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Longitudinal asymmetry and proton spin rotation in �pd scattering with pionless
effective field theory
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The energy dependence of the longitudinal asymmetry (AL) and the spin rotation of the proton on the deuterium
target in the �pd scattering are presented using the pionless effective field theory formalism. The strong, weak,
and Coulomb interactions have been introduced in the �pd scattering. We have shown that in the presence of
Coulomb interaction, the parity-conserving (PC) and the parity-violating (PV) sectors are modified. The PV
two-body transitions diagrams have been evaluated with the inclusion of Coulomb interaction and consequently
the PV observables are enhanced. The leading-order values of the AL and the spin rotation of the proton on
the deuterium target are calculated at the proton laboratory energies above 0.7 MeV, in order to calculate the
Coulomb effect perturbatively, up to 3 MeV where typical momenta is Q � mπ . With the lack of experimental
data for the low-energy coupling constants (LECs), we have used two estimated sets for the five independent
(PV) LECs of the weak NN PV Lagrangian. The order of magnitude, of the PV observables with these two sets,
is found to be 10−6 to 10−7 which indicates that the expected order is achieved in this energy range. The cutoff
independent results support the validity of our approach.
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I. INTRODUCTION

The theoretical analysis of the nuclear parity-violation (PV)
effects has been pursued in the low-energy region for the two-
and three-body systems during the past 50 years. Recently, new
efforts ambitiously hope to extend the calculations of the PV
observables resulting from the weak interactions to few-body
and complex many-body systems with lattice QCD. This is
a challenging task for understanding the main features of the
standard model and searching for the new physics beyond it.

The most common theoretical approach to evaluate the PV
effects is based on the work of the Desplanques, Donoghue,
and Holstein (DDH) potential [1]. The DDH potential has de-
veloped in terms of seven parameters representing the weak PV
meson-nucleon couplings. An accurate estimate of the weak
couplings is connected to the strong interaction uncertainties.
For this reason the weak couplings were presented in terms
of an “allowable ranges” and “best values” [2,3] based on the
quark model and the symmetry arguments.

Recently evidence of the lattice QCD calculation and ex-
periment indicates at least a factor of three below the nominal
DDH “best value” for the weak meson-nucleon coupling [3].
These new evidences indicate that the DDH approach, which
is based on a number of models and assumptions, may
not adequately characterize the PV nucleon-nucleon (NN )
interaction. These discrepancies provide motivation to focus
on a model-independent parametrization of the PV effects [4].

The introduction of the model-independent and precision
controlled effective field theory (EFT) provides a unified
framework to calculate the nuclear PV effects in terms
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of the PV weak NN potentials based on two versions of
EFT. These potentials were derived up to next-to-next-to-
leading order (N2LO) from the pionless and the pionful EFT
Lagrangians [5]. At energies well below pion production,
the nucleons and photons are the only dynamical degrees
of freedom, the pionless effective field theory [EFT(π/)] is
relevant to study the PV effects. Instead of calculating the PV
amplitudes by potentials, we sum Feynman PV diagrams in a
systematic EFT(π/). The PV two-body transition at the lowest
order and the lowest energy connects an S-wave and a P -wave
channel. In the EFT(π/) the PV Lagrangian depends at the
leading order on five independent operators parametrized by a
set of five independent and unknown S-P waves combinations
of the low-energy constants (LECs) [5].

A large number of the PV effects can then be evaluated in
terms of the LECs with EFT(π/). These PV effects are, in the
two-body sector, the longitudinal asymmetry in the �pp, �nn, �pn
scatterings [6], the photon asymmetry with respect to neutron
polarization and the circular polarization of the outgoing
photon in the np → dγ [7], the energy dependence of the PV
asymmetry of the circularly polarized photon in the dγ → np
[8]. In the three-body sector: the neutron spin rotation in the
hydrogen and the neutron spin rotation in the deuterium [9],
the circular polarization of γ emission in the nd → 3H γ
reaction [10], beam �nd and target n �d asymmetries as function
of the c.m. energy for the nd scattering [11], �nd → 3H γ

or n �d → 3H γ processes [12], the energy dependence of the
longitudinal asymmetry, and the proton spin rotation in the �pd
scattering. In this respect the calculation of the PV effect for the
scattering of protons from few-nucleon 2H, 3H, 4H systems has
to be treated perturbatively with the inclusion of the Coulomb
interaction above the 0.7 proton laboratory energy. Also the
range of the energies for EFT(π/) calculations and the measured
PV effects must be kept below pion production in order to
correctly match the theoretical calculation, in terms of LECs,
to the experimental data.
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In order to obtain information on the weak force between
neutrons and protons in the three-nucleon system and due
to the complexities and difficulties inherent in the different
experiments in the two- and three-body sectors, the focus
is on the theoretical investigation of the simplest systems
for the asymmetry in the �nd and �pd. In this paper, we
have calculated the energy dependence of the longitudinal
asymmetry AL in the �pd scattering [13] and the proton spin
rotation on the deuteron target. We intend to use the EFT(π/)
for calculating these PV observables with the inclusion of
strong and Coulomb interactions for the parity-conserving
(PC) and the PV amplitudes at very low energies at the
leading order (LO). We have shown that in the presence of a
Coulomb interaction the PV effect is modified due to diagrams
connecting the different PV two-body transitions and Coulomb
interaction. We obtain a prediction for AL and the proton spin
rotation in terms of different contributions multiplied by the
unknown S-P wave combinations of LECs for a specific proton
laboratory energy. We find that the dominant contribution to
AL and the proton spin rotation comes from the contribution
which is multiplied by the g

3S1−3P1 low-energy constant. It is
a general understanding that only g

3S1−3P1 make a link to the
one-pion exchange coupling constant [3,5]. The prediction
of the PV effects in the �nd reaction has been carried out
using operators from the EFT(π/) or pionful EFT potentials to
calculate the matrix elements with realistic wave functions. In
these evaluations of the neutron spin rotation, the contribution
of the long-range part of the PV potentials is dominated due
to the one-pion exchange [14,15].

To this point no experimental data for the �pd or �nd
scattering have been reported at very low energies. The lack
of five experimental measurements for the PV observables
is the main obstacle to pin down the PV LECs of the LO
Lagrangian. Therefore, new experimental efforts for the simple
systems like �nd and �pd are needed to measure the PV
effects and consequently constrain the LECs. In the present
circumstance with no available experimental data we use
two sets for the PV coefficients values. The first set is
obtained by matching the five EFT(π/) relation for the PV
observables A

np
γ , P

np
γ , 1

ρ
dφnp

dl
, 1

ρ
dφnd

dl
, and P nd

γ to the DDH
“best values” estimates for these observables [12]. The second
estimates for the PV LECs are introduced by a translation
from LECs to the DDH parameters using the results in [11].

In this respect, the older calculation of AL in �pd scattering
with the use of a phenomenological parametrization of the
parity nonconservation NN interaction has been suggested
30 years ago [16]. The analysis of AL in the �pd scattering
has been developed with the DDH potential [1]. The AL =
−1.3 × 10−7 has been estimated at 15 MeV proton laboratory
energy with Danilov parameter based on DDH best values.
The AL calculation based on the Faddeev approach has
been performed at 14.4 MeV for the �pd scattering, AL is
reported as −1.8 × 10−7 [13]. In these theoretical efforts,
the three-body interaction as well as the Coulomb effect
have not been considered. The experimental data of AL have
been measured in the �pd scattering at proton laboratory
energies of 15 MeV at LANL [17] and for 45 MeV at
PSI [18]. These experimental efforts are limited over a
range of energy and do not distinguish elastic from breakup
events.

In the present work, the PC pd formalism is briefly
considered in Sec. II and the PV formulation for the �pd
scattering is introduced in terms of the unknown S-P wave
combinations of LECs in Sec. III. The AL and the proton
spin rotation results are presented in Sec. IV. In Sec. V we
summarize our results and present an outlook.

II. PARITY-CONSERVING pd SCATTERING

For calculating the AL, we need to calculate both the PC
and PV amplitudes. The interactions which are considered in
the present work consist of two sectors, strong and Coulomb
interactions. The PC and PV amplitudes should be calculated
using these two interactions.

At the low-energy regime with tthe EFT(π/) formalism,
the relevant degrees of freedom are nucleons. The expansion
parameter to express the physical observables is Q/�̄ [19,20],
where Q and �̄ are the low- and high-energy scales, respec-
tively. The external momentums are formally considered as a
Q and the pion mass is scaled as �̄. We start by explaining
briefly about the EFT(π/) interactions and power counting for
the PC formalism of pd scattering which previously presented
in [21,22].

The PC Lagrangian in the auxiliary field formalism for the
pd system in the EFT(π/) is given by [23,24]

LPC = N †
(

i∂0 + ∇2

2mN

)
N + dA†

s

[
�s − c0s

(
i∂0 + ∇2

4mN

+ γ 2
s

mN

)]
dA

s + di†
t

[
�t − c0t

(
i∂0 + ∇2

4mN

+ γ 2
t

mN

)]
di

t

− (
ysd

A†
s (N †P AN ) + ytd

i†
t (N †P iN ) + H.c.

) + mNH (�)

6
N †(y2

t

(
di

t σi

)†(
d

j
t σj

) − [
ytys

(
di

t σi

)†(
dA

s σA

) + H.c.
]

+ y2
s

(
dA

s τA

)†(
dB

s σB

))
N + . . . , (1)

where N is the nucleon field with mass mN . di
t (dA

s ) denotes
spin-triplet (singlet) dibaryon field and τA (σi) represents
the Pauli matrices in the isospin (spin) space. Also yt,s

are the dibaryon-nucleon-nucleon (dNN) coupling constants.
The operators P i = 1√

8
σ2σ

iτ2 and P A = 1√
8
σ2τ2τ

A a project

two-nucleon state on the spin triplet and singlet channels. The
LO parameters �s,t indicate the mass differences between the
1S0 and 3S1 dibaryons and two-nucleon state, respectively,
which are determined from the poles of the NN scattering
amplitudes at iγs,t . Here γt is the binding momentum about
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FIG. 1. The PC pd scattering diagrams at LO. Single line represents a nucleon. Double line is a dibaryon propagator. H shows the
three-body interaction. Also, the wavy line denotes the exchanged photon. Dashed oval indicates the PC scattering amplitude.

the deuteron pole, and γs is the inverse of the scattering length
in the 1S0 channel. According to the naive dimensional analysis
(NDA) the dimensionless parameters c0s,t first appear at the
next-to-leading order (NLO), they are chosen by [23]

c0s,t = − mN

2γs,t

(zs,t − 1), (2)

where zs,t = 1
1−γs,t ρs,t

are written according to the effective
range of the triplet and singlet systems, ρs,t .

The fact is that the observables must be cut-of independent,
all dependencies can be removed by entering the three-body
force H (�) which depends on the cut-off momentum. Because
of the Pauli principle, the H (�) only enters in the 2S 1

2
(doublet)

channel. At LO, the analytic form of H (�) is given by [25]

H (�) = c × sin
(
s0 ln

(
�
�∗

) + arctan s0
)

sin
(
s0 ln

(
�
�∗

) − arctan s0
) , (3)

where, c = 0.877,s0 = 1.00624, and �∗ = 1.55 MeV. To
calculate these coefficients, H (�) is evaluated to reproduce

the correct doublet S-wave nd scattering length, a = 0.65 fm.
The PC pd scattering diagrams at LO are introduced in Fig. 1.
The dashed oval denotes the PC pd scattering amplitudes at
LO. The single line indicates nucleon with the propagator

i�N (E,q) = i

E − q2

2mN
− iε

, (4)

and the wavy line shows the exchanged photon with the
propagator

i�ph(q) = i

q2 + λ2
, (5)

where q and λ are the momentum and mass of the exchanged
photon, respectively. The small photon mass must be entered
to regulate infrared divergences of the photon propagator at
zero momentum transfer. To obtain well-converged results,
we can extrapolate calculations to the physical case by λ → 0
[21] (see Sec. IV).

In Fig. 1, the double line also represents the dibaryon field
with the matrix propagator

D(LO)(E,q) =

⎛
⎜⎜⎝

D
(LO)
t

(
E − q2

2mN
,q

)
0 0

0 D(LO)
s

(
E − q2

2mN
,q

)
0

0 0 D(LO)
s,pp

(
E − q2

2mN
,q

)

⎞
⎟⎟⎠, (6)

where the LO propagators of the triplet, singlet, and proton-
proton (pp) parts of the 1S0 dibaryon are given by

D
(LO)
t (E,q) = 4π

mN y2
t

1

γt −
√

q2

4 − mNE − iε

,

D(LO)
s (E,q) = 4π

mN y2
s

1

γs −
√

q2

4 − mNE − iε

, (7)

D(LO)
s,pp (q) = 4π

mN y2
s

1
1
aC

+ αmNH̃0( αmN

2q ′ )
,

respectively, with the following parameters:

y2
s = 8π

ρs m2
N

, y2
t = 8π

ρt m
2
N

, (8)

α = e2

4π
∼ 1

137
, q ′ = i

√
q2

4
− mNE − iε, (9)

H̃0(η) = ψ(iη) + 1

2iη
− log(iη). (10)

In the above equations, the function ψ is the logarithmic
derivative of the � function. Also, ac and rc denote the
scattering length and the effective range of the pp channel,
respectively.

Here, we need to calculate the Faddeev equations of the
diagrams in Fig. 1 for the quartet and doublet channels. The
contribution of the pd scattering amplitude in the quartet
channel has only been obtained using the tq, t→t transition
which represents the amplitude for the pdt → pdt transition.
Thus, in the 4S 3

2
channel we have

t
(L)
q, t→t (E; k,p) = −2ytt

(
K (L)

s (E; k,p) − 1

2
K (L),PC

c (E; k,p)
)

+ ytt

π2

∫ �

0
d q q2

(
K (L)

s (E; q,p)

− 1

2
K (L),PC

c (E; q,p)
)
D

(LO)
t t

(L)
q, t→t (E; k,q).

(11)

By using Eq. (11) the 3 × 1 quartet am-
plitude for the pd scattering is given
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by

t (L)
q (E; k,p) =

⎛
⎝t

(L)
q, t→t (E; k,p)

0
0

⎞
⎠. (12)

Also, the Faddeev equation of the PC pd scattering in the doublet channel can be written as⎛
⎜⎜⎝

t
(L)
d, t→t

t
(L)
d, t→s1

t
(L)
d, t→s2

⎞
⎟⎟⎠ (E; k,p,�) =

⎛
⎜⎝

ytt

(
K (L)

s + K (L),PC
c + δL

0
2H (�)

�2

)
−yts

(
K (L)

s + δL
0

2H (�)
3�2

)
−yts

(
2K (L)

s + δL
0

4H (�)
3�2

)

⎞
⎟⎠ + 1

2π2

∫ �

0
d q q2

×

⎛
⎜⎜⎝

−ytt

(
K (L)

s + K (L),PC
c + δL

0
2H (�)

�2

)
yts

(
3K (L)

s + δL
0

2H (�)
�2

)
yts

(
3K (L)

s + δL
0

2H (�)
�2

)
yts

(
K (L)

s + δL
0

2H (�)
3�2

)
yss

(
K (L)

s − K (L),PC
c − δL

0
2H (�)

3�2

) −yss

(
K (L)

s + δL
0

2H (�)
3�2

)
yts

(
2K (L)

s + δL
0

4H (�)
3�2

) −yss

(
2K (L)

s + δL
0

4H (�)
3�2

) −yss δL
0

4H (�)
3�2

⎞
⎟⎟⎠

×D(LO)(E,q)

⎛
⎜⎜⎝

t
(L)
d, t→t

t
(L)
d, t→s1

t
(L)
d, t→s2

⎞
⎟⎟⎠ (E; k,q,�), (13)

where subscripts s and c in the K (L)
s and K (L),PC

c refer to strong and Coulomb interactions and the superscript L denotes the
scattering in the L-wave channel. The strong interaction kernel K (L)

s is

K (L)
s (E; k,p) = 1

2

∫ 1

−1
d cos θ

PL(cos θ )

p2 + k2 − mNE + kp cos θ
= (−1)L

kp
QL

(
p2 + k2 − mNE

kp

)
, (14)

where the function QL is given by the relation

QL(a) = 1

2

∫ 1

−1
dx

PL(x)

x + a
, (15)

and the Coulomb interaction kernel is

K (L),PC
c (k,p) = 1

2

∫ �

0
dqq2

∫ 1

−1
a

loop
L [k,q,p,θ ]d cos θ, (16)

for L = 0,1 we have

a
loop
L=0 = 1

G
√

F

[
ln

(
A+B

A−B

)
− ln

(
B(2C + D)−A(D+2E)+2

√
F

√
C+E+D

B(2C−D)−A(D−2E)+2
√

F
√

C+E−D

)]
, (17)

a
loop
L=1 = cos θ × a

loop
L=0, (18)

with the following parameters:

A = −k2 − q2 + mNE, B = −kq, E = k2p2, (19)

C = (mNE − k2 − p2)2 − k2q2(1 − cos2 θ ), (20)

D = −2kp cos θ (−k2 − p2 + mNE), (21)

G = q2 + p2 + λ2 − 2qp cos θ, (22)

F = B2C + A2E − ABD. (23)

In Eq. (13), t
(L)
d,x→y denotes the L-wave Ndx → Ndy

transition amplitude in the doublet channel. x,y are t , s1, and
s2 which represent the 3S1, 1S0, and pp parts of 1S0 dibaryons,
respectively. We note that the constants ytt , yss , and yts in the
above relations are given using

ytt = mN y2
t

2
, yss = mN y2

s

2
, yts = mN ytys

2
. (24)

III. PARITY-VIOLATING pd SCATTERING

The PV interaction connects the states with the same
total angular momentums and the different parities. At the
lowest order the PV interaction mixes the S-wave and P -
wave channels. So, we have the 3S1 → 1P1, 3S1 → 3P1, and
1S0 → 3P0 transitions in the NN systems. Therefore, the LO
Lagrangian for the two-body PV transitions can be written as

LPV =−[
g

3S1 −1P1di†
t NT i(

←−∇ σ2τ2 − σ2τ2
−→∇ )iN

+ g
1S0 −3P0
�I=0 dA†

s NT i(
←−∇ σ2σiτ2τA − σ2σiτ2τA

−→∇ )iN

+ g
1S0 −3P0
�I=1 ε3ABdA†

s NT (
←−∇ σ2σiτ2τB − σ2σiτ2τB

−→∇ )iN

+ g
1S0 −3P0
�I=2 IABdA†

s NT i(
←−∇ σ2σiτ2τB−σ2σiτ2τB

−→∇ )iN

+ g
3S1 −3P1εijkdi†

t NT (
←−∇ σ2σkτ2τ3 − σ2σkτ2τ3

−→∇ )jN

+ H.c. + . . .
]
, (25)
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FIG. 2. The PV scattering diagrams at LO. Circle with a cross denotes the PV dNN vertex. Dashed oval indicates PC scattering amplitudes
at LO. The dashed rectangular represents the PV scattering amplitude. Time-reversed diagrams are not displayed.

where I = diag(1,1, −2) is a diagonal matrix in the isospin
space and g(x−y) denotes the weak dNN coupling con-
stant for the PV two-body transition between x and y
partial waves. �I represents the isospin change in the
PV vertex. Grießhammer et al. [26] show that in the PV
sector the three-nucleon interaction (3N I) first appears at
N2LO, so in this paper no PV 3N I are included. To
simplify, we use the notation suggested in [10] in which
g

3S1 −1P1 , g
1S0 −3P0
�I=0 , g

1S0 −3P0
�I=1 , g

1S0 −3P0
�I=2 , and g

3S1 −3P1 have been

replaced by g1, g2, g3, g4, and g5, respectively. In the LO PV
the g4 corresponding to the g

1S0 −3P0
�I=2 term does not contribute.

The diagrams which contribute to the LO PV pd scattering
amplitude are shown in Fig. 2. In this figure, the circle with
a cross indicates the PV dNN vertex. The dashed oval and
rectangle represent the PC and PV scattering amplitudes,
respectively.

In the cluster-configuration space, the contributions of the
diagrams in Fig. 2 are obtained by

T LO,PV (X → Y,E,k,p) = Z† APV [X → Y,E,k,p]Z − 1

2π2

∫ �

0
dq q2

{
Z† APV [X → Y,E,q,p]DLO

(
E − q2

2mN

,q

)

× tLO,PC(X,E,k,q) + t†LO,PC(Y,E,q,p)DLO

(
E − q2

2mN

,q

)
APV [X → Y,E,k,q]Z

}

+ 1

4π4

∫ �

0
dq1 q2

1

∫ �

0
dq2 q2

2

{
t†LO,PC(Y,E,q2,p)DLO

(
E − q2

2

2mN

,q2

)

×APV [X → Y,E,q1,q2 ]DLO

(
E − q2

1

2mN

,q1

)
tLO,PC(X,E,k,q1)

}
, (26)

where APV represents the contributions of the first line
diagrams. The second and third terms in Eq. (26) correspond
to the diagrams in the second and third lines of Fig. 2.
tLO,PC(X/Y ; E,k,p) (dashed oval in Fig. 2) is the LO PC
pd scattering amplitude vector for the incoming (outgoing)
X (Y ) partial wave. For spin 3

2 and 1
2 , tLO,PC are obtained by

Eqs. (12) and (13), respectively.
Note that in Eq. (26), the Z vector

Z =
⎛
⎝

√
ZLO

t

0
0

⎞
⎠, (27)

with
√
ZLO

t as the normalization factor of the deuteron wave
function

ZLO
t =

(
∂

∂E

1

D
(LO)
t (E,q)

∣∣∣∣
E=− γ 2

t
mN

,q=0

)−1

= 8πγt

m2
Ny2

t

, (28)

is considered to obtained for the physical amplitude for pd
scattering. The APV [X → Y,E,k,p] which is used in Eq. (26),
is given by the relation

APV [X → Y,E,k,p] =
4∑

i=1

APV
i [X → Y,E,k,p], (29)
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where the APV
1 and APV

2 kernels are for the contributions of the first and second diagrams in line 1 of Fig. 2. Also, the time-reversed
amplitudes of these diagrams (not shown in Fig. 2) are introduced by APV

3 and APV
4 , respectively. The APV

1,2 functions for all the
possible transitions in the J = 1

2 channels are given by

APV
1

[2
S 1

2
→ 2P 1

2
; E,k,p

] =
√

2mNyt

4kp
[kQ1(ε) + 2pQ0(ε)]

⎛
⎝3g1 + 2g5 −g2 −2g2 − 2g3

g1 − 2g5 g2 −2g2

2g1 − 4g5 −2g2 0

⎞
⎠, (30)

APV
1

[2
P 1

2
→ 2S 1

2
; E,k,p

] =
√

2mNyt

4kp
[2pQ1(ε) + kQ0(ε)]

⎛
⎝3g1 + 2g5 −g2 −2g2 − 2g3

g1 − 2g5 g2 −2g2

2g1 − 4g5 −2g2 0

⎞
⎠, (31)

APV
1

[2
S 1

2
→ 4P 1

2
; E,k,p

] = mNys

kp
[kQ1(ε) + 2pQ0(ε)]

⎛
⎝g5 g2 2g2 + 2g3

0 0 0
0 0 0

⎞
⎠, (32)

APV
1

[4
P 1

2
→ 2S 1

2
; E,k,p

] = mNyt

2kp
[2pQ1(ε) + kQ0(ε)]

⎛
⎝ 3g1 − g5 0 0

g1 + g5 0 0
2g1 + 2g5 0 0

⎞
⎠, (33)

APV
2

[2
S 1

2
→ 2P 1

2
; E,k,p

] =
√

2mNe2yt

16π2

[
kK (1),PC

c (k,p) + 2K (0),PV
c (k,p)

]
⎛
⎝2g5 −g2 0

−g1 0 0
0 0 0

⎞
⎠, (34)

APV
2

[2
P 1

2
→ 2S 1

2
; E,k,p

] =
√

2mNe2yt

16π2

[
2K (1),PV

c (k,p) + kK (0),PC
c (k,p)

]⎛⎝2g5 −g2 0
−g1 0 0

0 0 0

⎞
⎠, (35)

APV
2

[2
S 1

2
→ 4P 1

2
; E,k,p

] = mNe2ys

8π2

[
kK (1),PC

c (k,p) + 2K (0),PV
c (k,p)

]⎛⎝−g5 −g2 0
0 0 0
0 0 0

⎞
⎠, (36)

APV
2

[4
P 1

2
→ 2S 1

2
; E,k,p

] = mNe2yt

8π2

[
2K (1),PV

c (k,p) + kK (0),PC
c (k,p)

]⎛⎝−g5 0 0
−g1 0 0

0 0 0

⎞
⎠. (37)

Also, for the J = 3
2 we have

APV
1

[4
S 3

2
→ 2P 3

2
; E,k,p

] =
√

2mNyt

4kp
[kQ1(ε) + 2pQ0(ε)]

⎛
⎝ 3g1 − g5 0 0

g1 + g5 0 0
2g1 + 2g5 0 0

⎞
⎠Qr

s, (38)

APV
1

[2
P 3

2
→ 4S 3

2
; E,k,p

] =
√

2mNys

2kp
[2pQ1(ε) + kQ0(ε)]

⎛
⎝g5 g2 2g2 + 2g3

0 0 0
0 0 0

⎞
⎠Qr

s, (39)

APV
1

[4
S 3

2
→ 4P 3

2
; E,k,p

] =
√

10mNys

2kp
[kQ1(ε) + 2pQ0(ε)]

⎛
⎝g5 0 0

0 0 0
0 0 0

⎞
⎠Qr

s, (40)

APV
1

[4
P 3

2
→ 4S 3

2
; E,k,p

] =
√

10mNys

2kp
[2pQ1(ε) + kQ0(ε)]

⎛
⎝g5 0 0

0 0 0
0 0 0

⎞
⎠Qr

s, (41)

APV
2

[4
S 3

2
→ 2P 3

2
; E,k,p

] =
√

2mNe2yt

16π2

[
kK (1),PC

c (k,p) + 2K (0),PV
c (k,p)

]
⎛
⎝−g5 0 0

−g1 0 0
0 0 0

⎞
⎠Qr

s, (42)

APV
2

[2
P 3

2
→ 4S 3

2
; E,k,p

] =
√

2mNe2ys

16π2

[
2K (1),PV

c (k,p) + kK (0),PC
c (k,p)

]⎛⎝−g5 −g2 0
0 0 0
0 0 0

⎞
⎠Qr

s, (43)
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APV
2

[4
S 3

2
→ 4P 3

2
; E,k,p

] =
√

10mNe2ys

16π2

[
kK (1),PC

c (k,p) + 2K (0)PV
c (k,p)

]⎛⎝g5 0 0
0 0 0
0 0 0

⎞
⎠Qr

s, (44)

APV
2

[4
P 3

2
→ 4S 3

2
; E,k,p

] =
√

10mNe2ys

16π2

[
2K (1),PV

c (k,p) + kK (0),PC
c (k,p)

]⎛⎝g5 0 0
0 0 0
0 0 0

⎞
⎠Qr

s (45)

with ε = p2+q2−mN E
pq

. The (Qr
s )αβ = δr

s δ
α
β − 1

3 (σ rσ s)αβ is the
projection operator of the quartet channel. The index r (s)
is the spin component of the outgoing (incoming) 3S1

dibaryon and α (β) is the spin of the outgoing (incoming)
nucleon. The K (L),PV

c corresponds to the Coulomb interaction,
where L refers to scattering in the L-wave channel. It is
defined as

K (L),PV
c (k,p) = 1

2

∫ �

0
dqq3

∫ 1

−1
a

loop
L [k,q,p,θ ]d cos θ.

(46)

The contributions of the time-reversed diagrams of the first
and second ones in line 1 of Fig. 2 can be given by the
relations

APV
3 (X → Y,E,k,p)rαsβ = [

APV
1 (Y → X,E,p,k)sβrα

]†
,

APV
4 (X → Y,E,k,p)rαsβ = [

APV
2 (Y → X,E,p,k)sβrα

]†
.

(47)

IV. NUMERICAL RESULTS OF LONGITUDINAL
ANALYZING POWER AND PROTON SPIN ROTATION

In this section, we focus on the calculation of the longitudi-
nal asymmetry of the polarized proton AL and the spin rotation
1
N

dφ
dz

in the �pd scattering process at the LO which are defined
by the relations

AL = Im(f+ − f−)

Im(f+ + f−)
, (48)

1

N

dφ

dz
= 4mNN

9k
Re(f+ − f−) (49)

where f+(f−) is the elastic scattering amplitude at zero angle
for the protons with the positive (negative) helicity. N is the
number of scattering centers per unit volume and k is the
momentum of the proton in the c.m. system.

By using Feynman diagrams, PC and PV Lagrangians, we
calculate the �pd scattering amplitudes. The values of gi , which
are used in this paper, are based on the evaluation by Moeini
Arani [12] and Vanasse [8].

In terms of PC and PV amplitudes, the equation for AL is
given by [14]

AL = 1
3 Re

[
T LO,PV

(2
P 1

2
→ 2S 1

2

) + T LO,PV
(2

S 1
2

→ 2P 1
2

) − 2
√

2 T LO, PV
(4

P 1
2

→ 2S 1
2

) − 2
√

2 T LO,PV
(2

S 1
2

→ 4P 1
2

)

− 4 T LO,PV
(2

P 3
2

→ 4S 3
2

) − 4 T LO, PV
(4

S 3
2

→ 2P 3
2

) − 2
√

5 T LO,PV
(4

P 3
2

→ 4S 3
2

) − 2
√

5T LO, PV
(4

S 3
2

→ 4P 3
2

)]

÷ Re
[
T LO,PC(2S 1

2
) + 2 T LO,PC(4S 3

2
)
]
, (50)

and the relation for 1
N

dφ
dz

is introduced by [9]

1

N

dφ

dz
= 4mN

27k
Re

[
T LO,PV

(2
P 1

2
→ 2S 1

2

) + T LO, PV
(2

S 1
2

→ 2P 1
2

) − 2
√

2 T LO,PV
(4

P 1
2

→ 2S 1
2

)

− 2
√

2 T LO,PV
(2

S 1
2

→ 4P 1
2

) − 4 T LO,PV
(2

P 3
2

→ 4S 3
2

) − 4 T LO,PV
(4

S 3
2

→ 2P 3
2

)

− 2
√

5 T LO,PV
(4

P 3
2

→ 4S 3
2

) − 2
√

5T LO,PV
(4

S 3
2

→ 4P 3
2

)]
. (51)

In above equations, the T LO,PC(2S 1
2
) and T LO, PC(4S 3

2
) are

the normalized PC pd scattering amplitudes in the doublet
and quartet channels, respectively. They are given by

T LO,PC
(2

S 1
2

) = Z†

⎛
⎜⎜⎝

t
(L)
d, t→t

t
(L)
d, t→s1

t
(L)
d, t→s2

⎞
⎟⎟⎠, (52)

and
T LO,PC

(4
S 3

2

) = Z† t (L)
q . (53)

In Table I we have presented the results of AL at the proton
laboratory energies from 0.7 to 3 MeV with different cutoffs
from 200 to 900 MeV based on [12]. These results show that
in the presence of the Coulomb interaction in addition to the
modified PC amplitude, the PV amplitude is changed due to
the diagrams connecting different PV two-body transitions and
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TABLE I. Our EFT(π/) results for the AL at the proton laboratory
energies from 0.7 to 3 MeV with different cutoff momentums based
on [12]. The first row indicates the cutoff and the first column shows
the proton energy. Note that the results of AL are presented in
10−6 unit. The numbers in the parentheses in the fourth column
indicate the results for AL when the Coulomb effect is switched
off.

�
��Elab

�
200 400 600 800 900

0.7 −13.10 −13.12 −13.14 (−11.35) −13.17 −13.20
1.2 −9.53 −9.54 −9.55 (−8.97) −9.57 −9.57
1.6 −8.89 −8.90 −8.91 (−7.61) −8.93 −8.94
2.1 −8.11 −8.12 −8.13 (−6.68) −8.15 −8.17
2.6 −7.56 −7.57 −7.58 (−5.82) −7.60 −7.62
3 −6.68 −6.70 −6.70 (−5.74) −6.73 −6.76

Coulomb interaction. The results of AL for � = 600 MeV
when the Coulomb interaction in the PC and PV sectors are
switched off, are also presented in the fourth column of Table I
by the numbers inside the parentheses.

To obtain the well-converged results, which are listed in
Table I, we have extrapolated the calculations to λ → 0.
Figure 3 represents the comparison between the results of
AL according to the photon mass, e.g., the proton laboratory
energy of 1.2 MeV and � = 600 MeV. Dotted line represents
the results with extrapolation and the dashed line indicates the
results without extrapolation method. The error introduced by
the extrapolation to λ → 0 compared to the EFT theoretical
error is negligible.

Table II indicates the results for 1
N

dφ
dz

and AL based on two
sets of gi [8,12] at � = 600 MeV. The values obtained for the
AL and the proton spin rotation by the first set of LECs [12]
indicate roughly a factor of one to two larger than those found
by the second set [8]. We emphasize that these values are only
the order of magnitude estimates. We have also noticed that
the sign of AL using these two sets is different and this is an

with extrapolation

without extrapolation

0.0 0.1 0.2 0.3 0.4 0.5 0.6
9.80

9.75

9.70

9.65

9.60

9.55

9.50

Λ MeV

10
6
A L

FIG. 3. The variation of AL according to photon mass for the
proton laboratory energy of 1.2 MeV and � = 600 MeV based on
the estimated values of gi’s in [12]. Dotted line represents the results
with extrapolation and the dashed line indicates the results without
extrapolation method.

TABLE II. The EFT(π/) results for the 1
N

dφ

dz
and AL based on two

sets of gi [8,12] at the proton laboratory energies from 0.7 to 3 MeV
at � = 600. The results are presented in 10−6 unit.

Elab
1
N

dφ

dz
[12] AL [12] 1

N

dφ

dz
[8] AL [8]

0.7 16.41 −13.14 −0.50 0.23
1.2 6.88 −9.54 0.32 0.35
1.6 4.32 −8.91 0.065 0.49
2.1 4.59 −8.12 0.009 0.54
2.6 −0.04 −7.57 0.0014 0.62
3 −0.07 −6.70 0.0012 0.73

TABLE III. Contribution of each gi [12] for the calculation of AL

and 1
N

dφ

dz
at � = 600 and Elab = 3 MeV in MeV

3
2 unit.

gi [12] AL
1
N

dφ

dz

1 −3884.89 2.35
2 −957.53 11.08
3 −879.66 −11.12
5 −3968.99 −55.11

TABLE IV. The results for the cutoff variation of AL between
� = 200 and 600 MeV based on the estimated values of gi’s in [12].

Elab 0.7 1.2 1.6 2.1 2.6 3

Abs[1 − AL(�=200)
AL(�=600) ] 0.0030 0.0020 0.0022 0.0024 0.0026 0.0029

1.0 1.5 2.0 2.5 3.0

10.0

9.5

9.0

8.5

8.0

7.5

7.0

Proton Energy MeV

10
6
A L

FIG. 4. AL variation according to the proton laboratory energies
from 0.8 to 3 MeV based on the estimated values of gi’s in [12].
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interesting prediction. The future experimental results of �pd
scattering can be used to assess the estimation of the PV effects
by these two sets of LECs.

The results of AL and 1
N

dφ
dz

in terms of their contributions
for each of the gi [12] are given in Table III. These results
are given with � = 600 MeV and for the proton laboratory
energy of 3 MeV. We see from Table III that the dominant
contributions of observables comes from the g5 = g

3S1 −3P1

LEC which contains the one-pion exchange contribution.
The AL variation according to the proton laboratory

energies from 0.8 to 3 MeV based on [12] has been presented in
Fig. 4. The thickness of the plot indicates the cutoff variation,
which runs from 200 to 900 MeV. The results of the cutoff
variation for AL between � = 200 and 600 MeV based on the
estimated values of gi’s in [12] are also shown in Table IV.
These results show that our calculation is cutoff-independent
and properly renormalized.

V. CONCLUSION AND OUTLOOK

In the present paper we have calculated the energy
dependence of the longitudinal analyzing power in the �pd

scattering and the proton spin rotation with the EFT(π/). We
have carried out our evaluation of the Coulomb interaction for
proton-proton scattering perturbatively and typical momenta
Q � mπ . In the presence of the Coulomb interaction the
PV observables are enhanced. There is no cutoff dependence
observed between 200 and 900 MeV cutoff values. In the PC
sector the three-body force is introduced for pd scattering,
however, no new three-body force is added in the LO PV
calculation in the PV sector. The values of AL are in the
expected order and further experimental research for �pd
scattering would be an important laboratory effort to be
carried out in the very low energies. These future experimental
results of �pd scattering would help to pin down the LECs
and also to distinguish between the present estimates of
LECs.

One could further investigate asymmetries from the photo-
disintegration of 3He using circularly polarized photons and
the �pd → 3He γ processes with the EFT(π/) approach in the
future. Finally, the EFT approach as a model-independent
framework with new experimental efforts could prove to be
a major improvement with powerful capability over model-
dependent approaches.
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