
s

1

γs −
√

q2

4 − mNq0 − iε

×
n∑

m=0

⎛
⎝ ρs

2

(
mNq0 − q2

4

)
γs −

√
q2

4 − mNq0 − iε

⎞
⎠

m

. (5)

B. Coulomb

In the pd system, the Coulomb interaction is dominated
at the low-momentum regime. As noted in [11,12,18,19], the
Coulomb parameter enters as αmN

p
, where p is the momentum

transfer. With respect to the Coulomb potential

Vc = α

p2
, (6)

one cannot assume that the scale of all momenta is set by the
deuteron binding momentum, γt . As it is mentioned in [18],
we have to introduce a new momentum scale p, where p � Q
for the power counting. Thus, we have to make a simultaneous
expansion in two small parameters Q

�̄
and p

αmN
.

The Lagrangian of the kinetic and gauge fixing terms of the
photons is

Lph = −1

4
FμνF

μν − 1

2ξ
(∂μAμ − ημην∂

νAμ)2,

ημ = timelike unit vector. (7)

Therefore the static photon propagator is

i�ph(p) = i

p2 + λ2
, (8)

where λ is the mass of the photon. We consider the mass
for the photon because the infrared divergences of the photon
propagator should be handled. The final results are obtained
using an extrapolation for the λ → 0.

By ignoring the Coulomb effects we have two different
isospin-symmetric NN states with respect to their spins:
singlet and triplet channels. But the pp part of the singlet
NN channel has an additional Coulomb contribution. So, the
Coulomb interaction makes isospin breaking. The propagator
of the pp part of the 1S0 dibaryon at NnLO (n � 1) is given
by [13]

D(n)
s,pp(q0,q) = 4π

mNy2
s

1
1
ac

+ 2κH
(

κ
q ′

)

×
n∑

m=0

(
rc

2

(
mNq0 − q2

4

)
1
ac

+ 2κH
(

κ
q ′

)
)m

(9)
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with

α = e2

4π
∼ 1

137
, κ = αmN

2
, q ′ = i

√
q2

4
− mNq0 − iε,

(10)

and

H (η) = ψ(iη) + 1

2iη
− log(iη). (11)

In Eq. (11) the function ψ denotes the logarithmic derivative
of the � function. Also, the scattering length and effective
range for the pp channel are introduced by ac = −7.806 fm
and rc = 2.794 fm, respectively.

C. Electromagnetic

The E1, M1, and E2 transitions contribute to the pd →
3He γ amplitude at the low-energy regime. With respect
to the experimental facts for the pd → 3He γ reaction, the
contribution of the E2 transition is small in comparison with
the M1 transition at low energy. We therefore evaluate the
contributions of E1 and M1 transitions in this calculation.

The Lagrangian of the E1 one-body current is given by the
minimal substitution of �∇ → �∇ + ie (1+τ3)

2
�A in the Lagrangian

of Eq. (1) with �A as an external field:

LE = e

2mN

N †
(

1 + τ3

2

)
( �P + �P ′) · �ε∗

γ N, (12)

where �P and �P ′ are momenta for the incoming and outgoing
nucleons and �εγ denotes the three-vector polarization of the
produced photon. We note that the contribution of the E1
two-body current enters first at higher order than NLO [20].
The Lagrangian of the M1 interaction is constructed by
considering the nucleon and dibaryon operators coupling to
the magnetic field �B,

LB = e

2mN

N †(k0 + k1τ
3)�σ �BN + eL1

mN
√

ρtρs

d
j †
t d3

s Bj

− 2eL2

mNρt

iεijkd
i†
t d

j
t Bk + H.c., (13)

where k0 = 1
2 (kp + kn) = 0.4399 and k1 = 1

2 (kp − kn) =
2.35294. kp (kn) denotes the proton (neutron) magnetic
moment. The coefficients L1 = −4.427 ± 0.015 fm and L2 =
−0.4 fm which have been fixed using the cross section
of np → dγ at thermal energy, and the deuteron magnetic
moment μM , enter at NLO [21].

III. pd SCATTERING

In this section, we explain about a major building block
of the pd → 3He γ transition, the pd scattering. As was
investigated in [12], nucleon-dibaryon scattering amplitudes
up to NLO constructed by two protons and one neutron are
evaluated using the diagrams which are shown in Fig. 1.
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FIG. 1. The Faddeev equation of the nucleon-dibaryon scattering in the cluster-configuration space up to the next-to-leading order.
The superscript “n” denotes the contribution up to NnLO (n � 1). The dashed oval is the nucleon-dibaryon scattering amplitude. The solid line
indicates a nucleon. The Coulomb internal wavy line with coupling to nucleon from both sides represents an exchanged photon. The double
solid line denotes a dibaryon auxiliary field with the propagator D(n). The Ks and H depict the propagator of the exchanged nucleon and the
three-body force, respectively. The Kc, Kbox, K in

tri, and Kout
tri denote the kernels with the Coulomb interaction ∼α. The diagram with direct

Coulomb between the nucleon and deuteron enters only at the next-to-leading order.
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In Fig. 1, all diagrams ∼O(α) are shown in the cluster-
configuration space. We do not consider diagrams of the
second and fourth lines for calculating the Coulomb con-
tributions, because they have a small contribution in the
final results (Kbox has a 7% effect, also K in

tri and Kout
tri have

15% contribution compared to the simple nucleon-exchanged
diagram without the photon [12]). The dashed oval represents
the nucleon-dibaryon scattering amplitude with the Coulomb
effect. In the cluster-configuration space the NnLO(n � 1)
dibaryon propagators are given by

D(n)(q0,q) =

⎛
⎜⎝

D
(n)
t

(
q0 − q2

2mN
,q

)
0 0

0 D(n)
s

(
q0 − q2

2mN
,q

)
0

0 0 D(n)
s,pp

(
q0 − q2

2mN
,q

)
⎞
⎟⎠. (14)

We note that the diagram with the direct coupling of the photon to the dibaryon enters first at NLO, so we do not consider it at
the LO calculations.

The quartet nucleon-dibaryon scattering amplitude has been made only by the scattering from the incoming N + dt to the
outgoing N + dt channel. By using the projection operators for S and P waves one can project the nucleon-dibaryon system
to the 4S 3

2
, 4P 1

2
, and 4P 3

2
channels [22]. Therefore, in the cluster-configuration space, the Faddeev equation of the diagrams in

Fig. 1 for the quartet channel has only the nonzero component t (n,L)
q, t→t

which represents the amplitude in the quartet channel for
the dt p → dt p transition,

t
(n,L)
q, t→t (E; k,p) = −mNy2

t

[
Ks,L(E; k,p) − 1

2
K

(t),n
c,L (E; k,p)

]
+ mNy2

t

2π2

∫ �

0
dq q2

[
Ks,L(E; q,p) − 1

2
K

(t),n
c,L (E; q,p)

]

×D
(n)
t

(
E − q2

2mN

,q

)
t

(n,L)
q, t→t (E; k,q). (15)

Thus the 3 × 1 quartet amplitude for the pd scattering is given by

t (n,L)
q (E; k,p) ≡

⎛
⎜⎝t

(n,L)
q, t→t

0
0

⎞
⎟⎠(E; k,p), (16)

where E = 3k2

4mN
− γ 2

t

mN
, k and p are the total center of mass (c.m.) energy of the nucleon-dibaryon system, the incoming, and

outgoing momentums, respectively. In Eq. (15), the propagator of the exchanged nucleon, Ks,L, is given by

Ks,L(E; k,p) = 1

2

∫ 1

−1
d(cos θ )

PL(cos θ )

k2 + p2 − mNE + kp cos θ
, (17)

where PL(x) denotes the Lth Legendre polynomial of the first kind and θ indicates the angle between �k and �p vectors. The
K

(t,s),n
c,L kernels which are the contributions of the third and fourth diagrams of lines 1 and 3 in Fig. 1 are obtained with the

relations

K
(t,s),n
c,L (E; k,p) = αmN

2kp
QL

(
−k2 + p2 + λ2

2kp

)(
1

|γt | − δn1ρt,s

)
, n = 0,1. (18)

For the doublet (2S 1
2
, 2P 1

2
, and 2P 3

2
) channels, the nucleon-dibaryon scattering amplitudes in the cluster-configuration space

constructed by two protons and one neutron are given by⎛
⎜⎝

t
(n,L)
d, t→t

t
(n,L)
d, t→s1

t
(n,L)
d, t→s2

⎞
⎟⎠ = mN

2

⎛
⎜⎝

y2
t (Ks,L + δL0H (E,�))

−ytys

(
Ks,L + δL0

H (E,�)
3

)
−ytys

(
2Ks,L + δL0

2H (E,�)
3

)
⎞
⎟⎠ + mN

2

⎛
⎜⎝y2

t K
(t),n
c,L

0

0

⎞
⎟⎠

− mN

2

⎛
⎜⎝

y2
t D

(n)
t (Ks,L + δL0H (E,�)) −ytysD

(n)
s (3Ks,L + δL0H (E,�)) 0

−ytysD
(n)
t

(
Ks,L + δL0

H (E,�)
3

) −y2
s D

(n)
s

(
Ks,L − δL0

H (E,�)
3

)
0

−ytysD
(n)
t

(
2Ks,L + δL0

2H (E,�)
3

)
y2

s D
(n)
s

(
2Ks,L + δL0

2H (E,�)
3

)
0

⎞
⎟⎠ ⊗

⎛
⎜⎝

t
(n,L)
d, t→t

t
(n,L)
d, t→s1

t
(n,L)
d, t→s2

⎞
⎟⎠

− mN

2

⎛
⎜⎝

y2
t D

(n)
t K

(t),n
c,L 0 −ytysD

(n)
s,pp(3Ks,L + δL0H (E,�))

0 y2
s D

(n)
s K

(s),n
c,L y2

s D
(n)
s,pp

(
Ks,L + δL0

H (E,�)
3

)
0 0 δL0y

2
s D

(n)
s,pp

2H (E,�)
3

⎞
⎟⎠ ⊗

⎛
⎜⎝

t
(n,L)
d, t→t

t
(n,L)
d, t→s1

t
(n,L)
d, t→s2

⎞
⎟⎠ (19)
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FIG. 2. The Feynman diagrams which contribute in the E1 and M1 pd → 3He γ transition amplitudes up to NLO. The first and second
lines show the diagrams which contribute in the M1 and E1 transitions of the pd → 3He γ process up to NLO. For the E1 we do not calculate
s5 and the fifth diagram in the second line that are related to the s5 diagram, because it will appear in a higher order than NLO. The third line
presents the diagrams which enter only for the pd → 3He γ transition (Coulomb effect). They are depicted by the rectangle with an outgoing
wavy line. The wavy line which exits from the nucleon denotes the emitted photon. The dashed half-oval is the normalized 3He wave function.
All remaining notations are the same as in Fig. 1.

with

A ⊗ B ≡ 1

2π2

∫ �

0
dq q2A(. . . q)B(. . . q). (20)

In the above equation, t
(n,L)
d, v→w denotes the NnLO dvN →

dwN transition amplitude in the doublet channel where L
denotes the L wave, and v and w are t , s1, and s2 for the
3S1, 1S0, and pp part of 1S0 dibaryons, respectively. Here,
the single nucleon in the nucleon-dibaryon system is proton,
proton, and neutron when the dibaryon is the 3S1, 1S0, and pp
part of 1S0, respectively. We emphasize that the relation (19)
is constructed by considering the projection operators for the
doublet channels [22].

The nucleon-dibaryon scattering amplitudes in Eqs. (15)
and (19) enable us to evaluate the amplitude of the
pd →3 He γ transition in the following section by the cluster-
configuration space up to NLO.

IV. pd → 3He γ SYSTEM

We concentrate on the energy regime E � 0.5 MeV and
try to calculate the amplitude of the proton radiative capture
by deuteron in the c.m. framework. We work in the region
E � 0.5 MeV because in this regime the Coulomb parameter
αmN

p
is of order 1

3 and so, nonperturbative treatment of Coulomb
effects is not necessary.

In the absence of the Coulomb repulsion the pd → 3He γ
process is acting like the nd → 3He γ process and the M1
transition has the dominated contribution with respect to E1 at
zero energy. With the presence of the Coulomb repulsion, both

the E1 and M1 transitions amplitudes are small at zero energy.
With increasing energy, the amplitude of the E1 transition, due
to the capture in the P -wave state, increases and contributes
dominantly in the pd → 3He γ process.

The diagrams of the E1 and M1 transitions for the pd →
3He γ process up to next-to-leading order are schematically
shown in Fig. 2. The dashed oval depicts the nucleon-dibaryon
scatterings which are given by Eqs. (16) and (19) as the quartet
and doublet amplitudes, respectively. The dashed half-oval
indicates the normalized 3He wave function at NnLO which
is introduced by t

(n)
3He in the next section. We consider the

contribution of all diagrams shown in Fig. 2 in the amplitude
of proton radiative capture by a deuteron reaction. We do not
consider the contributions of the diagrams similar to Fig. 3.
As noted in [11] these diagrams have negligible contributions
in the final results. In the following we calculate the M1 and
E1 amplitude for the pd → 3He γ process separately.

A. M1 transition

By working in the Coulomb gauge, the M1 amplitude of
the pd →3 He γ can be written as two orthogonal terms

(t†σaN )(�εd × ( �ε∗
γ × �̃q))a , i(t†N )(�εd · �ε∗

γ × �̃q), (21)

where t , �εd , and �̃q are the final 3He field, the three-vector
polarization of the deuteron and the unit vector along the three-
momentum of the outgoing photon, respectively.

Using the M1 transition, the final 3He ground state can
be made from both initial doublet (2S 1

2
) and quartet (4S 3

2
) pd
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FIG. 3. The neglected diagrams which can be contributed in the final amplitude of the E1 and M1 pd → 3He γ transition. All notations
are the same as previous figures.

systems. We calculate the contribution of the diagrams in Fig. 2
step by step as presented for the amplitude of the nd → 3H γ
reaction in [5]. Thus, the amplitude of the M1 pd → 3He γ
transition can generally be written as the sum of both initial
2S 1

2
and 4S 3

2
pd contributions by the relation

W (n)
M1 = t†

[
M(n)

2S 1
2

X2S 1
2

+ M(n)
4S 3

2

X4S 3
2

]
N, (22)

where

X2S 1
2

= i�εd �ε∗
γ × �̃q + �σ × �εd �ε∗

γ × �̃q ,

X4S 3
2

= 2 i�εd �ε∗
γ × �̃q − �σ × �εd �ε∗

γ × �̃q . (23)

The M(n)
x with x = 2S 1

2
, 4S 3

2
for the quartet and doublet

channels before multiplying the deuteron wave function
normalization factor is given by

M (n)
x (Ei,k) = [

S
(n)
0,x(Ei,k) + S(n)

x (Ei,k) + C(n)
x (Ei,k)

]
u

− 1

2π2

∫ �

0
dq q2

[
S(n)

x (Ei,q) + C(n)
x (Ei,q)

]D(n)(Ei,q) t (n,0)
x (Ei ; k,q) (24)

with

S(n)
x (Ei,k) =

5∑
i=1

S
(n)
i,x (Ei,k), u =

⎛
⎝1

0
0

⎞
⎠, (25)

where the 3 × 3 matrix function S
(n)
i,x with i = 0, . . . ,5 represents the contribution of the “si” diagram in Fig. 2 for the incoming

x channel at NnLO (n � 1). In Eq. (24), the matrix function C(n)
x denotes the contribution of the diagram “c” in Fig. 2. The

“c” diagram represents the additional terms which only contribute in the pd → 3He γ process compare with the nd → 3H γ .

Also, the k indicates the incoming momentum and Ei = E = 3k2

4mN
− γ 2

t

mN
denotes the energy of the initial pd system in the c.m.

framework.
For the initial 2S 1

2
state, in the cluster-configuration space, we obtain

S
(n)
0,2S 1

2

(Ei,k) = e

6mN

1

Ef − Ei

t
(n)†
3He (k)

⎛
⎝−(k0 + k1) 0 0

0 k0 + k1 0
0 0 2(k0 − k1)

⎞
⎠,

S
(n)
1,2S 1

2

(Ei,k) = e y2
t

48π

1

Ef − Ei

t
(n)†
3He (k)D(n)(Ef ,k)

[√
3

4
k2 − mNEi −

√
3

4
k2 − mNEf

]⎛
⎝2k0 k1 0

k1 0 0
0 0 0

⎞
⎠,

S
(n)
2,2S 1

2

(Ei,k) = e y2
t

96π2

1

Ef − Ei

∫ �

0
dq q2t

(n)†
3He (q)D(n)(Ef ,q)

1

kq

[
Q0

(
mNEi − k2 − q2

kq

)
− Q0

(
mNEf − k2 − q2

kq

)]

×
⎛
⎝−5(k0 − k1) k0 − k1 2(k0 + k1)

k0 − k1 −(k0 − k1) 2(k0 + k1)
2(k0 + k1) 2(k0 + k1) 0

⎞
⎠,

S
(n)
3,2S 1

2

(Ei,k) = e y2
t

96π2

1

Ef − Ei

∫ �

0
dq q2 t

(n)†
3He (q)

1

kq

[
D(n)(Ei,q)Q0

(
mNEi−k2 − q2

kq

)
−D(n)(Ef ,q)Q0

(
mNEf − k2 − q2

kq

)]

×
⎛
⎝ k0 + k1 −(k0 + k1) −2(k0 + k1)

3(k0 + k1) k0 + k1 −2(k0 + k1)
6(k0 − k1) −2(k0 − k1) 0

⎞
⎠,
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S
(n)
4,2S 1

2

(Ei,k) = e y2
t

72π2

1

Ef − Ei

H (Ei,�)
∫ �

0
dq q2 t

(n)†
3He (q)[D(n)(Ef ,q)−D(n)(Ei,q)]

⎛
⎝−3(k0 + k1) k0 + k1 2(k0 + k1)

−3(k0 + k1) (k0 + k1) 2(k0 + k1)
−6(k0 − k1) 2(k0 − k1) 4(k0 − k1)

⎞
⎠,

S
(n)
5,2S 1

2

(Ei,k) = t
(n)†
3He (k)D(n)(Ef ,k)

⎛
⎜⎝

−4eL2
3mN ρt

eL1
3mN

√
ρsρt

0
eL1

3mN
√

ρsρt
0 0

0 0 0

⎞
⎟⎠,

C
(n)
2S 1

2

(Ei,k) = e3y2
t mN

192(π )4

1

(Ef − Ei)

∫ �

0
dq ′q ′2

∫ �

0
dq q2

∫ 1

−1
d(cos θ ) t

(n)†
3He (q ′)D(n)(Ef ,q ′)

×
[

O(Ei,k,q,q ′, cos θ )

mNEi − k2 − q2 − kq cos θ
− O(Ef ,k,q,q ′, cos θ )

mNEf − k2 − q2 − kq cos θ

]⎛
⎝2k0 k1 0

k1 0 0
0 0 0

⎞
⎠, (26)

where

O(E,k,q,q ′, cos θ ) = 1√
F

[
ln

(
A + B

A − B

)
− ln

(
x1

x2

)]
(27)

with the following parameters:

x1 = B(2C + D) − A(D + 2G) + 2
√

F
√

C + D + G, x2 = B(2C − D) − A(D − 2G) + 2
√

F
√

C − D + G,

A = k2 + q ′2 + λ2, B = −2kq ′, C = (mN E − k2 − q2 − q ′2 − 2kq cos θ )2 − (qq ′ sin θ )2,

D = 2(mN E − k2 − q2 − q ′2 − 2kq cos θ )(kq ′ + qq ′ cos θ ), G = (kq ′ + qq ′ cos θ )2 + (qq ′ sin θ )2,

F = B2C + A2G − ABD. (28)

Also, for the quartet channel (4S 3
2
) the amplitudes of the s0,..., s5 and c diagrams in Fig. 2 are given by

S
(n)
0,4S 3

2

(Ei,k) = e

3
√

3mN

1

Ef − Ei

t
(n)†
3He (k)

⎛
⎝k0 + k1 0 0

0 0 0
0 0 0

⎞
⎠,

S
(n)
1,4S 3

2

(Ei,k) = e ytys

48
√

3π

1

Ef − Ei

t
(n)†
3He (k)D(n)(Ef ,k)

[√
3

4
k2 − mNEi −

√
3

4
k2 − mNEf

]⎛
⎝−k0 0 0

k1 0 0
0 0 0

⎞
⎠,

S
(n)
2,4S 3

2

(Ei,k) = e ytys

48
√

3π2

1

Ef − Ei

∫ �

0
dqq2t

(n)†
3He (q)D(n)(Ef ,q)

× 1

kq

[
Q0

(
mNEi − k2 − q2

kq

)
− Q0

(
mNEf − k2 − q2

kq

)]⎛
⎝ k0 − k1 0 0

k0 − k1 0 0
2(k0 + k1) 0 0

⎞
⎠,

S
(n)
3,4S 3

2

(Ei,k) = e ytys

24
√

3π2

1

Ef − Ei

∫ �

0
dqq2t

(n)†
3He (q)

1

kq

[
D(n)(Ei,q)Q0

(
mNEi − k2 − q2

kq

)

− D(n)(Ef ,q)Q0

(
mNEf − k2 − q2

kq

)]⎛
⎝k0 + k1 0 0

0 0 0
0 0 0

⎞
⎠, S

(n)
4,4S 3

2

(Ei,k) = 0,

S
(n)
5,4S 3

2

(Ei,k) = t
(n)†
3He

(k)D(n)(Ef ,k)

⎛
⎜⎝

2eL2
3
√

3mN ρt
0 0

eL1
3
√

3mN
√

ρsρt
0 0

0 0 0

⎞
⎟⎠,

C
(n)
4S 3

2

(Ei,k) = e3ytysmN

192
√

3π4

1

Ef − Ei

∫ �

0
dq ′q ′2

∫ �

0
dq q2

∫ 1

−1
d(cosθ ) t

(n)†
3He (q ′)D(n)(Ef ,q ′)

×
[

O(Ei,k,q,q ′, cos θ )

mNEi − k2 − q2 − kq cos θ
− O(Ef ,k,q,q ′, cos θ )

mNEf − k2 − q2 − kq cos θ

]⎛
⎝−k0 0 0

k1 0 0
0 0 0

⎞
⎠. (29)
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In the above equations Ef represents the final state energy which is given by Ef = −B3He, where B3He denotes the 3He binding
energy. The results in Eqs. (26), (29) are obtained after applying the appropriate projection operators for the initial and final
states. We note that the S

(n)
4,4S 3

2

must be zero since in the quartet (S = 3
2 ) channel all spins are aligned and there is no three-body

interaction in this channel because the Pauli principle forbids the three nucleons to be at the same point in space.
Finally, we stress that the M(n)

x amplitude which is the M1 contribution of the pd → 3He γ process is obtained by
considering

Z (n)
t =

(
∂

∂q0

1

D
(n)
t (q0,q)

∣∣∣∣
q0=− γ 2

t
mN

,q=0

)−1

, (30)

as the normalization factor of the incoming deuteron wave function at NnLO. We have used this normalization factor as

M(n)
x (Ei,k) = M (n)

x (Ei,k)
√
Z (n)

t . (31)

B. E1 transition

For the E1 matrix element of pd →3 He γ , the spin structure can be written as two orthogonal terms,

i(t†σaN )(�εd × �ε∗
γ )a , (t†N )(�εd �ε∗

γ ). (32)

The E1 transition mixes an initial P -wave state to the final S-wave helium-3. Using the E1 transition, the final 3He ground
state can be made from both initial doublet (2P 1

2
and 2P 3

2
) and quartet (4P 1

2
and 4P 3

2
) pd systems. We calculate the contribution

of the diagrams in Fig. 2 as presented for the M1 transition. According to [20] the order of the s5 diagram is higher than
NLO, so we will not consider it in our calculation up to NLO. The E1 quartet amplitude for these diagrams is zero. Thus, the
amplitude of the E1 pd → 3He γ transition can finally be written as the sum of both initial 2P 1

2
and 2P 3

2
pd contributions by the

relation

W (n)
E1 = t†

[
E (n)

2P 1
2

Y2P 1
2

+ E (n)
2P 3

2

Y2P 3
2

]
N, (33)

where

Y2P 1
2

= �εd �ε∗
γ + i �σ �εd × �ε∗

γ , Y2P 3
2

= 2 �εd �ε∗
γ − i �σ �εd × �ε∗

γ . (34)

The E (n)
y with y = 2P 1

2
, 2P 3

2
for the doublet channels before multiplying the deuteron wave function normalization factor is given

by

E(n)
y (Ei,k) = [

S
(n)
0,y(Ei,k) + S(n)

y (Ei,k) + C(n)
y (Ei,k)

]
u − 1

2π2

∫ �

0
dq q2

[
S(n)

y (Ei,q) + C(n)
y (Ei,q)

]D(n)(Ei,q) t (n,1)
y (Ei ; k,q)

(35)

with

S(n)
y (Ei,k) =

4∑
i=1

S
(n)
i,y (Ei,k). (36)

where the 3 × 3 matrix function S
(n)
i,y with i = 0, . . . ,4 represents the contribution of the “si” diagram in Fig. 2 for the initial y

channel at NnLO (n � 1).
For the initial 2P 1

2
state, in the cluster-configuration space, we obtain

S
(n)
0,2P 1

2

(Ei,k) = e k

3mN

1

Ei − Ef

t
(n)†
3He (k)

⎛
⎝3 0 0

0 1 0
0 0 0

⎞
⎠,

S
(n)
1,2P 1

2

(Ei,k) = e y2
t

48π2

1

Ei − Ef

t
(n)†
3He (k)D(n)(Ef ,k)

∫ �

0
dq q2 1

kq

[
k

(
Q0

(
mNEi − k2 − q2

kq

)
− Q0

(
mNEf − k2 − q2

kq

))

− q

(
Q1

(
mNEi − k2 − q2

kq

)
− Q1

(
mNEf − k2 − q2

kq

))]⎛
⎝6 0 0

0 1 0
0 0 4

⎞
⎠,
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TABLE I. The experimental data and our EFT(π/) results for the cross section of the pd → 3He γ process up to NnLO (n � 1) are shown
at energy 0.5 � E � 3 MeV with � = 600. The σ

(n)
E1 and σ

(n)
M1 denote the NnLO E1 and M1 cross sections, respectively. The results of the

cross section are presented in units of μb.

Elab(MeV) 0.5 0.7 1.0 1.4 1.8 2.5 3

σ
(0)
E1 3.5137 4.4725 5.3700 6.3061 7.2014 8.4890 9.6570

σ
(0)
M1 0.0873 0.1042 0.1283 0.1402 0.1635 0.2474 0.2511

σ
(0)
tot 3.6010 4.5767 5.4983 6.4463 7.3649 8.7364 9.9081

σ
(1)
E1 2.6841 3.6494 4.5999 5.7900 6.5074 7.9707 9.0334

σ
(1)
M1 0.0898 0.1112 0.1514 0.1604 0.1803 0.2698 0.3098

σ
(1)
tot 2.7739 3.7606 4.7513 5.9504 6.6877 8.2405 9.3432

σexp 2.5 3.22 4.15 5.12 5.96 7.47 8.48

S
(n)
2,2P 1

2

(Ei,k) = e y2
t

24π2

1

Ei − Ef

∫ �

0
dq q2t

(n)†
3He (q)D(n)(Ef ,q)

1

kq

[
k

(
Q0

(
mNEi − k2 − q2

kq

)
− Q0

(
mNEf − k2 − q2

kq

))

− q

(
Q1

(
mNEi − k2 − q2

kq

)
− Q1

(
mNEf − k2 − q2

kq

))]⎛
⎝0 0 3

0 0 −1
3 −1 0

⎞
⎠,

S
(n)
3,2P 1

2

(Ei,k) = e y2
t

48π2

1

Ei − Ef

∫ �

0
dq q2 t

(n)†
3He (q)

1

k

×
[
D(n)(Ei,q)Q1

(
mNEi − k2 − q2

kq

)
− D(n)(Ef ,q)Q1

(
mNEf − k2 − q2

kq

)]⎛
⎝−3 3 6

3 1 −2
0 0 0

⎞
⎠,

S
(n)
4,2P 1

2

(Ei,k) = 0,

C
(n)
2P 1

2

(Ei,k) = e3y2
t mN

64(π )4

1

(Ei − Ef )

∫ �

0
dq ′q ′2

∫ �

0
dq q2

∫ 1

−1
d(cos θ ) t

(n)†
3He (q ′)D(n)(Ef ,q ′)

×
(

q cos θ

[
O(Ei,k,q,q ′, cos θ )

mNEi − k2 − q2 − kq cos θ
− O(Ef ,k,q,q ′, cos θ )

mNEf − k2 − q2 − kq cos θ

]

+
(

k + A

B
q ′

)[
O(Ei,k,q,q ′, cos θ ) − O(Ef ,k,q,q ′, cos θ )

mNEi − k2 − q2 − kq cos θ

]

− q ′
[

L(Ei,k,q,q ′, cos θ ) − L(Ef ,k,q,q ′, cos θ )

mNEi − k2 − q2 − kq cos θ

])⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠, (37)

where

L(E,k,q,q ′, cos θ ) = 1

B
√

G
ln

y1

y2
(38)

with the following parameters:

y1 = (2G + D) + 2
√

G
√

C + D + G, y2 = (−2G + D) + 2
√

G
√

C − D + G. (39)

TABLE II. The cutoff variation of our EFT(π/) results for the total cross section between � = 200 and � = 600 up to NnLO (n � 1) as a
function of laboratory system energy.

Elab 0.5 0.7 1.0 1.4 1.8 2.5 3.0

Abs[1 − σ
(n)
tot (�=200)

σ
(n)
tot (�=600)

] n = 0 0.0229 0.0111 0.0085 0.0071 0.0030 0.0030 0.0026

n = 1 0.0040 0.0055 0.0045 0.0032 0.0033 0.0028 0.0024
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Also, for the initial 2P 3
2

state the amplitudes of the s0, . . . , s4 and c diagrams in Fig. 2 are given by

S
(n)
0,2P 3

2

(Ei,k) =
√

3 e k

3mN

1

Ei − Ef

t
(n)†
3He (k)

⎛
⎝3 0 0

0 1 0
0 0 0

⎞
⎠,

S
(n)
1,2P 3

2

(Ei,k) =
√

3 e y2
t

48π2

1

Ei − Ef

t
(n)†
3He (k)D(n)(Ef ,k)

∫ �

0
dq q2 1

kq

[
k

(
Q0

(
mNEi − k2 − q2

kq

)
− Q0

(
mNEf − k2 − q2

kq

))

− q

(
Q1

(
mNEi − k2 − q2

kq

)
− Q1

(
mNEf − k2 − q2

kq

))]⎛
⎝6 0 0

0 1 0
0 0 4

⎞
⎠,

S
(n)
2,2P 3

2

(Ei,k) =
√

3 e y2
t

24π2

1

Ei − Ef

∫ �

0
dq q2t

(n)†
3He (q)D(n)(Ef ,q)

1

kq

[
k

(
Q0

(
mNEi − k2 − q2

kq

)
− Q0

(
mNEf − k2 − q2

kq

))

− q

(
Q1

(
mNEi − k2 − q2

kq

)
− Q1

(
mNEf − k2 − q2

kq

))]⎛
⎝0 0 3

0 0 −1
3 −1 0

⎞
⎠,

S
(n)
3,2P 3

2

(Ei,k) =
√

3 e y2
t

48π2

1

Ei − Ef

∫ �

0
dq q2 t

(n)†
3He (q)

1

k

×
[
D(n)(Ei,q)Q1

(
mNEi − k2 − q2

kq

)
− D(n)(Ef ,q)Q1

(
mNEf − k2 − q2

kq

)]⎛
⎝−3 3 6

3 1 −2
0 0 0

⎞
⎠,

S
(n)
4,2P 3

2

(Ei,k) = 0,

C
(n)
2P 3

2

(Ei,k) =
√

3 e3y2
t mN

64(π )4

1

(Ei − Ef )

∫ �

0
dq ′q ′2

∫ �

0
dq q2

∫ 1

−1
d(cos θ ) t

(n)†
3He (q ′)D(n)(Ef ,q ′)

×
(

q cos θ

[
O(Ei,k,q,q ′, cos θ )

mNEi − k2 − q2 − kq cos θ
− O(Ef ,k,q,q ′, cos θ )

mNEf − k2 − q2 − kq cos θ

]

+
(

k + A

B
q ′

)[
O(Ei,k,q,q ′, cos θ ) − O(Ef ,k,q,q ′, cos θ )

mNEi − k2 − q2 − kq cos θ

]

− q ′
[

L(Ei,k,q,q ′, cos θ ) − L(Ef ,k,q,q ′, cos θ )

mNEi − k2 − q2 − kq cos θ

])⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠. (40)

As with the M1 transition results, the results in
Eqs. (37), (40) are obtained after applying the appropriate
projection operators for the initial and final states.

The E (n)
y amplitude which is the E1 contribution of the

pd → 3He γ process is obtained by

E (n)
y (Ei,k) = E(n)

y (Ei,k)
√
Z (n)

t . (41)

V. NUMERICAL RESULTS

In order to evaluate the cross section for the pd → 3He γ
process we need the normalized 3He wave function and the
nucleon-dibaryon scattering amplitude. The 3He wave func-
tion is obtained at LO and NLO by solving the homogenous
part of Eq. (19) with applying E = −B3He. For the 3He wave
function we use the normalization condition which is presented

in Appendix A of [5]. In this process a FORTRAN code for a
specific cutoff has been used. The pd scattering amplitudes at
LO and NLO are obtained by solving numerically the Faddeev
equations which are introduced in Sec. IV for the initial doublet
and quartet channels. We solve them in a MATHEMATICA code
by the Hetherington-Schick method [23–25] with a specific
cutoff momentum. Using the results of the scattering amplitude
and the 3He wave function we solve Eqs. (24), (35) to obtain
the M1 and E1 amplitudes of pd → 3He γ process. We
proceed with the numerical evaluation by using the Gaussian
quadrature weights and the same cutoff momentum as before.
Here, the UV divergences are handled using the three-body
force H (E,�) which is introduced in Eq. (3). For the leading-
order three-body force H0(�) we use the equation introduced
in [26], but we obtain H NLO

0 (�) for the cutoff � by matching
the 3He binding energy to the experimental value B

exp
3He =

7.68 MeV.
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LO EFT
NLO EFT
NLO E1
NLO M1
LO E1
LO M1
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FIG. 4. Comparison between our results for � = 600 and ex-
perimental data. The triangular points denote the experimental data.
Our results for total cross section, E1, and M1 cross section of the
pd → 3He γ process at LO and NLO, have been shown.

As introduced in [4,5], the total NnLO cross section of
pd → 3He γ reaction is evaluated using the relation

σ
(n)
tot = (Ei − Ef )3

v

×

∣∣∣M(n)
2S 1

2

∣∣∣2
+ 2

∣∣∣M(n)
4S 3

2

∣∣∣2
+

∣∣∣E (n)
2P 1

2

∣∣∣2
+ 2

∣∣∣E (n)
2P 3

2

∣∣∣2

27
,

(42)

where “(n)” superscript denotes NnLO results and v is the
incident proton velocity in the c.m. frame.

The comparison of experimental data [27] with our EFT(π/)
results for the cross section of the pd → 3He γ process up
to NnLO (n � 1) at energy 0.5 � E � 3 MeV are shown in
Table I. In Fig. 4 we have plotted our EFT(π/) results for total,
E1, and M1 cross sections up to LO and NLO. Also, we have
shown the experimental data in Fig. 4 to compare with our
EFT(π/) results. We follow the power counting introduced in
Ref. [5]. The EFT(π/) expansion parameter is Q

�̄
∼ 1

3 , where Q

is the small parameter and �̄ is the large parameter, thus the
NLO diagrams enter ∼33% corrections to the LO amplitude.
The cross section is proportional to the square of the amplitude,
so it is obvious that if for example EFT(π/) systematic error in
the amplitude is “α”, the systematic error in the cross section
would be “2α”. So, we expect a maximum error of 22% at NLO
for the cross section. The NLO EFT(π/) results in Fig. 4 have
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NLO
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FIG. 5. Curves of cutoff variation between � = 200 and � =
600 MeV for the cross section up to NnLO (n � 1) are plotted as a
function of laboratory system energy. The dashed line and solid line
correspond to our result up to LO and NLO, respectively.

the maximum error ∼16.8% compared with the experimental
data. This small error indicates that there is good agreement
between our results and the experimental data within the range
of systematic error.

In Table II we have shown the cutoff variation of our
EFT(π/) results for the total cross section between � = 200
and � = 600 up to NnLO (n � 1) at energy 0.5 � E �
3 MeV. We have also plotted the cutoff variation of our
EFT(π/) results between � = 200 and � = 600 in Fig. 5. These
results indicate that the cross section of pd → 3He γ is cut-of
independent and properly normalized.

VI. CONCLUSION AND OUTLOOK

In this paper we have calculated the cross section for
pd → 3He γ up to NLO. We have presented our evaluation
for the incoming proton with the energy 0.5 � E � 3 MeV.
The lower and upper energy limits indicate that we treat
the Coulomb effect perturbatively (E � 0.5) MeV and the
EFT(π/) breakdown scale (E � 3) MeV has been taken into
consideration. We have considered that in the low-energy
regime the E1 is the dominant transition and the M1 transition
has a small but important contribution for the pd → 3He γ
process. The experimental cross section data in this range of
energy has been used in order to compare with our EFT(π/)
results. The cross section results up to NLO are in good
agreement with the experimental data considering the EFT(π/)
theoretical uncertainties. The calculation of pd → 3He γ
can be further applied to the calculation of parity-violating
observables of the �pd → 3He γ reaction.
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