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Nucleon-nucleon interaction with one-pion exchange and instanton-induced interactions
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Singlet (1S0) and triplet (3S1) nucleon-nucleon potentials are obtained in the framework of the SU(2)
nonrelativistic quark model using the resonating-group method in the Born-Oppenheimer approximation.
The full Hamiltonian used in the investigation includes the kinetic energy, two-body confinement potential,
one-gluon-exchange potential (OGEP), one-pion exchange potential (OPEP), and instanton induced interaction
(III), which includes the effect of quark exchange between the nucleons. The contribution of the OGEP, III, and
OPEP to the nucleon-nucleon adiabatic potential is discussed.
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I. INTRODUCTION

The nucleon-nucleon (N-N) interaction has remained one
of the formidable challenges in nuclear physics since its
discovery by Rutherford and subsequent confirmation that
the nucleon is made up of quarks. The N-N interaction
is conventionally explained by the exchange of various
mesons [1,2]. With the advent of QCD, and its acceptance
as the theory of strong interaction, attempts have been made
since the 1980s to explain the N-N interaction from QCD.
Since the exact form of confinement is not known from QCD
various phenomenological quark models, both relativistic
and nonrelativistic, have been developed to explain the N-N
interaction [3–16].

Despite the enormous progress made in the understanding
of the N-N interaction, the understanding of the dynamics of
the short-range interaction is still unsatisfactory. The short-
range N-N interaction is repulsive in nature, which is in fact
crucial for the stability of the nucleus. Quark model Hamiltoni-
ans usually consist of the kinetic energy, one-gluon exchange
potential (OGEP), one-pion exhange potential (OPEP), and
confinement potential. There are models which have tried to
explain the N-N interaction using the kinetic energy, OGEP,
and confinement potential in the framework of quark models.
In all these models, short-range repulsion is entirely attributed
to the exchange part of the color magnetic interaction [15,16].
The pioneering work on short-range repulsion was carried out
by Neudatchin et al. [17]. In the framework of nonrelativistic
quark models (NRQM), Oka et al. [18] have tried to explain
the interaction by including the instanton induced interaction
(III) and eliminating the OPEP. The III also has a color
magnetic term and hence short-range repulsion is attributed
to the exchange part of the color magnetic interaction of both
the OGEP and the III [18]. The reasons for the inclusion of
the III are that (i) a large value of the strong-coupling constant
(αs ∼ 1.6) is required to reproduce the baryon spectrum in the
phenomenological model, and (ii) for N-� and π -ρ splitting,
there is a sizable contribution from the nonperturbative qq̄
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condensate, which is evident from the lattice QCD simulation
in the quenched approximation [19].

The understanding of the N-N interaction has important
implications for nuclear physics, particle physics, and astro-
physics, and at present neither experimental nor theoretical
analysis is satisfactory as far as the short-range interaction is
concerned. Vinh Mau et al., have solved the Schrödinger wave
equation and computed all the observables for p-p scattering
below threshold pion production and have investigated the
effect of quark degrees of freedom on N-N observables in the
framework of the NRQM and have come to the conclusion
that the description of the N-N interaction at short distances
by quark models depends on the additional terms added for
the medium- and long-range forces [20]. The experimental
data are as old as 20 years, which has severely hampered
the progress in the theoretical sector. But with the advent of
the J-PARC [21], PANDA [22], NICA[23], and HIAF [25]
projects, the situation is likely to change [24]. Also, there are
attempts to calculate the nuclear potential from lattice QCD
by utilizing the Nambu-Bethe-Salpeter (NBS) wave functions,
which were obtained from the four-point nuclear correlator.
The Schrödinger wave equations were solved using the NBS
wave functions and the nuclear potentials were obtained as an
independent nonlocal interaction kernel which reproduces the
qualitative features of the 1S0 and 3S1 states. The details can be
found in Refs. [26,27].

The OPEP has to be included to obtain the partially
conserved axial current, as it is important to know the
contribution of the OPEP to the N-N potential [28]. In the
framework of the NRQM, the pion is treated as an elementary
field which couples to quarks with a strength which reproduces
the experimental π -N coupling strength at zero momentum
transfer [29]. In an alternative approach, a suitable form
factor with a cutoff mass � is introduced to take care of the
effect of the inner structure of pions at short range [30]. In
the earlier versions of quark cluster models, the long- and
medium-range parts of the N-N potential were introduced
phenomenologically [31–33]. The long- and medium-range
parts are dominated by the simple qq̄ pair exchange potential.
The qq̄ pair is a color singlet cluster with pseudoscalar or
vector meson quantum numbers. The obtained potentials have
many characteristics of the conventional OBEP. In order to
include the mesonic degrees of freedom, Fujiwara and Hecht
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incorporated the qq̄ excitations in the nonrelativistic model of
the N-N interaction. The calculated nucleon-meson coupling
constants are listed in Refs. [3,34]. Three of the coupling con-
stants, fNNη, fNNω, and fNNρ agree with the observed values
of the coupling constants. But the calculated fNNπ is one-third
of the observed fNNπ coupling. Hence, its contribution in the
OBEP is small [34]. If pion is treated as a single qq̄ pair, it is
not possible to obtain simultaneously proper values for both
fπ and the charge radius 〈r2

π 〉. If fπ is reproduced, then 〈r2
π 〉

turns out to be very large [35]. Hence, just the inclusion of the
qq̄ pair will not suffice to produce long-range attraction; the
introduction of the (3q)(qq̄)2 components leads to potentials
with the characteristics of the conventional σ meson exchange
potential and gives the additional medium-range attraction
needed to bind the deuteron. But the identification of the scalar
mesons is a long-standing problem, since scalar mesons have
a very large decay width and hence cause an overlap between
the resonances and the background. The problem is further
compounded by the large non-qq̄ scalar objects like glue balls
and multiquark states. The PDG lists the scalar meson f0(500)
with IG(0+) and J PC(0++) as a possible candidate for the
σ meson suggested in the linear sigma model. Full details
on scalar mesons below 2 GeV are given by the PDG [36].
Further, qq̄ excitations lead to an attractive part in the 0.8- to
1.5-fm range. However, this attraction is too weak to bind the
deuteron and to reproduce the low-energy S-wave scattering
parameters [34].

The inclusion of the qq̄ excitation with the quantum
numbers of ω does not lead to short-range repulsion given
by the ω meson exchange of the OBEP [37]. Although both
ρ and the ω coupling constants fall into the range of values
extracted from the nucleon scattering data, the predicted value
for the π meson is too weak [34,38,39]. Hence, the simple
qq̄ cluster with the pion quantum numbers cannot be expected
to give a realistic picture of the pion. It should be noted that
in our present model the qq̄ pair creation and annihilation
cannot be incorporated, as it is a nonrelativistic model and
hence no double-counting occurs in adding the OPEP. Further,
the present model is compatible with the nucleon quark-core
r.m.s. radii of ∼0.6 fm. Hence, a picture of the nucleon of
core radii of about 0.6 fm and a pion of small size coupling to
quarks would help to clarify why the long-range N-N potential
could be accurately described by the OPEP, which is of vital
importance for nuclear physics.

Instantons were introduced in relation to the UA(1) problem
and their role was pointed out by t’Hooft by deriving effective
interactions by coupling of the instantons and light quarks,
whose strength of interaction depends on the instanton density,
which was estimated from the gluon condensate of the QCD
vacuum [40–42]. It was argued that the NRQM should include
the III as a short-range nonperturbative gluon effect [43], where
it was shown that in the p-wave sector of the N-N interaction,
there is cancellation between the OGEP and the III. Also,
lattice QCD suggests that the QCD vacuum contains instantons
and its density is consistent with the gluon condensate expected
from QCD sum rules [44]. It is well known that chiral
symmetry is dynamically broken by the instanton vacuum
and massless quarks are transformed into constituent quarks,
which acquire mass as a function of momentum. Also, the

diquark correlations may induce phase transition of the QCD
vacuum at high density into a color superconducting phase.
Further, within the framework of the NRQM and relativistic
quark models the III explains the π − η mass difference. There
are models, both relativistic and nonrelativistic, employed to
explain hadron spectra and baryon-baryon interaction with
either the OGEP or the III. As has been pointed out [18] in
quark models with only the OGEP, to reproduce the hyperfine
splitting αs must be roughly twice as large as that naively
expected in QCD. With the typical αs ∼ 1.6, it is hard to
justify the perturbative truncation of multigluon exchanges. In
some quark models the OGEP has been completely eliminated
and attempts have been made to explain the baryon spectrum
and N-N interaction only with the III. We think it is not proper
to eliminate the OGEP completely for light quarks, as it is
consistent with asymptotic freedom. Also, the III vanishes for
heavy quarks, and hence in heavy-quark spectra the OGEP
is the only source of interaction which can explain the mass
splitting. Hence, a consistent model has to incorporate both
the OGEP and the III.

The basic aim of the present investigation is to make a
detailed study of the contribution of the OGEP, III, and OPEP
to the N-N adiabatic potential to the 1S0 and 3S1 states in
the framework of the NRQM. One of the aims of the present
study is to test whether the strong-coupling constant αs can
be treated as a perturbative effect and to obtain a consistent
set of parameters which reproduce both the singlet and the
triplet N-N potentials. The adiabatic N-N potentials have been
obtained using the Born-Oppenheimer approximation [4].

The paper is organized as follows: in Sec. II, we review the
NRQM. In Sec. III a brief description of the resonating-group
method (RGM) is given. The results of the calculations are
presented in Sec. IV. Conclusions are given in Sec. V.

II. NONRELATIVISTIC QUARK MODEL

The full Hamiltonian used in the investigation is

H = K + Vint + VConf − KCM, (1)

where K is the kinetic energy, Vint is the interaction potential
term, VConf is the harmonic confinement potential, and KCM is
the kinetic energy of the center of mass,

K =
6∑

i=1

p2
i

2mi

, KCM = P2

12mi

,

where mi and pi are the mass and the momentum of the ith
quark and P is the momentum of the center of mass. The
interaction potential is

Vint = VOGEP + VIII + VOPEP,

where

VOGEP = αs

4

∑
i<j

(
1

rij

− π

m2
q

(
1+2

3
σ i .σ j

)
δ(r i−rj )

)
λi .λj .

(2)

The first two terms are the color electric terms and the third
term is the color magnetic interaction leading to the hyperfine
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splitting. Here, λi and λj are the generators of the color SU(3)
group for the ith and the j th quarks, σi is the Pauli spin
operator, αs is the strong-coupling constant,

VIII = −
∑
i<j

1

2
Wij (1 − Pij )

[
1 − 1

5
(σ i .σ j )

]
δ(r i − rj ), (3)

VOPEP = f 2
Q

3

∑
i<j

e−mπ rij

rij

(σ i .σ j )(τ i .τ j ), (4)

VConf =
∑
i<j

acr
2
ij . (5)

In the above expressions, rij is the separation between quarks,
mq is the mass of the quark, τ i is the isospin of the ith quark,
mπ is the mass of the pion, and ac is the confinement strength.
fQ is the OPEP strength parameter and is related to the pion-

nucleon coupling constant by the relation f 2
Q = f 2

πNN

4π
[28].

Since chiral symmetry breaking in the quark models specifies
the coupling of pions with quarks, our model incorporates the
spontaneous breaking of chiral symmetry, which is the most
important among the dynamics of low-energy QCD and hence
justifies qualitatively, the nonrelativistic model of hadrons.

In the framework of the SU(2) NRQM, the expression for
VIII reduces to

VIII = −1

2
W

∑
i<j

[
16

15
+ 2

5
λi .λj + 1

10
σ i .σ jλi .λj

]

× δ(r i − rj ), (6)

where W is the strength of the III potential. The corresponding
expression in the SU(3) NRQM can be found in Ref. [18].

III. RESONATING-GROUP METHOD

The N-N interaction can arise only if the quarks are
exchanged between the nucleons. If the quarks are not
exchanged between the nucleons, then there is no N-N
interaction, since the matrix element λi · λj vanishes when
the ith quark is in one nucleon and the j th quark is in the
other nucleon as a consequence of the Wigner-Eckart theorem.
Hence, the N-N interaction arises when one constructs a
completely antisymmetric wave function for the six-quark
system, in which case exchange terms arising solely from
antisymmetrization do not vanish. The advantage of the RGM
formulation is that it employs a totally antisymmetric wave
function and correctly treats the motion of the center of mass.
We have employed the RGM to solve the equation [4]

〈ψ |(H − E)A|ψ〉 = 0 (7)

to get the energy (E) of the interacting nucleons. Here, H is
the Hamiltonian, ψ is the wave function of the nucleons, and
A is the antisymmetrization operator,

A = 1
10

(
1 − 9P OSTC

36

)
, (8)

where P OSTC
36 is the permutation operator for quarks 3 and 6 and

OSTC stands for orbital, spin, isospin, and color, respectively.
Thus, the P OSTC

36 operator exchanges the orbital, spin, isospin,
and color quantum numbers of quarks 3 and 6.

This can be visualized in the following manner. When the
nucleons are sufficiently close, their wave functions overlap
to a considerable extent. When this happens, any one or
more quarks belonging to one nucleon can be exchanged
with an equal number of quarks of the other nucleon. Three-
quark exchange results in the interchange of the nucleons
themselves; two-quark exchange can be thought of as one-
quark exchange plus an interchange of nucleons. Since quarks
are identical indistinguishable particles, only the number of
quarks exchanged needs to be considered and there are nine
ways of exchanging one pair of quarks between two nucleons.
Hence the factor of 9 in the operator.

The antisymmetrization operator splits each term in the
Hamiltonian into two parts: the direct part and the exchange
part. The direct part corresponds to the interaction without
exchange of quarks and the exchange part corresponds to the
interaction with exchange of one quark between the nucleons.
At asymptotic distances, the exchange part of the interaction
vanishes since the overlap of wave functions is absent.

The wave function ψ includes the orbital [φ(r i)], spin (S),
isospin (T ), and color (C) wave functions. The harmonic
oscillator wave function is chosen as the the orbital wave
function,

φ(r i) = 1

(πb2)3/4
exp

(
− 1

2b2

(
r i − sI

2

)2)
, (9)

where b is the oscillator size parameter and sI is the generator
coordinate.

Using Eq. (7), we calculate three kernels: (a) the normal-
ization kernel

〈ψ |A|ψ〉, (10)

(b) the kinetic energy kernel

〈ψ |KA|ψ〉, (11)

and (c) the potential energy kernel

〈ψ |(Vint + VConf)A|ψ〉. (12)

The energy is given by

E = 〈ψ |HA|ψ〉l
〈ψ |A|ψ〉l . (13)

The subscript l indicates that the quantities have been projected
to the angular momentum state l.

In the present formalism, each nucleon is treated as a cluster
of three quarks and the two-nucleon system is denoted as
cluster A and cluster B, respectively. The basic idea in the
RGM is to express the total wave function of the system in
terms of the antisymmetric product of single-particle wave
functions. The total wave function of the six-quark system is

ψTOT(ξA,ξB,RAB) = A[φA(ξA)φB(ξB)χ (RAB)], (14)

where φA and φB are the internal wave functions of clusters
A and B, respectively, χ is the relative wave function between
the two clusters, and A is the total anti-symmetric operator
of the six-quark system. To separate the total wave function
into the form given above, the following choice of coordinates
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TABLE I. List of parameters.

b (fm) 0.6
αS 0.713
W (MeV fm3) 67.67
ac (MeV fm−2) 40.5
mq (MeV) 300.0
mπ (MeV) 140.0
f 2

q 12.6

is made [4,16]:

ξ1 = r1 − r2, ξ2 = r3 − r1 + r2

2
,

RA = 1

3
(r1 + r2 + r3),

ξ3 = r4 − r5, ξ4 = r6 − r4 + r5

2
,

RB = 1

3
(r4 + r5 + r6),

RAB = RA − RB, RG = 1

2
(RA + RB).

Here r i is the coordinate of the ith quark, the coordinates
ξA = (ξ1,ξ2) and ξB = (ξ3,ξ4) are the internal coordinates of
the two clusters A and B, respectively, RAB is the relative
coordinate between the two clusters, and RG is the center-of-
mass coordinate of the total system.

Since the Hamiltonian is translationally invariant, Ll
ij can

be written as [4,16]

Ll
ij =

∫ [
φ+SM

A

(
r1,r2,r3,

sI

2

)
φ+SM

B

(
r4,r5,r6,

−
s I

2

)
Y ∗

lm(ŝI )

]

× (H −E)A
[
φSM

A

(
r1,r2,r3,

sJ

2

)
φSM

B

(
r4,r5,r6,

−sI

2

)

×Ylm(ŝJ )

]∏
k

d3rkd ŝI d ŝJ .
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FIG. 1. Adiabatic direct and exchange potentials.

To take into account all possible interactions between the
quarks, we have to consider seven types of operators for the
potential Vij in the Hamiltonian. They are V12DR, V36DR, V12EX,
V13EX, V16EX, V14EX, and V36EX, where DR stands for the direct
part of the quark interaction between quark i and quark j and
EX stands for the corresponding exchange part.

IV. RESULTS AND DISCUSSION

There are seven parameters in our model: the masses of
the quarks (mq), the confinement strength (ac), the harmonic
oscillator size parameter (b), the quark-gluon coupling con-
stant (αs), the instanton coupling coefficient (W), the mass
of the pion (mπ ), and the quark-pion coupling constant f 2

q .
The coupling constants αs and W are fixed by the N -�
mass splitting which comes from the color magnetic term
of the OGEP and III and f 2

q is fixed from the Goldberger-
Treiman relation [28]. Though the masses of the quarks are
usually estimated from analysis of the baryon spectrum, there
are uncertainties in the determination of the masses of the
light quarks, as the bounds obtained from Feynman-Hellman
theorem [45] are not very accurate for light quarks and a better
estimation of quark masses is obtained from the determination
of the magnetic moments for u and d quarks, which is about
330 MeV [46,47]. We have chosen the value of the oscillator
size parameter to be 0.6 fm, which is consistent with the
experimental results of the charge distribution of the nucleons
and the axial charge distribution [3]. As in any constituent
quark model there are theoretical uncertainties in the values
of the parameters. For example, there is slight uncertainty
in the value of the the oscillator size parameter, since the
diagonalization of the matrix elements in a larger harmonic
oscillator basis lowers the value of b due to the contribution
from the off-diagonal elements [48]. The parameters used in
the model are listed in Table I.

Figure 1 is a plot of the direct and exchange parts of the
Hamiltonian in the adiabatic limit. The exchange parts of the
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FIG. 2. Color magnetic exchange potential.
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(b) Adiabatic N-N potential with OPEP
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(a) Adiabatic N-N Potential without OPEP
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FIG. 3. Adiabatic potential for singlet and triplet states (a)
without OPEP and (b) with OPEP.

potentials of the 1S0 and 3S1 states are repulsive in the short
range. The exchange potential of the 1S0 state is completely
repulsive and that of the 3S1 state shows a small attraction in
the intermediate range. Figure 2 is a plot of the exchange part

of the color magnetic interaction in the adiabatic limit. There
is a substantial repulsive contribution to the adiabatic potential
at short range to both the singlet and the triplet S states,
which is consistent with the established results [3,11,14]. It
should be noted that the color electric term does not contribute
to the N-N interaction. Since the radial matrix elements
are the same for the 2(0s)3 configuration and for the (0S)6

configuration, the energy difference between the 2(0s)3 and
the (0S)6 configurations must come from the expectation value
of λi .λj . But the expectation value of λi .λj depends only on
the number of quarks. Hence, the color electric elements of the
OGEP, III, and confinement term do not contribute to the N-N
adiabatic potential. For the color magnetic part the expectation
value of λi .λjσ i .σ j for the 2(0s)3 configuration and for the
(0S)6 configuration does not vanish and the color magnetic
part provides short-range repulsion [3].

The first term in the III interaction [Eq. (6)] due to
the antisymmetrization operator gives direct and exchange
interactions and corresponds to the color singlet exchange.
The adiabatic potential due to the color singlet is attractive in
the short range. The entire result of our work is summarized in
Fig. 3, which gives plots of the adiabatic N-N potential with
and without the OPEP. In the presence of the OPEP, attraction
in the intermediate range for the 1S0 state vanishes. Short-range
repulsion is larger for the singlet state than the triplet state.
This difference is entirely due to the color magnetic part of the
OGEP and III.

V. SUMMARY AND CONCLUSIONS

In this work, the well-known RGM technique in the
framework of the NRQM has been employed to obtain the N-N
adiabatic potential for the 1S0 and 3S1 states using the Born-
Oppenheimer approximation. The aim is to understand the role
played by the OGEP, III, and OPEP to the adiabatic potential.
To calculate the N-N matrix elements six-quark antisymmetric
wave functions are constructed. Only exchange terms of the
N-N interaction contribute to the N-N adiabatic potential.
The adiabatic potentials obtained in the Born-Oppenheimer
approximation for the 1S0 and 3S1 states have a qualitative
similarity to the phenomenological potentials. The short-range
repulsion arises from the kinetic energy and exchange terms
of the color magnetic terms of the OGEP and III. The
OPEP provides state-independent repulsion and contributes
substantially to the N-N adiabatic potential. The color octet
term of the III provides short-range attraction. The color
electric terms do not contribute to the N-N potential. The
contribution from the color magnetic terms to the short-range
repulsion is significant.
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