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Three-body calculation of the 1s level shift in kaonic deuterium with realistic K̄ N potentials
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The 1s level shift in kaonic deuterium was calculated using Coulomb Sturmian expansion of Faddeev equations.
The convergence of the method yields an ∼1 eV accuracy for the level shifts. We used three different, realistic,
multichannel K̄N interactions reproducing all known experimental two-body K−N data. The different results
suggest that the level shift should be in the range �E ∼ (800 ± 30) − (480 ± 20)i eV. The exact level shifts
were compared with values, given by the commonly used approximations.
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I. INTRODUCTION

Hadronic atoms are valuable sources of information about
interaction of different, negatively charged hadrons with nuclei
and—indirectly—with individual nucleons. A large amount of
work, both theoretical and experimental, has been devoted to
this subject. A comprehensive review of the field is presented in
the book of Deloff [1], one of the starting points of which reads:

“. . the conventional picture of hadronic atoms (is) based
on a two-body model Hamiltonian in which all strong inter-
action effects have been simulated by an absorptive potential
representing the complicated interaction between the hadron
and the nucleus . . . ”

Apart from the simplest case of hadronic hydrogen, this
is obviously an approximation, the validity of which to
our knowledge has not been investigated yet. The simplest
case, where this can be at least attempted is the three-body
system of hadronic deuterium. This particular system is also
challenging from the strangeness nuclear physics side: it can
provide additional information about the basic K̄N interaction,
unobtainable from the two-body data. Powerful methods exist
for practically exact solution of the three-body problem, in
particular, for finding real or complex eigenvalues: Faddeev
integral equations or coordinate space variational methods.
However, for the case of hadronic deuterium both have to face
serious difficulties: the Faddeev equations encounter the ever-
lasting problem of Coulomb interaction (especially attractive),
while for the variational calculations the problem lies in the
presence of two very different—and relevant—distance scales.

Some years ago Papp proposed a method [2] for simultane-
ous treatment of short-range and Coulomb forces in three-body
systems. The method is based on the discretization of Faddeev
equations on Coulomb Sturmian (CS) basis. The method was
successfully applied to short range plus repulsive Coulomb
interaction (nuclear case) and purely Coulomb systems with
attraction and repulsion [3]. The present case of three strongly
interacting hadrons with Coulomb attraction between certain
pairs, which is practically inaccessible for other methods, was
not considered previously.

In a short paper [4] we reported the results of a test
calculation to demonstrate the applicability of this method
for the case of kaonic deuterium. For simplicity, the cal-
culations were performed with simple complex one-channel
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K̄N potentials, the effect coupling to the π� channel was
imitated by an energy independent absorptive part. In the
present work realistic multichannel K̄N interactions were
used, which reproduce all known experimental data. In Sec. II
a somewhat more detailed description of the method is given
with due emphasis on the important issues of its application
for multichannel systems. In Sec. III we present our results,
while Sec. IV. contains the conclusions.

II. METHOD

A. The basic equations

The simplest hadronic atom in which the deviation from
the conventional two-body picture can be studied is hadronic
deuterium, in our case kaonic deuterium. It is a three-body
problem, for which we shall use the notations of Fig. 1.

The Hamiltonian reads

H = H0 + vs
1(x1) + vs

2(x2) + vs
3(x3) − e2

x3
P

with

H0 = − 1

2μi

�xi
− 1

2μi,jk

�yi
= h0(xi) + h0(yi) = . . . .

Here the (xi,yi),i = 1,2,3 are the usual Jacobi coordinates,
the vs

i (xi) denote the strong interaction between the particle
pairs. The indices i stand for the usual Faddev partitions: the
spectator particle i and the corresponding interacting pair (jk).
The peculiarity of the system is that particles in pair 3 can be in
two particle states, and, accordingly, v3(x3) is a 2 × 2 matrix,
while P is a projection operator on the K−p particle state:

v3(x3) =
(

vpK− vpK−,nK0

vnK0,pK− vnK0

)
, P =

(
1 0
0 0

)
. (1)

Assuming at the first stage, that particles 1, 2, and 3
are distinguishable, we have three coupled particle channels:
(K̄0n1n2),(K−n1p2), and (K−,p1n2), and, correspondingly,
a column wave function �, which is then separated into the
usual Faddeev components:

� =

⎛
⎜⎝

�K0n1n2

�K−n1p2

�K−p1n2

⎞
⎟⎠=

⎛
⎜⎜⎝

�
K0n1n2
1

�
K−n1p2
1

�
K−p1n2
1

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

�
K0n1n2
2

�
K−n1p2
2

�
K−p1n2
2

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

�
K0n1n2
3

�
K−n1p2
3

�
K−p1n2
3

⎞
⎟⎟⎠.

Coupled Faddeev equations for the nine unknown functions
can be written down, however, symmetrization with respect to
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FIG. 1. The K−d three-body system.

baryon indices 1 and 2 simplifies the system: symmetric and
antisymmetric combinations are decoupled. Since the deuteron
is antisymmetric in these indices (the two-body isospin I = 0),
we have to work with the antisymmetric combinations. In this
case the component �

K0n1n2
1 disappears from the equations

and from the remaining eight functions four antisymmetric
combinations are left as unknown functions. They satisfy the
Noble [5] form of homogeneous Faddeev equations, when the
Coulomb interaction is added to H0:

�np(x1,y1) = Gnp(x1,y1; E)vnp(x1)(�K−n(x2,y2)

+�K−p(x3,y3)), (2)

�K−n(x2,y2) = GK−n(x2,y2; E)vK−n(x2)(�np(x1,y1)

+�K−p(x3,y3)) (3)(
�K−p(x3,y3)
�K0n(x3,y3)

)
= G3(x3,y3; E)v3(x3)

×
(

�np(x1,y1) + �K−n(x2,y2)

−�K0n(x2,y2)

)
(4)

with

Gnp(x1,y1) =
(

E − h0(x1) − h0(y1) − vnp(x1)

+ e2∣∣− 1
2x1 + y1

∣∣
)−1

, (5)

GK−n(x2,y2) =
(

E − h0(x2) − h0(y2) − vK−n(x2)

+ e2∣∣− mN

mN+mK
x2 + y2

∣∣
)−1

. (6)

G3(x3,y3; E) and v3(x3) are 2 × 2 matrices:

G3(x3,y3; E) =
((

E − h0(x3) − h0(y3) + e2

x3
0

0 E − h0(x3) − h0(y3)

)
− v3(x3)

)−1

, (7)

while v3(x3) was defined in Eq. (1). The functions and
operators in Eqs. (2)–(7) are labeled by the interacting pair.
It has to be noted, that the Coulomb potential is the same
in all three Green operators, expressed in different Jacobi
coordinates.

In our earlier Faddeev calculations of the K̄NN system
[6–8] we used “isospin” representation for labeling the
interacting pairs, since the strong interactions are assumed
to be isospin conserving, acting “separately” in the I = 0 and
I = 1 two-body isospin states. In the present case, however,
due to the presence of the Coulomb force, acting between
a certain (charged) particle pair (K−p), it is preferable to
work in particle representation. Accordingly, the two-body
interactions, that occur in Eqs. (2)–(7), have to be transformed
from the I = 0 and I = 1 representations:

vnn = vI=1
NN ; vnp,np = vpn,pn = (

vI=0
NN + vI=1

NN

)/
2;

vnp,pn = (
vI=1

NN − vI=0
NN

)/
2;

vK−n = vI=1
K̄N

; vK−p = vK0n = (
vI=1

K̄N
+ vI=0

K̄N

)/
2;

vK−p,K0n = (
vI=1

K̄N
− vI=0

K̄N

)/
2;

The potentials vnp,pn and vK−p,K0n correspond to interactions
changing the identity of particles. For the vnp the symmetriza-
tion procedure yields

vnp = (vnp,np − vnp,pn) = vI=0
NN ,

the I = 0 NN interaction, responsible for the deuteron.

B. Exact optical potential

In our previous test calculation [4], where we investigated
the applicability of the method [2] for calculating the level
shift, for the interactions occurring in Eqs. (2)–(7) we used
simple absorptive one (particle) channel potentials. On the
other hand, realistic calculations for the (K̄NN ) system
require the inclusion of the strong coupling between the
K̄N − π� (or even K̄N − π� − π�) channels. Therefore
in our earlier Faddeev calculations for the K̄NN system
without the Coulomb-interaction [6–8]1 we explicitly treated
the coupled K̄NN − π�N particle channels. We also checked
under what conditions the coupled particle channel problem
can be reduced to the single K̄NN channel. We found
that replacing the multichannel K̄N interaction by the so
called “exact optical” potential (deduced from it), a single
K̄NN channel Faddeev calculation yields for the observables
connected with this channel (e.g., K̄pp quasibound state or
K̄d low-energy scattering data) results practically coinciding
with those of a complete, coupled channel calculation. Since
the 1s level shift is also of this type, for its calculation we used
the same procedure.

The “exact optical” potential for a given channel of a
multichannel interaction is defined as a potential, exactly
reproducing the diagonal t-matrix element of the multichannel

1After submission of the present paper a comprehensive and detailed
review of our work on the K̄NN system appeared [9].
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interaction in that channel. For separable interactions its
construction is straightforward: it amounts to adding an
energy-dependent part to the coupling constant of the retained
channel (K̄N in our case). For a two-channel K̄N − π�
potential of the form

V̂ =
(

|gK̄N 〉λK̄N 〈gK̄N | |gK̄N 〉λK̄N,π�〈gπ�|
|gπ�〉λπ�,K̄N 〈gK̄N | |gπ�〉λπ�〈gπ�|

)
,

the V̂
opt
K̄N

is

V̂
opt
K̄N

= |gK̄N 〉λopt
K̄N

(E)〈gK̄N |
with

λ
opt
K̄N

(E) = λK̄N +
λ2

K̄N,π�
〈gπ�|G0

π�(E)|gπ�〉
1 − λπ�〈gπ�|G0

π�(E)|gπ�〉 ,

where G0
π�(E) is the free Green operator in the excluded

channel. For the three-channel case the procedure is somewhat
more complicated, but also straightforward. The physical
quantities (t-matrices, Green operators) calculated using these
exact optical potentials carry the full analytical structure—
poles, branch points, and cuts—of the original multichannel
interaction.

C. The Coulomb Sturmian basis

The CS functions are defined as

〈r|nlm〉 = 〈r|μ〉 = Nnlr
le−brL2l+1

n (2br)Ylm(�r ),

where L2l+1
n is an associated Laguerre polynomial and b is

a range parameter. They are orthogonal with respect to the
weight function 1/r , or defining their adjoint functions as
〈r|μ̃〉 = 〈r|μ〉/r , they form a biorthogonal set with them:

〈μ|1

r
|μ′〉 = δμμ′ ; 〈μ|μ̃′〉 = 〈μ̃|μ′〉 = δμμ′ .

The CS basis is discrete and complete:

∞∑
μ=0

|μ〉〈μ̃| =
∞∑

μ=0

|μ̃〉〈μ| = Î ≈
Nmax∑
μ=0

|μ〉〈μ̃|.

The most remarkable feature of the CS basis is, that in this
representation the matrix of the operator (z − hc), where hc is
the two-body Coulomb Hamiltonian

hc = − 1

2m
�r ± e2

r

is tridiagonal:

〈μ|z − hc|μ′〉

= 1

2b
δll′

⎧⎪⎨
⎪⎩
−δn,n′+1[

√
n(n + 2l + 1)(z + b2/2m)]

+δn,n′ [2(n + l + 1)(z − b2/2m) ∓ 2be2]

−δn,n′−1[
√

(n + 1)(n + 2l + 2)(z + b2/2m)]

⎫⎪⎬
⎪⎭.

This feature allows to set up an infinite tridiagonal set of
equations for the matrix elements of the Coulomb Green
operator gc(z) = (z − hc)−1:

〈μ|(z − hc)gc(z)|μ̃′〉 = δμμ′ =
∞∑

ν=0

〈μ|(z−hc)|ν〉〈ν̃|gc(z)|μ̃′〉,

which can be solved exactly [10,11]. The same holds for the
matrix elements of the free Green operator g0(z).

Introducing a double CS basis for each set of Jacobi
coordinates:

〈xiyi |μ〉i = 〈xi |μx〉〈yi |μy〉; μ = (μx,μy),

the unknown functions �i for i = np,K−n,K−p,K0n can be
expanded on this basis:

�i(xi,yi) =
Ni∑
μ

〈xiyi |μ〉i Xi
μ, (8)

where Xi
μ = i〈μ̃|�i(xi,yi)〉.

D. The matrix equation

Before setting up the matrix equations for the new un-
knowns Xi

μ two intermediate steps are needed.
When operators, expressed in one set of Jacobi coordinates,

act on functions depending on another set, what is typical
for Faddeev equations, we have to introduce a transformation
matrix:

Ô(xi,yi)�j (xj ,yj ) ⇒
∑
μ′,μ′′

i〈μ|Ô(xi,yi)|μ′〉i M
(ij )
μ,μ′′X

j
μ′′ ,

where M (ij ) is the overlap matrix of the two CS basis sets,
depending on different Jacobi coordinates:

M
(ij )
μ,μ′ = i〈μ̃|μ′〉j ,

which is energy independent and can be calculated by
numerical integration.

When calculating the matrix elements of Green operators
entering Eqs. (5)–(7) two cases have to be distinguished. In
G3(x3,y3) the Coulomb interaction depends on its “native”
relative coordinate x3, thus it corresponds to a Green operator
of noninteracting two-body subsystems sharing a common
three-body energy. For this case a calculation scheme exists.
The Green operators of Eqs. (5) and (6), on the other hand, are
genuine three-body operators, due to the Coulomb interaction,
which depends on both “native” Jacobi coordinates. To make
them calculable we have to split the Coulomb interaction into
“channel” and “polarization” parts:

e2

|γixi + yi | = V ch(yi) + Ui(xi,yi); γnp = −1

2
;

γK−n = mN

mN + mK

with

V ch(yi) = e2

yi

; Ui(xi,yi) = e2

|γixi + yi | − e2

yi

.

The channel potential V ch(yi) is the Coulomb interaction of the
spectator particle with the center of mass of the interacting pair,
while the polarization potential Ui(xi,yi) causes distortion of
the internal motion of the pair due to the displacement of the
Coulomb interaction from the charged particle to the center
of mass. For the Green operators Gnp and GK−n of Eqs. (5)
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and (6) the following resolvent equations can be written down:

Gnp = Gch
np + Gch

npUnpGnp and

GK−n = Gch
K−n + Gch

K−nUK−nGK−n,

where the channel Green operators Gch
np and Gch

K−n were
introduced:

Gch
np(x1,y1) =

(
E − h0(x1) − h0(y1) − vnp(x1) + e2

y1

)−1

,

(9)

Gch
K−n(x2,y2) =

(
E − h0(x2) − h0(y2) − vK−n(x2) + e2

y2

)−1

.

(10)

With their help the first two Faddeev equations (2) and (3) can
be rewritten as

�np(x1,y1) = Gch
np(x1,y1; E)[Unp(x1,y1)�np(x1,y1)

+ vnp(x1)(�K−n(x2,y2) + �K−p(x3,y3))], (11)

�K−n(x2,y2) = Gch
K−n(x2,y2; E)[UK−n(x2,y2)�K−n(x2,y2)

+ vK−n(x2)(�np(x1,y1) + �K−p(x3,y3))].

(12)

Applying now the expansion (8) to the modified Faddeev
equations (11), (12), and (4) we get a matrix equation of the
form X = A(E)X with

X =

⎛
⎜⎝

Xnp
XK−n

XK−p

XK0n

⎞
⎟⎠, A(E) =

⎛
⎜⎜⎜⎜⎝

Gch
npUnp Gch

npvnpM(12) Gch
npvnpM(13) 0

Gch
K−nvK−nM(21) Gch

K−nUK−n Gch
K−nvK−nM(23) 0

(G3v3)11M(31) (G3v3)11M(32) 0 −(G3v3)12M(32)

(G3v3)21M(31) (G3v3)21M(32) 0 −(G3v3)22M(32)

⎞
⎟⎟⎟⎟⎠. (13)

Here bold face letters stand for vectors and matrices in the
corresponding CS basis. Our task is to find the (complex)
solution of the equation Det(Î − A(E)) = 0 close to the
unperturbed value

E0 = Ed + ε1s(Kd), (14)

where Ed is the deuteron binding energy, while ε1s(Kd) is
the ground state energy of the K− in the Coulomb field of a
point-like deuteron. E0 is the lowest bound state pole of the
channel Green operator Gch

np.

E. Calculation of Green operator matrix elements

All Green operators of our final equations (13) are now of
the form

G(x,y; E) = (E − h0(x) − h0(y) − u1(x) − u2(y))−1

with

Gch
np ⇒ u1(x) = vnp(x); u2(y) = −e2/y,

Gch
K−n ⇒ u1(x) = vK−n(x); u2(y) = −e2/y,

G3 ⇒ u1(x) = v3(x)−
(

e2/x 0
0 0

)
(a matrix); u2(y) = 0.

For them the following convolution integral representation
exists:

G(x,y; E) =
∮

c

g1(x; ε)g2(y; E − ε) dε (15)

with

g1(x; z) = (z − h0(x) − u1(x))−1 and

g2(y; z) = (z − h0(y) − u2(y))−1.

In the original formulation [12] the contour c “encircles the
spectrum of g1 without penetrating the spectrum of g2”. For

practical purposes this can be reformulated as “the contour
c is a directed path, which divides the complex plane into
two non-intersecting parts, the singularities of g1 being on its
left side, while those of g2 on its right side”. Obviously, the
double CS matrix elements of 〈μ|G|μ′〉 can be expressed in
the same way through the matrix elements of 〈μx |g1|μ′

x〉 and
〈μy |g2|μ′

y〉, each in its own basis.
The choice of the integration path c can depend on the

analytical properties of the two-body Green operators g1 and
g2 entering the convolution integral (15) and on the position
of the three-body energy E on the complex plane with respect
to the singularities of g1 and g2. For “ordinary” three-body
problems—real energy, bound or scattering states—it can
be chosen on the physical sheets of both g1 and g2. When
searching for quasibound states in a three-body problem with
simple absorptive potentials—complex energy eigenvalue—
the path still can remain solely on the physical sheets. This was
the case in our previous calculation [4]. In the case of looking
for resonance poles in scattering—complex eigenvalues on
the closest nonphysical sheet of at least one of the gi’s—the
contour has to be continued to that nonphysical sheet (see, e.g.,
[13]). And, finally, our present problem: quasibound state in a
multichannel system, where one of the gi’s is defined on a mul-
tilevel Riemann surface. Before discussing this case in some
detail, a technical point may be mentioned: since the integra-
tion along the real ε axis leads to strong oscillations, especially
for the high n,n′ matrix elements, it is desirable to keep the
path as far from the real axis as the fixed branch points allow.

In Fig. 2. we show the integration path (dashed line) for the
case of Gch

np of Eq. (9):

Gch
np(x1,y1; E) =

∮
c

gnp(x1; ε)gc(y1; E − ε) dε.

Here both operators gnp and gc have only the usual unitary cuts,
starting at zero energy, and one (or more) bound state poles for
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1s dE

1d sE E

Unitary cuts 

FIG. 2. Integration path for the channel Green operator Gch
np . See

details in the text.

negative real energies (denoted by crosses). For a three-body
energy E = E0, where E0 was defined in Eq. (14), the small
crosses on Fig. 2, corresponding to the deuteron energy Ed

and the Coulomb ground state energy ε1s coincide, and Gch
np

has a pole, as mentioned before. Along the integration path the
values of gnp and gc are taken from their usual physical sheets
[Im(k) > 0].

A more complicated situation is shown on Fig. 3, the case
of Gch

K−n of Eq. (10):

Gch
K−n(x2,y2; E) =

∮
c

gK−n(x2; ε)gc(y2; E − ε) dε.

Here, apart from the unitary cuts, the gK−n, due to the construc-
tion of the “exact optical” potential, “remembers” the corre-
sponding cut of the excluded π� channel, starting at the π�
threshold. With respect to this cut the sought eigenvalue E is
on the unphysical sheet, below the physical one. The situation
with the conventional cuts and the Coulomb pole is depicted in
Fig. 3(a). Choosing the integration path in accordance with this
picture, one could not avoid the undesired integration between
the two cuts along the real axis (or very close to it). Therefore,
with a certain redefinition of how the square root is taken in the
π� channel, the π� cut can be turned “upwards” (as shown in
Fig. 3b) , allowing to select the integration path denoted by the
dashed line. Integrating along this path, the values of gc must
be taken from its physical sheet, while those of gK−n—from
its (redefined) unphysical sheet. A consequence of this latter is
the possible occurrence of poles of gK−n on the “wrong” side
of the path—their contribution has to be taken into account
when evaluating the convolution integral (indicated by small
dashed circles around them in Fig. 3b).

Similar considerations apply for the case of G3 of Eq. (7):

G3(x3,y3; E) =
∮

c

g3(x3; ε)g0(y3; E − ε) dε.

When the original K̄N interaction couples the K̄N − π� −
π� channels, as in one of our potential models, the optical
potential has two extra cuts and the above described procedure
has to be applied to both of them, resulting in a somewhat
more complicated integration path.

thE

E

1sE

thE

E

1sE

(a)

(b)

FIG. 3. Integration path for the channel Green operator Gch
K−n

.
See details in the text.

F. Energy dependent potentials and the convolution integral

The K̄N interactions enter the Faddeev equations in the
form Gch

K−n(x2,y2; E)vK−n(x2) and G3(x3,y3; E)v3(x3). If the
potentials are energy dependent either due to the optical
potential construction or inherently (or both)

vK−n(x2) ⇒ vK−n(x2; z), v3(x3) ⇒ v3(x3; z), (16)

the convolution integral has to be modified. In Eq. (16) the
z obviously refers to the corresponding two-body subsystem
energy, which also occurs under the integration sign in Eq. (15).
Therefore the modified convolution integrals have the form

Gch
K−n(x2,y2; E)vK−n(x2)

⇒
∮

c

gK−n(x2; ε)vK−n(x2; ε)gc(y2; E − ε) dε

and similarly for the other case. For separable interactions used
in our calculation, this does not mean an extra difficulty, since
for them gv has a simpler form, than g itself.

III. INPUT AND RESULTS

A. K̄ N interactions

In our previous test calculation [4] we used simple one-
term separable interactions with complex coupling strengths
to account for the absorption. In the present calculation we
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TABLE I. Convergence of the kaonic deuterium 1s level shifts �E with increasing basis size Ntot = 4(nmax + 1)2. Results are shown for
the three considered K̄N potentials vK̄N (SIDD1),vK̄N (SIDD2),vK̄N (Chiral) and the two np interactions vs

np and va+r
np .

Basis �E in eV

nmax in each Total basis vK̄N (SIDD1) vK̄N (SIDD2) vK̄N (Chiral)

channel size Ntot vs
np va+r

np vs
np va+r

np vs
np va+r

np

20 1764 692 − 439i 714 − 452i 711 − 448i 728 − 448i 762 − 461i 766 − 460i

24 2500 699 − 442i 739 − 456i 738 − 451i 753 − 455i 792 − 472i 802 − 477i

28 3364 706 − 442i 753 − 459i 755 − 455i 769 − 461i 809 − 480i 823 − 490i

32 4356 711 − 442i 761 − 461i 765 − 458i 776 − 466i 816 − 486i 832 − 497i

36 5476 713 − 442i 764 − 463i 770 − 461i 780 − 468i 819 − 489i 835 − 500i

40 6724 715 − 442i 766 − 464i 774 − 461i 781 − 469i 819 − 490i 836 − 502i

44 8100 716 − 442i 767 − 464i 776 − 461i 782 − 469i 820 − 491i 835 − 502i

used three different K̄N interactions, realistic in the sense, that
they reproduce all known K̄N experimental data, including the

recent SIDDHARTA value of the 1s level shift [14] in kaonic
hydrogen.

vK̄N (SIDD1) → K̄N − π� coupled channels, one-pole structure of the �(1405),

vK̄N (SIDD2) → K̄N − π� coupled channels, two-pole structure of the �(1405),

vK̄N (Chiral) → K̄N − π� − π� coupled channels, energy-dependent coupling

constants, channel couplings according to chiral perturbation theory.

All interactions are separable with simple Yamaguchi form
factors, we have constructed them for our previous Coulomb-
less Faddeev calculations for the K̄NN system, the SIDD1
and SIDD2 in [7], while the Chiral one in [8], where their
detailed description can be found.

B. np interactions

In order to have an idea about the effect of the deuteron
structure on the level shift, we used two np potentials:

(i) vs
np—a simple one-term attractive separable potential,

which reproduces the deuteron binding energy and
size;

(ii) va+r
np —a more realistic two-term attractive plus repul-

sive separable potential, reproducing the deuteron and
the 3S1 phase shifts up to 300 MeV

C. Results

Our results for the 1s kaonic deuterium level shift

�E = E(3-body) − E0

are summarized in Table I. The convergence of the method
with increasing basis size is apparent, the accuracy of the
converged results is of the order of 1 eV. The different
K̄N interactions, which are equally good in describing the
two-body data, give somewhat different level shifts, the chiral
value differs significantly from the two phenomenological
ones. The deuteron wave function (or the np interaction)
has also a certain, not too large, effect. Thus an available

experimental value of �E, an expected and desired result of
the SIDDHARTA 2 experiment [15], could contribute to our
understanding of the K̄N interaction.

We also made a comparison of our converged results with
some of the approximations for �E, the results are shown in
Table II. The “corrected Deser formula” [16] connects �E
with the strong scattering length aK̄d , while in the “best”
two-body approximation [7], a strong K̄d optical potential
V

opt
K̄d

is added to the Coulomb interaction to calculate the
shifted energy eigenvalue. For the numbers in Table II both
aK̄d and V

opt
K̄d

were derived from the solution of Faddeev
equations with the same strong potentials. It is evident, that
the most commonly used and often unduly trusted corrected
Deser formula (in its most widely used form [17]),

�E = −2α3μ2aK̄d (1 − 2 α aK̄d μ(ln α − 1)),

has little to do with the exact results, especially for the imagi-
nary part of the level shift. The “best” two-body approximation
seems to give reasonable results, probably within the range of
expected experimental accuracy.

TABLE II. Comparison of calculation methods for �E (in eV )

K̄N potential Corrected Deser K̄d optical 3-body
from aKd potential

SIDD1 831 − 367i 785 − 509i 767 − 464i

SIDD2 840 − 364i 797 − 512i 782 − 469i

Chiral 881 − 363i 828 − 527i 835 − 502i
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IV. CONCLUSIONS

(i) The present calculations, made with different, realistic
K̄N interactions suggest that the level shift �E should
be in the range �E ∼ (800 ± 30) − (480 ± 20)i eV.

(ii) This is the first exact calculation of the level shift in
a hadronic atom, which uses realistic, multichannel
hadron-nucleon interaction and goes beyond the con-
ventional two-body picture.

(iii) For the strangeness nuclear physics the main signif-
icance of the results is not as much in the obtained
numbers, as in the first possibility to relate an

important and hopefully measurable observable of the
K̄NN system to the input K̄N interactions without
relying upon uncontrollable approximations.

(iv) The proposed method can serve as an important tool
in fixing the yet uncertain properties of the basic K̄N
interactions.
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