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Nucleon-nucleon bremsstrahlung of dark gauge bosons and revised supernova constraints
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We calculate the rate of production of hypothetical light vector bosons (LVBs) from nucleon-nucleon
bremsstrahlung reactions in hot and dense matter. We use the soft-radiation approximation and express the
rates directly in terms of the measured nucleon-nucleon elastic differential cross sections. These results are
combined with the observation of neutrinos from supernova SN1987a to deduce constraints on the couplings of
vector bosons with masses �200 MeV to either electric charge (dark photons) or to baryon number. We establish
for the first time strong constraints on LVB that couple only to baryon number and revise earlier constraints on
the dark photon. For the latter, we find that the excluded region of parameter space is diminished by about a
factor of 10.
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I. INTRODUCTION

The detection of about 20 neutrinos over about 10 s from
supernova SN1987A confirmed in broad brush the paradigm
for core-collapse supernova in which the neutrinos carry away
the bulk of the gravitational binding energy, �3–5 × 1053 ergs,
of the neutron star. The time scale associated with this intense
neutrino emission is determined by neutrino diffusion in the
hot and dense core of the newly born neutron star called the
proto-neutron star [1]. During this phase, the emission of
other weakly interacting particles, were they to exist, could
sap energy from the core and reduce the number and time
scale over which neutrinos would be detectable. This allows
one to extract useful constraints on the coupling of these
hypothetical particles for masses up to about 200 MeV from the
neutrino signal observed from SN1987A. Now widely referred
to as the supernova cooling constraint [2], it has provided
stringent constraints on the properties of QCD axions [3],
the size of large gravity-only extra dimensions into which
light Kaluza-Klein gravitons could be radiated [4,5], light
supersymmetric particles such as neutralinos [6], and more
recently on the properties of dark photons [7–9].

Observations of galaxy rotation curves, the motion of
galaxies in clusters, gravitational lensing, and the remarkable
success of the �CDM model of the early universe (see
Ref. [10] for a pedagogic review), combined with the direct
empirical evidence from the bullet cluster [11] indicates the
existence of dark matter (DM) which interacts with ordinary
matter through gravitational interactions. This has spurred
much recent research in particle physics and a plethora of
DM models have been proposed that also naturally predict
nongravitational interactions. In a class of these models,
DM is part of neutral hidden sector which interacts with
standard-model (SM) particles through the exchange of light
vector bosons (LVBs) that couple to SM conserved currents
[12–15]. Here, DM is charged under a local U(1) and it is
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convenient from a phenomenological perspective to consider
two possibilities. In one the mediator couples to the SM electric
charge Q and is described by the spin-1 field A′

μ called the dark
photon γQ. The other is often referred to as the leptophobic
gauge boson γB and is described by the field Bμ which couples
only to baryon number.

At low energy it suffices to consider minimal coupling
of the LVBs to charge and baryon number described by the
Lagrangian

L ⊃ gQA′
μJ EM

μ + gBBμJ B
μ − 1

2m2
γQ

A′
μA′μ − 1

2m2
γB

BμBμ,

(1)

which also includes mass terms for the gauge bosons. Of the
two LVBs, the dark photon has been studied extensively and is
usually motivated as arising from kinetic mixing of a dark sec-
tor gauge boson with the photon [16]. This mixing is described
by the term εQF ′

μνF
μν in the low-energy Lagrangian, where

Fμν and F ′
μν are the field tensors associated with the ordinary

photon field and dark photon field, respectively. The Yukawa
coupling in Eq. (1) is gQ = εQe, where e = √

4παem is the
electric charge. To simplify notation, and for later convenience,
we shall also introduce the parameter εB such that Yukawa
coupling of leptophobic gauge boson is gB = εBe.

When the mass of the LVBs is less than a few times
TSN � 30 MeV, where TSN is the temperature encoun-
tered in the supernova core, they can be produced copi-
ously through nucleon-nucleon bremsstrahlung and electron-
positron pair-annihilation reactions. For both types of LVB, the
bremsstrahlung production rate is expected to dominate given
the abundance of nucleons and the strong nature of nuclear
interactions. In this article we calculate this rate using the soft-
radiation approximation (SRA) to obtain a model-independent
estimate, related directly to the nucleon-nucleon elastic scatter-
ing data. A similar method was used in earlier work in Ref. [4]
to estimate low-energy neutrino and axion production and in
Ref. [17] to estimate the rate of production of Kaluza-Klein
gravitons and dilatons from nucleon-nucleon bremsstrahlung.
Here we present, for the first time, a calculation of the rate
of emission of the LVB γB which couples to baryon number
from nucleon-nucleon bremsstrahlung. Our calculation of the
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bremsstrahlung production of dark photons predicts a rate that
is about a factor 10 smaller than that predicted in Ref. [7]. We
trace this difference to an overly simplified treatment of the
nucleon-nucleon interaction based on one pion exchange and
the use of the Born approximation for strong interactions.
Our calculation of the emissivity is exact in the limit of
low-energy radiation (when the energy carried by LVB is small
compared to other energy scales involved in the scattering
process) and when many-body effects can be neglected. In
the supernovae context, the soft-radiation approximation can
fail when the energy of LVBs is comparable to the energy
of incoming nucleon energies, and at lower energies where
the soft-radiation approximation is valid, multiple scattering
suppression owing to the Landau-Pomeranchuk-Migdal effect
can play a role [18]. Both of these issues warrant further study,
and our results, while clearly an improvement over earlier
calculations, should be viewed as factor-of-2 estimates.

In Sec. II we review the well-known result for soft
bremsstrahlung radiation and outline the calculation for the
emissivity of LVBs from the supernova core in this limit.
We discuss the elastic neutron-neutron, proton-proton and
neutron-proton cross sections and use experimental data to
compute the emissivities in Sec. III. In Sec. IV we derive
constraints on εB and revise earlier constraints on εQ. Here
we also discuss sources of opacity for LVBs that can suppress
cooling arising from inverse bremsstrahlung process, Compton
scattering, and decay into electron-positron pairs.

II. NUCLEON-NUCLEON BREMSSTRAHLUNG
IN THE SOFT LIMIT

We begin by briefly reviewing nucleon-nucleon
bremsstrahlung in the soft limit where the energy
radiated is small compared to the energy associated
with nucleon-nucleon interaction. It is well known that the
amplitude for bremsstrahlung production of particles can be
related to the elastic scattering cross section when expanded
in powers of the energy ω, carried away by the radiated
particles [19]. The amplitude for a generic bremsstrahlung
process XY → XYγ can be written as

MXY→XYγ = A(Ec.m.)

ω
+ B(Ec.m.) + O(ω), (2)

where A(Ec.m.) and B(Ec.m.) are related directly to the
elastic XY → XY cross section without radiation in the
final state. This result, called Low’s soft-photon theorem
for bremsstrahlung, was first derived by Low [20] and was
subsequently used to study neutron-proton and proton-proton
bremsstrahlung reactions [21,22]. These calculations which
only retain on-shell elastic amplitudes A(Ec.m.) and B(Ec.m.)
are referred to as the soft-photon approximation or the SRA.

The Feynman diagrams that contribute in the SRA are
shown in Fig. 1. Here, nucleons are represented by solid lines
and the LVB as the wavy photon lines. The shaded circles
represent the nucleon-nucleon interaction and contain both
the long-distance pion-exchange component and all shorter-
distance components that contribute to nucleon-nucleon scat-
tering. The amplitude for the reaction pp → ppγ is obtained
by summing diagrams (a), (b), (c), and (d), while for the
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FIG. 1. Diagrams in which radiation, denoted by the wavy line,
attaches to the external nucleon legs (solid lines) dominate in the
low-energy limit. The gray blobs represent the antisymmetrized
nucleon-nucleon potential and contain both the direct and the
exchange contributions.

reaction np → npγ only two of these diagrams contribute in
which the photon couples only to the proton at leading order in
this expansion. The four-momenta of the initial-state nucleons
are denoted P1 and P2 and in the final state are denoted P3 and
P4. K = (ω,�k) is the four-momentum of the radiated quanta,
and εμ is its polarization. These diagrams dominate at small ω
because the intermediate nucleon is close to being on-shell and
makes a contribution to the bremsstrahlung amplitude at order
ω−1. In this limit, when the energy radiated is small compared
to Ec.m. of the nucleon pair, the unpolarized differential cross
sections for bremsstrahlung radiation of LVBs are given by

dσpp→ppγi
= −4παemε2

i

d3k

2ω

(
εμJ (4)

μ

)2
dσpp→pp, (3)

dσnp→npγQ
= −4παemε2

Q

d3k

2ω

(
εμJ (2)

μ

)2
dσnp→np, (4)

dσnp→npγB
= −4παemε2

B

d3k

2ω

(
εμJ (4)

μ

)2
dσnp→np, (5)

where

J (2)
μ =

(
P1

P1K
− P3

P3K

)
μ

, (6)

J (4)
μ =

(
P1

P1K
+ P2

P2K
− P3

P3K
− P4

P4K

)
μ

, (7)

are the currents associated with dipole and quadrupole radia-
tion, respectively [19,21]. The unpolarized elastic differential
cross sections for pp and np and given by dσpp→pp and
dσnp→np, respectively. These results are valid to leading order
(LO) in an expansion in powers of χ = ω/Ec.m., where
Ec.m. = ( �p1 − �p2)2/4M is the nonrelativistic center-of-mass
(c.m.) energy. When it is appropriate to only retain terms
at order χ−2 the elastic cross section dσ is calculated
at the Ec.m. and is determined by the incoming nucleon
energies. Next-to-leading-order corrections at order χ−1 and
χ0 arise and are proportional to the dσ/dEc.m. and can
become important when Ec.m. � 10 MeV, where dσ varies
rapidly. However, for ambient conditions in the supernova core
Ec.m. ≈ 100 MeV and for these energies d ln σ/d ln Ec.m. 	 1,
and these corrections can be expected to be small. Diagrams
shown in Fig. 2 contribute to bremsstrahlung radiation at
order χ1 in the low-energy expansion. Here, the separation
between contributions from diagrams labeled (e) and (f ) and
the two-body current shown in the diagram labeled (g) are
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FIG. 2. Neglected diagrams (e) and (f ), in which radiation
attaches to internal nucleon lines, and (g), in which it couples to
short-distance two-body currents represented by the gray blob.

model and scale dependent. It is inconsistent to selectively
include a subset of these contributions, and the gray blobs
should include both the pion exchanges and the short-distance
contributions.

Comparison between the photon bremsstrahlung data and
predictions made using the SRA have been performed in the
literature and provide a useful estimate of the error associated
with neglecting internal Bremsstrahlung diagrams labeled (e)
and (f ), and (g). For collisions with Ec.m. ≈ 100–200 MeV
these comparisons show that the SRA provides a good
description of the data for ω 	 Ec.m., and for ω � Ec.m.

they underestimate the cross sections by about a factor of
about 2 [23–25]. Systematic comparisons have also found
that the SRA provides as good a description of nucleon-
nucleon bremsstrahlung data as do potential models with the
model-dependent two-body currents [23]. For these reasons
we propose that leading-order SRA is well suited to calculate
emission and scattering rates of LVB and are preferable to
models based on a one-pion exchange which include a subset
of corrections arising from a subclass diagrams in Fig. 2
in perturbation theory. In the following we shall describe
our calculations of the bremsstrahlung rate using the SRA
and return to discuss many-body effects such as as the
Landau-Pomeranchuk-Migdal (LPM) suppression owing to
multiple scattering in the medium that can be important in
dense systems in Sec. V.

The emissivity, which is the rate of emission of energy in
LVBs per unit volume, can be calculated in the SRA using
Eqs. (3), (4), and (5). For the process np → npγQ and np →
npγB they are given by

ε̇np→npγQ
d = −4παemε2

Q

∫
d3k

2ω(2π )3
ω

∫
d3p1fn(E1)

(2E1)(2π )3

×
∫

d3p2fp(E2)

(2E2)(2π )3

∫
d�
(
εμJ (2)

μ

)2
32πE2

c.m.vrel

× dσnp(Ec.m.,θ )

dθc.m.

, (8)

ε̇np→npγB
= −4παemε2

B

∫
d3k

2ω(2π )3
ω

∫
d3p1fn(E1)

(2E1)(2π )3

×
∫

d3p2fp(E2)

(2E2)(2π )3

∫
d�
(
εμJ (4)

μ

)2
32πE2

c.m.vrel

× dσnp(Ec.m.,θ )

dθc.m.

, (9)

where

d� = (2π )4δ4(P1 + P2 − P3 − P4 − k)[1 − fn(E3)]

× a[1 − fp(E4)]
d3p3

2E3(2π )3

d3p4

2E4(2π )3
(10)

is the final-state phase space of the nucleons, dσnp/dθ is the
differential elastic np scattering cross section, vrel = | �p1 −
�p2|/M is the relative speed, and θc.m. is the scattering angle.
fi(E) = 1/{1 + exp [(E − μi)/T ]} is the Fermi distributions
functions for neutrons and protons. Equation (10) includes
Pauli blocking factors for the final-state nucleons and is impor-
tant under degenerate conditions. However, in the supernova
core matter is partially degenerate with μ(n/p)/T � 1 and
suppression owing to Pauli blocking is small. The emission
rates owing to the reactions nn → nnγB and pp → ppγB are
obtained by replacing dσnp in Eq. (9) with dσnn and dσpp,
respectively, and introduce the relevant distribution functions.
Similarly, to obtain the contribution for pp → ppγQ, we
replace dσnp in Eq. (8) with dσpp and fn by fp. In Sec. III we
discuss our calculations of the elastic nucleon-nucleon cross
sections and find that because dσnp is larger at the energies
of interest and because γQ radiation occurs at dipole order in
the np reaction, the quadrupole order contribution from the
pp → ppγQ reaction is small.

Despite the high density and temperature in the supernova
core the typical nucleon velocity v � 1/3. Thus, it is useful
to expand in powers of v because this simplification allows
us to do the phase space integrals needed to calculate the
emissivities. We find that under nondegenerate conditions the
emissivities are given by

ε̇np→npγQ
= αemε2

Q

π3/2

nnnp

(MT )3/2

∫ ∞

mγQ

dEc.m.e
− Ec.m.

T E3
c.m.I (2)

×
(

mγQ

Ec.m.

)
σ (2)

np (Ec.m.), (11)

ε̇pp→ppγQ
= αemε2

Q

π3/2

npnp

(MT )3/2

∫ ∞

mγQ

dEc.m.e
− Ec.m.

T
E4

c.m.

M
I (4)

×
(

mγQ

Ec.m.

)
σ (4)

pp (Ec.m.), (12)

ε̇ij→ijγB
= αemε2

B

π3/2

ninj

(MT )3/2

∫ ∞

mγB

dEc.m.e
− Ec.m.

T
E4

c.m.

M
I (4)

×
(

mγB

Ec.m.

)
σ

(4)
ij (Ec.m.), (13)

where

I (2)(x) = 4

3

[√
1 − x2

(
1 − x2

4

)
− 3x

4
arctan

(√
1 − x2

x

)]
,

(14)

I (4)(x) = 8

5

[√
1 − x2

(
1 + x2

12
+ x4

6

)

− 5x

4
arctan

(√
1 − x2

x

)]
, (15)
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and

σ
(2)
ij =

∫
d cos θc.m.

dσninj →ninj

dθc.m.
(1 − cos θc.m.), (16)

σ
(4)
ij =

∫
d cos θc.m.

dσninj →ninj

dθc.m.
(1 − cos2 θc.m.). (17)

The derivation of these results is discussed in Appendix A.
Albeit cumbersome, numerical calculations of the emissivity
including relativistic dispersion relations for the nucleons and
corrections owing to matter degeneracy can be performed
directly using Eqs. (8) and (9). At T = 30 MeV and nucleon
number density n � n0 = 0.16 fm−3 we have estimated these
corrections to be small �30% compared to order χ corrections
neglected in the SRA, which could be about factor of 2, as
discussed earlier.

III. ELASTIC CROSS SECTIONS AND LVB EMISSIVITY

The elastic differential cross section appearing in Eqs. (16)
and (17) is obtained from the measured phase shifts and
is described in detail in Appendix B. It is expanded in the
spherical wave basis with definite orbital angular momentum
L and the angular dependence is given by associated Legendre
polynomials P m

l (cos θc.m.) and the energy dependence is
encoded in the phase shifts [26]. This expansion converges
rapidly, as can be seen from Fig. 3, where we present our
calculation of the total n-p cross section including individual
contributions from phase shifts with angular momentum from
L = 0 to L = 5. With the inclusion of phase shifts L =
0, 1, and, 2 one finds good agreement between theory and the
high-quality data shown by the dashed curve. To better resolve
the angular dependencies needed to determine σ

(2)
ij and σ

(4)
ij ,

we retain terms up to L = 5.
In Fig. 3 we also show the np cross section calculated

in the Born approximation using the one-pion exchange
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p
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FIG. 3. The np scattering cross section reconstructed from the
phase shifts is compared with data and the predictions of the OPEP.
The change in the total cross section as more partial waves are
included is shown and is in accordance with the expectation about its
rapid convergence. In contrast, the Born cross sections in the OPEP
fail to reproduce both the qualitative and quantitative features seen in
the data.

potential (OPEP). A comparison reveals large differences in
the magnitude and energy dependence of the cross section and
implies that earlier work in Ref. [7], where bremsstrahlung
was calculated using the one-pion exchange potential will also
be similarly discrepant. We can deduce that at small values
of Ec.m. the one-pion exchange model grossly underestimates
the scattering rate, while for Ec.m. > 50 MeV it overestimates
it by about a factor of 6. We find a similar trend for the
nn and pp cross sections. In the supernova where T � 30
MeV the relevant Ec.m. � 100 MeV, and we can anticipate
that calculations based on the OPEP will overestimate the
bremsstrahlung rate by a similar factor. As we shall see shortly
this is borne out of the comparison between our results for the
dark photon production and those presented in Ref. [7].

In the left panel of Fig. 4 we plot the function

�(2)
np (Ec.m.) = exp

(
−Ec.m.

T

)
E3

c.m.I (2)(0)σ (2)
np (Ec.m.), (18)

which appears as the integrand on the right-hand side of
Eq. (11), and in the right panel we show the function

�
(4)
ij (Ec.m.) = exp

(
−Ec.m.

T

)
E4

c.m.

M
I (4)(0)σ (4)

ij (Ec.m.), (19)

which appears as the integrand on the Right-hand side of
Eq. (11), with m = 0. These plots show the distribution of
center-of-mass energies of nucleons in the initial state that
contribute to the bremsstrahlung process when the mass of the
LVB is negligible. The np → npγQ process shown in the left
panel is stronger because this occurs at dipole order, while the
processes that occur at quadrupole order pp → ppγQ, np →
npγB, nn → nnγB , and pp → ppγB are shown in the right
panel are suppressed by Ec.m./M ∝ v2, where v is nucleon
velocity in the initial state. The emissivity is proportional to
the area under these curves and the difference between the
curves obtained in the SRA and the OPEP is striking and the
trends follow from the comparison between the cross sections
seen in Fig. 3. For soft dipole radiation these curves suggest
that OPEP would overestimate the rate by about a factor 2,
while for quadrupole radiation it would overestimate the rate
by about a factor 10. In these plots T = TSN = 30 MeV and
under these conditions we see that bremsstrahlung production
of dark photons peaks at Ec.m. � 100 MeV and production of
leptophobic LVB peaks at Ec.m. � 150 MeV. The spectrum
of LVBs emitted will be approximately thermal, with ω ≈
T − 3T suggesting that expansion parameter for the SRA,
χ � 1/5 − 1.

IV. NEW AND REVISED CONSTRAINTS

In earlier work Raffelt found empirically that when the
energy-loss rate per gram owing to the radiation of free
streaming particles in the supernova core at a fiducial density
ρ = 3 × 1014 g/cm3 and temperature T = 30 MeV exceeds

ĖRaffelt = 1019 erg

gs
, (20)

the duration of the SN neutrino burst is approximately reduced
by half [2]. Detailed simulations of neutrino transport in the
proto-neutron star and its predictions for the neutrino events
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FIG. 4. Dipole (left) and quadrupole (right) contributions to the emissivity integral defined in Eqs. (18) and (19), respectively. The solid
lines were obtained using experimentally measured differential cross sections and the dotted lines are obtained from the OPEP model. Fiducial
values T = 30 MeV and m = 0 are used in these plots.

in Kamioka and Irvine-Michigan-Brookhaven, which were the
neutrino detectors at the time of SN1987A, validate Raffelt’s
approximate local criterion [2,5], and in what follows we
shall employ it to constrain εQ and εB . We note that Raffelt’s
criterion approximately corresponds to limiting the energy loss
owing to LVBs to total luminosity of L < ĖRaffelt × Mcore �
2 × 1052(Mcore/M�) ergs/s.

First, we determine the SN1987A constraints on γB , which
is the leptophobic LVB that couples to baryon number. The
total energy-loss rate per gram owing to γB radiation is

ĖB(ρ,T ,Yp) = (ε̇np→npγB
+ ε̇nn→nnγB

+ ε̇pp→ppγB
)/ρ, (21)

where ρ is the matter mass density, T is the temperature, and
Yp = np/(nn + np) is the fraction of protons. As already noted
we choose ρ = 3 × 1014 g/cm3, T = TSN = 30 MeV and we
set the proton fraction Yp = 0.3 to reflect typical conditions
encountered in proto-neutron-star simulations [27,28].

In Fig. 5 we show the constraint on the coupling strength de-
fined as αB = ε2

Bαem, where αem = 1/137 is the fine structure
constant. We have opted to work with αB rather εB because
this is widely used in the context of discussing LVBs that
couple to baryon number. The solid blue curve is obtained by
setting ĖB(ρ = 3 × 1014 g/cm3, T = 30 MeV, Yp = 0.3) =
1019 erg/(g s) and solving for εB for a range of LVB masses
mB = 1 eV–200 MeV. For value of αB larger than those
defined by the blue curve, the supernova would cool too rapidly
to produce the neutrino events detected from SN1987A. For
lighter masses when mB 	 1 eV the exchange of the LVB
leads to macroscopic forces, collectively referred as fifth
forces, and have been probed by a host experiments (for a
review, see Ref. [29]). These have strongly constrained αB

to values that are several orders of magnitude smaller than
can be accessed by the SN cooling constraint. At intermediate
values in the range mB � few eV–MeV, neutron scattering and
neutron optics provide the strongest experimental constraints
[30,31] and these are also shown in Fig. 5.

While it is remarkable that the SN cooling constraint in
Fig. 5 is several orders of magnitude more stringent than the
experimental constraints, it relies on the assumption that, once

produced, the LVBs can free stream out of the proto-neutron
star. Clearly, this will not be true for large values of the coupling
αB . At these larger values of αB LVBs will be trapped in
the core and will be emitted as blackbody radiation with a
luminosity

Ls � π3

30
g∗(η)R2

s T
4
s , (22)

where η = m/Ts, and Rs and Ts are the radius and temperature
at which LVBs decouple, respectively. The effective spin-
degeneracy factor

g∗(η) = 45

π4

∫ ∞

0
dy

y2
√

η2 + y2

exp (
√

η2 + y2) − 1
(23)
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Neutron Scattering [Barbieri & Ericson, 1975]

SN87a Excluded Region

FIG. 5. Cooling and trapping constraints in the parameter space
of the LVB that couples to baryon number. The solid blue line is
the lower limit set by cooling, and the dashed blue line is the upper
limit set by trapping. Experimental constraints derived from neutron
scattering from Ref. [30] (black dot-dashed curve) and from neutron
optics from Ref. [31] (red dashed curve) are also shown.
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includes corrections owing to the finite mass of LVBs and the
contribution from the additional longitudinal modes. When
Ls > 3 × 1052 ergs/s, the neutrino signal is discernibly altered,
and neutrinos from SN1987A continue to provide a bound
on the coupling of LVBs [2]. If instead a large fraction of
this radiation originating at Rs does not propagate to regions
beyond the neutrino sphere, it will be reabsorbed by matter
and transferred back to neutrinos. To ensure that this does not
occur, we require that effective optical depth in the vicinity
of Rs

τ (Rs) =
∫ Rm

Rs

dr

〈λ(r)〉 < 1, (24)

where

〈λ(r)〉 =
∫∞
η

dx
x2

√
x2−η2

(ex−1) λr (ω = xTs)∫∞
η

dx
x2

√
x2−η2

(ex−1)

(25)

is a simple energy-weighted spectral average of the mean free
path λr (ω) of LVBs and η = m/Ts . This provides an upper
bound on the LVB couplings to baryon number and electric
charge that we shall refer as the trapping constraint.

To calculate the trapping constraint we note that density and
temperature profiles near the neutrino-sphere can be modeled
using simple power laws given by ρ(r) = ρ(Rs)(Rs/r)n and
T (r) = Ts(Rs/r)n/3. For a given temperature profile, Rs is
determined by setting Ls = 3 × 1052 ergs/s and this also
ensures that the LVB decoupling radius Rs is smaller than the
neutrino-sphere radius. The upper limit of the radial integral
Rm is chosen such that heat deposition by LVBs in the region
Rs–Rm is likely to be reradiated as neutrinos. In what follows
we require Rm to be located beyond the neutrino sphere at a
location where the temperature T = Tν/2 ≈ 3 MeV, and the
power law index n is varied over the range 3–7 it is possible
to mimic representative profiles found from supernova and
proto-neutron-star simulations at early times [27,28]. When
the LVB mass is larger than the temperature in the outer
regions, the decoupling surface will be pushed to a higher
temperature region in the core. To describe decoupling of
these heavier LVBs, we smoothly connect the steep density and
temperature profiles in the surface regions to the core density
profiles with ρcore � 3 × 1014 g/c.m.3 and a core temperature
Tcore � 30 MeV.

For the ambient conditions of interest, inverse
bremsstrahlung reactions γBnp → np, γBnn → nn, and
γBpp → pp are more important than the Compton scattering
process γBp → pγ (interestingly, owing to plasma effects,
Compton scattering off electrons γBe− → e−γ and pair
production of electron-positron pairs γB → e+e− is induced
through in-medium mixing with the photon owing to a
proton-hole loop but was found to be small compared to
the bremsstrahlung processes). The mean free path owing
to the inverse bremsstrahlung process can be calculated in
the soft-radiation approximation. Using the transition matrix
element calculated for bremsstrahlung and making appropri-
ate changes to the phase space integrals (see Appendix C
for details), we find the mean free path for the process

0 20 40 60 80 100

T [MeV]
100

101

102

103

σ
ij
[m
b]

σ
(2)
np

σ
(4)
np

σ
(4)
pp

FIG. 6. The temperature dependence of the thermally aver-
aged nuclear cross sections needed for the calculation of the
bremsstrahlung absorption contributions to the mean free path of
LVBs.

γBij → ij

1

λ
ij
γB (ω)

= 2496

135π
αBninj

(
πT

M

)5/2 1

ω3

√
1 − ξ 2

×
(

1 + 2

13
ξ 2

)〈
σ

(4)
ij (T )

〉
, (26)

where ni,nj are the number densities of the nucleons involved,
T is the ambient temperature, ξ = mB/ω, and the thermal
cross section

〈
σ

(4)
ij (T )

〉 = 1

6

∫ ∞

0
dxe−xx3σ

(4)
ij (Ec.m. = xT ), (27)

σ
(4)
ij (Ec.m.) =

∫ 1

−1
d cos θc.m.(1 − cos2 θc.m.)

dσij (Ec.m.)

dθc.m.
.

(28)

Here, as before, dσij (Ec.m.) is the differential cross section
for elastic nucleon-nucleon scattering process ij → ij and
Ec.m. is the center-of-mass energy of the nucleon pair in
the initial state. In Fig. 6 the variation of the thermal cross
sections with temperature is shown and the large increase
at low temperature arises because the nucleon-nucleon cross
sections at low energy increase rapidly, as can be seen in
Fig. 3.

We note that the one-pion-exchange model for nuclear
interactions would have predicted the opposite behavior. The
thermal cross section, which will be relevant when we discuss
the opacity of dark photons later,

〈
σ (2)

np (T )
〉 = 1

2

∫ ∞

0
dxe−xx2σ (2)

np (Ec.m. = xT ), (29)

σ (2)
np (Ec.m.) =

∫ 1

−1
d cos θc.m.(1 − cos θc.m.)

dσnp(Ec.m.)

dθc.m.
.

(30)
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SRA: Ė = 1019 erg/(g s)
OPEP Trapping [ Dent et al. (2012) ]
SRA Trapping: τ(RS) = 1

SN87a Excluded Region

FIG. 7. The revised excluded region in the dark-photon parameter
space. Blue curves show results obtained using the bremsstrahlung
rates calculating in the SRA, while the red curves are taken from [7]
and are based on rates calculated using the OPEP (see text for details).

is also shown in Fig. 3. It is interesting to note that 〈σ (4)
ij (T )〉

relevant for LVBs that couple to baryon number is quite smaller
because in this case scattering occurs only owing to quadrupole
fluctuations of baryon charge in nucleon-nucleon collisions.
Summing over the individual contributions, the mean free path
in Eq. (25) is given by λr (ω) = (1/λ

np
r + 1/λnn

r + 1/λ
pp
r )−1

and we use it in Eq. (24) and employ the matter profile
previously mentioned to calculate τ (Rs). The blue dashed
curve in Fig. 5 is the obtained by requiring that τ (Rs) = 1.

We now turn to perform a similar analysis to constrain the
properties of the dark photon. In this case the total energy-loss
rate per gram owing to the radiation of dark photons is

ĖQ(ρ,T ,Yp) = (ε̇np→npγQ
+ ε̇pp→ppγQ

)/ρ, (31)

and requiring that ĖQ(ρ = 3 × 1014 g/cm3, T =
30 MeV, Yp = 0.3) < ĖRaffelt provides a constraint on
εQ that is shown by the solid blue curve in Fig. 7. In this
case, we choose to show constraints on εQ rather than the
related quantity αQ = ε2

Qα to help compare with earlier
constraints obtained in Ref. [7,9]. For reference, the SN
cooling constraint from Ref. [7] is also shown in Fig. 7 as
a solid red curve. The differences between the results arise
owing to two unrelated factors which partially offset each
other. First, as noted earlier, the OPEP used in Ref. [7] to
calculate the bremsstrahlung rate of dark-photon production is
expected to be larger than our predictions based on the SRA.
In addition, the inclusion of a specific contribution to the the
two-body current coming from the pion-exchange current
could spuriously enhance the np bremsstrahlung rate by a
large factor. Second, in Ref. [7] the authors chose to derive
the constraint by requiring that total energy loss owing to dark
photons produced in the central 1-km region of the SN core
with a density ρcore = 3 × 1014 g/cm3 and Tcore = 30 MeV
be less than 1053 ergs/s. This corresponds to a local bound
on the energy loss Ė < 8 × 1022 ergs/(g s). Had we used this
bound instead of Ė < ĖRaffelt, our constraint on εQ would
be weaker by a factor of about 100. This suggests that the
bremsstrahlung rate in Ref. [7] is larger than ours by a factor

of about 500. This large difference cannot be explained by the
differences we see between the data and the nucleon-nucleon
cross sections predictions by the OPEP. It is also unlikely that
inclusion of a specific meson-exchange contribution in [7]
can account for this large enhancement.

To obtain the upper bound on εQ owing to trapping, we
calculate the dark-photon mean free path. At high density
and for dark-photon masses mQ < 100 MeV, the dominant
absorption process is the inverse bremsstrahlung γQnp → np
and the associated mean free path is given by

1

λ
np
γQ (ω)

= 8αemε2
Qninj

(
πT

M

)3/2 1

ω3

2 + ξ 2√
1 − ξ 2

〈
σ (2)

np (T )
〉
, (32)

where, as before, nn,np are number densities of neutrons and
protons, T is the ambient temperature, ξ = mQ/ω, and thermal
cross section was defined earlier in Eq. (29). The reaction
γQpp → pp makes a smaller contribution because it occurs
at quadrupole order and is given by

1

λ
pp
γQ (ω)

= 2496

135π
αemε2

Qn2
p

(
πT

M

)5/2 1

ω3

√
1 − ξ 2

×
(

1 + 2

13
ξ 2

)〈
σ (4)

pp (T )
〉
, (33)

where the thermal cross section 〈σ (4)
pp (T )〉 was defined earlier

in Eq. (27). The direct decay of the dark photon to electron-
positron pairs γQ → e+ + e− becomes relevant for larger
dark-photon masses. In the supernova core Pauli blocking of
the final-state electrons owing to their high chemical potentials,
μe � 100 MeV suppresses this decay rate, and the mean free
path is given by

1

λe+e−
γQ

(ω)
= αε2

3

m2
Q + 2m2

e

ω2 − m2
Q

∫ E+

E−
dE[1 − fe− (E)]

= αε2

3

m2
Q + 2m2

e

ω2 − m2
Q

[
2(E+ − E−)

− T ln

(
eE+/T − eμe/T

eE−/T − eμe/T

)]
, (34)

where

E± =

⎡
⎢⎣m2

Q + ω2

⎛
⎝
√

1 − 4
m2

e

m2
Q

± 1

2

√
1 − m2

Q

ω2

⎞
⎠

2
⎤
⎥⎦

1/2

,

(35)
and ω =

√
k2 + m2

Q is the energy of the dark photon in the rest
frame of the dense plasma. Including inverse bremsstrahlung
and decay contributions the mean free path of the dark photon
λr (ω) = [1/λe+e−

γQ
(ω) + 1/λ

pp
γQ (ω) + 1/λ

np
γQ (ω)]−1. We use this

to calculate the optical depth defined in Eq. (24) and obtain the
trapping upper bound on the constraint. As discussed earlier
for larger values of εQ dark photons are reabsorbed in the
region in the vicinity of the neutrino sphere and the neutrino
emission will not be altered significantly.
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V. CONCLUSIONS

We have calculated for the first time the energy-loss
rate owing to dark gauge bosons that couple to baryon
number from the supernova core and used it to constrain its
properties. We find that for gauge boson masses in the range
mB = 10−4–102 MeV the SN provides the most stringent
constraint to date on the effective baryon number fine structure
constant αB , which is about 6 orders of magnitude smaller
than earlier constraints based on neutron scattering data.
Our calculation is based on the SRA, which is valid in
the limit when the energy carried by the radiation is small
compared to the energy of nucleons involved in the reaction.
In this limit the bremsstrahlung rate can be related to the
nucleon-nucleon elastic scattering cross sections and provides
a benchmark that is independent of the potential used to model
the nucleon-nucleon interaction. Using the SRA we have also
calculated the emissivity of dark photons and compared our
predictions to those obtained in [7], which were based on the
one-pion-exchange potential of nucleon-nucleon interactions.
We find significant differences because one-pion exchange is
a poor approximation to the nucleon-nucleon interaction. The
revised SN cooling constraint for the dark photons is about
one order of magnitude weaker.

We have also calculated the LVB mean free paths in the
SRA to estimate the upper bound on the coupling. We find
that inverse bremsstrahlung reactions dominate the opacity.
At the relevant densities and temperatures the SRA predicts
an enhancement of these rates in the outer regions of the
supernova when compared to the results obtained in the
one-pion-exchange model because the latter underestimates
the nucleon-nucleon elastic cross section at low energy.

While the SRA is a significant improvement over simple
models of the nucleon-nucleon interaction treated in the Born
approximation, its strictly valid for low-energy processes
where the expansion parameter χ = ω/Ec.m. 	 1. In our
calculations we used the SRA for values of χ � 1/5–1 and the
contribution of higher-order terms in this expansions cannot
be ignored. Nonetheless, as we noted earlier, comparisons
between the predictions of SRA and experimental data in
the context of photon bremsstrahlung from nucleon-nucleon
collisions have shown that the agreement between SRA
predictions and data for photon energies �100 MeV is
typically better than expected, differing by about a factor
of 2 at the higher energies. For these larger energies two-
body currents and rescattering diagrams contribute and their
inclusion relies on a model of the nucleon-nucleon interaction
and the associated two-body currents. Chiral nucleon-nucleon
potentials inspired by effective field theory are well suited
for this purpose, and it would be desirable to first perform
bremsstrahlung calculations in this framework. These would
serve to benchmark calculations with available data from pp
and np bremsstrahlung experiments and then employ them
to predict the emissivities of LVBs in the supernova context.
In addition, at lower energies where the SRA is expected to
be valid other corrections of O(1) arising from many-body
effects in the dense core can play a role. The LPM suppression
of soft radiations is of particular importance and becomes
relevant when the energy radiated in LVBs ω is small compared

to the nucleon collision frequency νN � vNnBσNN , where
vN � √

T/Mn is the nucleon velocity and nB is the baryon
density and σNN is the typical nucleon-nucleon cross section.
For nB = 0.16 fm−3 and σNN = 10 mbarn, νN = 10 MeV
and implies that the LPM effect can suppress the low-energy
emissivity. If this suppression is significant, then the ability of
supernovae to constrain LVBs will be further diminished and
warrants further study.

The rapid increase in nucleon-nucleon cross sections at
low energy implies that the opacity owing to the inverse
bremsstrahlung processes in the outer cooler regions of the
star is larger, while in contrast the smaller cross section at high
energy implies a smaller emissivity in the high-temperature
core. Together, this indicates that the inclusion of realistic
nuclear physics acts to reduce the region of parameter space
that can be constrained and underscores the need to further
improve the nuclear physics of bremsstrahlung processes
by going beyond the SRA and including the LPM effect.
Corrections to the SRA would be especially relevant for LVB
masses greater than about 100 MeV so our constraints in the
region of parameter space must be viewed as preliminary.
Interestingly, for the dark photon masses in the MeV–GeV
range and for coupling εQ in the range 10−7–10−9, recent
work suggests dark-mater annihilations in Earth’s core can lead
to detectable signatures in terrestrial detectors [32]. Because
this has significant overlap with the region constrained by
SN1987A it would be worthwhile to refine these constraints.
As a first step we are including the contribution of LVBs in
the energy transport of 1D models of core-collapse supernova
simulations using the formulas for the emissivities and
opacities derived in this study and will reported it in future
work.
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APPENDIX A: EMISSIVITY

The nonrelativistic limit of the current products
(J (2)μJ (2)

μ, J (4)μJ (4)
μ), from Eq. (15), is quadratic and

quartic, respectively, in baryon velocity. The difference is
attributable to an anomaly in the scenario where all baryons
can radiate, as the center of charge is also the center of mass
and the dipole radiation vanishes and the leading term is
quadrupole radiation. Another consequence of this difference
is the dependence on θc.m., as is shown here.

Owing to the boson being massive, the 4-vector product
differs from the usual expression for photons,

(εμJ̃ μ)2 = −
(

gμν − kμkν

m2
A

)
J̃ μJ̃ ν

= −J̃μJ̃ μ + (kμJ̃ μ)2/m2
A, (A1)

where mA is the mass of LVB.
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The term proportional to the currents,

J (2)
μ J (2)μ = −

[
M2

(p1 · k)2
+ M2

(p3 · k)2
− 2

(p1 · p3)

(p1 · k)(p3 · k)

]
,

J (4)
μ J (4)μ = −

[
4∑

i=1

M2

(pi · k)2
+ (p1 · p2)

(p1 · k)(p2 · k)

+ (p3 · p4)

(p3 · k)(p4 · k)
−

2∑
i=1

4∑
j=3

(pi · pj )

(pi · k)(pj · k)

⎤
⎦,

(A2)

where M = 938.9 MeV is the average baryon mass. In the
SRA the mass-dependent term does not contribute at leading
order, and we find that

J (2)
μ

npkμ =
[

p1 · k
p1 · k

− p3 · k
p3 · k

]
= 0,

J (4)
μ

npkμ =
[

p1 · k
p1 · k

+ p2 · k
p2 · k

− p3 · k
p3 · k

− p4 · k
p4 · k

]
= 0. (A3)

In the nonrelativistic limit, velocities are defined as �vi =
�pi/M , and energies are Ei = M

√
1 + v2

i ≈ M(1 + v2
i /2).

The expansion of Eq. (A2) to leading order in velocities
depends on the relative momentum of the incoming and
outgoing nucleons and is given by

J (2)
μ J (2)μ = 1

ω2

⎧⎨
⎩ ( �p − �p ′)2

M2
−
[

( �p − �p ′)
M

·
�k
ω

]2
⎫⎬
⎭,

J (4)
μ J (4)μ = 4

ω2

⎧⎨
⎩
(

�p ′

M
·

�k
ω

)2
⎡
⎣p′2

M2
+ 2

(
�p

M
·

�k
ω

)2
⎤
⎦

+ p2

M2

(
�p

M
·

�k
ω

)2

−
[

( �p + �p ′)
M

·
�k
ω

]4

− 2
( �p · �p ′)

M2

(
�p

M
·

�k
ω

)(
�p ′

M
·

�k
ω

)}
, (A4)

where �p = 1
2 ( �p1 − �p2), �p′ = 1

2 ( �p3 − �p4) are the usual relative
momenta in the center-of-mass frame.

In the soft limit, p = p′. Performing the integration of the
relative angles between the emitted LVB and the nucleons
confirms the dipole and quadrupole radiation statement made
earlier, as can be seen in Eq. (A5):

ω2

4π

∫
d�ωJ (2)

μ J (2)μ = 2
Ec.m.

M

(
1 − k2

3ω2

)
(1 − cos θc.m.),

ω2

4π

∫
d�ωJ (2)

μ J (4)μ = 8

15

(
Ec.m.

M

)2
k2

3ω2

×
(

5 − 2
k2

3ω2

)
(1 − cos2 θc.m.). (A5)

Because in the n-p scattering cross section only protons
radiate (considering just the dark photon for now), it is dipole
radiation, and its contribution is dominant in determining

the rate of emission of dark photons. This rather simple
feature has important consequences, as for LVBs coupled
only to baryon number there is only quadrupole radiation. The
suppression of emission from quadrupole radiation provides
weaker constraints on this type of LVBs with respect to the
same ambient conditions, in comparison with for LVB coupled
to electric charge. The final expressions in Eq. (15) are obtained
by integrating Eq. (A5) over the radiated energy ω.

APPENDIX B: UNPOLARIZED DIFFERENTIAL
CROSS SECTION

The scattering amplitude in the helicity basis, M
s ′,s
m′

s ,ms
, is

described in detail in Ref. [26]. T is the Fourier transform of
the T matrix, which can be decomposed by spherical waves in
the center-of-mass frame of reference:

〈p|T |p′〉 = − 4π�
2

(2π )32M
f (p,p′) = − �

2

(2π )2M
f (p,p′).

(B1)
For spin- 1

2 particle scattering, the wave function of the two-
particle system in center-of-mass frame is given in a fashion
similar to that of spinless particle scattering:

�s
m(�r) ∼ eikzξ s

m + eikr

r

∑
s ′,m′

s

ξ s ′
m′

s
Ms ′,s ′

ms,ms
(θ,φ)

M
s ′,s
m′

s ,ms
(θ,φ) =

∑
l,J,l′

√
4π (2l + 1)Y l′

ms−m′
s
(θ,φ)

× Cl′ s ′ J
ms−m′

s m′
s ms

Cl s J
0 ms ms

〈l′,s ′|SJ − 1|l,s〉
2ip

SJ
s=s ′=1 =

(
e2iδ1 cos 2εJ iei(δ1+δ2) sin 2εJ

iei(δ1+δ2) sin 2εJ e2iδ1 cos 2εJ

)
,

δ1 ≡ δl=l′=J−1,J , δ2 ≡ δl=l′=J+1,J

S ′J
s �=s =

(
e2iδl cos 2γl iei(δl+δl,l ) sin 2γl

iei(δl+δl,l ) sin 2γl e2iδl,l cos 2γl

)
,

δl ≡ δl=l′=J,s=0, δl,l ≡ δl=l′=J,s=1

=
(

e2iδl 0
0 e2iδl,l

)
. (B2)

Here, we relate it to the unpolarized differential cross section
needed for our calculations:

dσ el,un

d�
= 1

4 TrMM†. (B3)

From time-reversal invariance,

M
1,1
1,1 = M

1,1
−1,−1, M

1,1
1,1 = M

1,−1
−1,1 ,

(B4)
M

1,1
0,1 = −M

1,1
−1,0, M

1,1
1,0 = −M

1,1
0,−1,

dσ

d�
= 1

4

{
2
∣∣M1,1

1,1

∣∣2 + ∣∣M1,1
0,0

∣∣2 + ∣∣M0,0
0,0

∣∣2
+ 2
∣∣M1,1

1,0

∣∣2 + 2
∣∣M1,1

0,1

∣∣2 + 2
∣∣M1,1

1,−1

∣∣2}. (B5)
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Each matrix element can be expanded in partial-wave basis as follows:

M
0,0
0,0 = (ip)−1

∑
L

PL

(
L + 1

2

)
αL,L,

M
1,1
0,0 = (ip)−1

∑
L

PL

[(
L + 1

2

)
αL,L+1 +

(
L

2

)
αL,L−1 +

√
(L + 1)(l + 2)

2
αl+1 +

√
L(L − 1)

2
αL−1

]
,

M
1,1
0,1 = − (ip)−1eiφ

∑
L

P 1
L

{√
2

4

[
2L + 1

L(L + 1)

]
αL,L +

√
2

4

(
L − 1

L

)
αL,L−1 −

√
2

4

(
L + 2

L + 1

)
αL,L+1 +

√
2

4

√
L + 2

L + 1
αL+1

}
,

M
1,1
1,0 = − (ip)−1e−iφ

∑
L

P 1
L

(√
2

4
αL,L+1 −

√
2

4
αL,L−1 +

√
2

4

√
L + 2

L + 1
αL+1 −

√
2

4
αL−1

)
,

M
1,1
1,−1 = (ip)−1e−2iφ

∑
L

P 2
L

[
αL,L+1

4(L + 1)
− 2L + 1

4L(L + 1)
αL,L + αL,L−1

4L
− αL+1

4
√

(L + 1)(L + 2)
− αL−1

4
√

L(L + 1)

]
. (B6)

The dependence on the phase shifts (δS,L,J ) is given below:

αJ,J = e2iδ1,J,J − 1, αJ±1,J = cos(2εJ )e2iδ1,±J,J − 1, αJ = i sin(2εJ )ei(δ1,J+1,J +δ1,J−1,J ), αJ = e2iδ0,J,J − 1. (B7)

For the p-p channel, the total matrix elements have to be antisymmetrized. This means that the spatial component has to be
symmetrized for spin singlet and antisymmetrized for spin triplet. So, the matrix elements are squared and evaluated at φ = 0 as
follows:

n-p channel,

∣∣M0,0
0,0

∣∣2 = p−2

{∑
L

P 2
L(η)

∣∣α0,L
0,0

∣∣2 + 2
∑

L1<L2

PL1 (η)PL2 (η)Re
[
α

0,L1
0,0 α∗0,L2

0,0

]}
,

∣∣M1,1
r,s

∣∣2 = p−2

{∑
L

P 2
L(η)

∣∣α1,L
r,s

∣∣2 + 2
∑

L1<L2

PL1 (η)PL2 (η)Re
[
α1,L1

r,s α∗1,L2
r,s

]}
;

(B8)

p-p channel,

∣∣M0,0
0,0

∣∣2 = 4p−2

{∑
even,L

P 2
L(η)

∣∣α0,L
0,0

∣∣2 + 2
∑

even,L1<L2

PL1 (η)PL2 (η)Re
[
α

0,L1
0,0 α∗0,L2

0,0

]}
,

∣∣M1,1
r,s

∣∣2 = 4p−2

{∑
odd,L

P 2
L(η)

∣∣α1,L
r,s

∣∣2 + 2
∑

odd,L1<L2

PL1 (η)PL2 (η)Re
[
α1,L1

r,s α∗1,L2
r,s

]}
. (B9)

The complete expansion of the differential cross section in partial wave basis is as follows:

p2 dσpp

d�
=
∑

even,L

(
P 0

L

)2∣∣α0,L
0,0

∣∣2 + 2
∑

even,L1<L2

P 0
L1

P 0
L2

Re
[
α

0,L1
0,0 α∗0,L2

0,0

]+
∑

odd,L

[
2
(
P 0

L

)2∣∣α1,L
1,1

∣∣2 + (P 0
L

)2∣∣α1,L
0,0

∣∣2 + 2
(
P 1

L

)2∣∣α1,L
0,1

∣∣2
+ 2

(
P 1

L

)2∣∣α1,L
1,0

∣∣2 + 2
(
P 2

L

)2∣∣α1,L
1,−1

∣∣2]+ 2
∑

odd,L1<L2

2PL1PL2 Re
[
α

1,L1
1,1 α∗1,L2

1,1

]+ 2P 1
L1

P 1
L2

Re
[
α

1,L1
0,1 α∗1,L2

0,1

]

+ 2P 1
L1

P 1
L2

Re
[
α

1,L1
1,0 α∗1,L2

1,0

]+ PL1PL2 Re
[
α

1,L1
0,0 α∗1,L2

0,0

]+ 2P 2
L1

P 2
L2

Re
[
α

1,L1
1,−1α

∗1,L2
1,−1

]
,

4p2 dσnp

d�
=
∑
L

(
P 0

L

)2∣∣α0,L
0,0

∣∣2 + 2
∑

L1<L2

P 0
L1

P 0
L2

Re[α0,L1
0,0 α∗0,L2

0,0 ] +
∑
L

[
2
(
P 0

L

)2∣∣α1,L
1,1

∣∣2 + (P 0
L

)2∣∣α1,L
0,0

∣∣2 + 2
(
P 1

L

)2∣∣α1,L
0,1

∣∣2
+ 2
(
P 1

L

)2∣∣α1,L
1,0

∣∣2 + 2
(
P 2

L

)2∣∣α1,L
1,−1

∣∣2]+ 2
∑

L1<L2

2PL1PL2 Re
[
α

1,L1
1,1 α∗1,L2

1,1

]+ 2P 1
L1

P 1
L2

Re
[
α

1,L1
0,1 α∗1,L2

0,1

]

+ 2P 1
L1

P 1
L2

Re
[
α

1,L1
1,0 α∗1,L2

1,0

]+ PL1PL2 Re
[
α

1,L1
0,0 α∗1,L2

0,0

]+ 2P 2
L1

P 2
L2

Re
[
α

1,L1
1,−1α

∗1,L2
1,−1

]
. (B10)
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When performing angular integration, the following integral needs to be evaluated analytically:

I
m1,m2,m3
l1, l2, l3

≡ 1

2

∫ 1

−1
P

m1
l1

(x)P m2
l2

(x)P m3
l3

(x)dx. (B11)

In our specific case, we need an expression for Im m 0
l1 l2 l3

, and l3 = {0,1,2},(l1 + l2) | 2, and we provide the identities needed:

Im m 0
l1 l2 0 = (l1 + m)!

(2l + 1)(l1 − m)!
δl1,l2 ,

Im m 0
l1 l2 1

∣∣
|l1−l2|�1 = (−1)(l1−l2+1)/2(l2 + m)!(l1 + l2 − 1)![(l1 + l2 + 1)/2]!

(l2 − m)![(l2 − l1 + 1)/2]![(l1 − l2 + 1)/2]![(l2 + l1 − 1)/2]!(l2 + l1 + 2)!

×
Min(1+l2−m,l1−m,1)∑
t=Max(0,1−m−l2)

(−1)t (l1 + t + m)!(l2 + 1 − m − t)!

t!(l1 − m − t)!(l2 − 1 + m + t)!(1 − t)!
,

Im m 0
l1 l2 1

∣∣
|l1−l2|>1 = 0,

Im m 0
l1 l2 2

∣∣
|l1−l2|�2 = 2(−1)(l1−l2)/2+1(l2 + m)!(l1 + l2 − 2)![(l1 + l2)/2 + 1]!

(l2 − m)![(l2 − l1)/2 + 1]![(l1 − l2)/2 + 1]![(l2 + l1)/2 − 1]!(l2 + l1 + 3)!

×
Min(2+l2−m,l1−m,2)∑
t=Max(0,2−m−l2)

(−1)t (l1 + t + m)!(l2 + 2 − m − t)!

t!(l1 − m − t)!(l2 − 2 + m + t)!(2 − t)!
,

Im m 0
l1 l2 2

∣∣
|l1−l2|>2 = 0.

(B12)

APPENDIX C: MEAN FREE PATHS

The derivation of the mean free path is similar to the
emissivity, with two main differences: There is no integration
of the radiated energy, and the focus is on particle absorption
and not energy loss (there is a factor of energy missing in
comparison with Eqs. (8) and (9). In the following equations
we show the decay rate (� = vγ̃ /λ):

�np→npγQ
= − 2π

ω
αemε2

Q

∫
d3p1

(2E1)(2π )3
fn(E1)

×
∫

d3p2

(2E2)(2π )3
fp(E2)

∫
d�
(
εμJ (2)

μ

)2
32π

× E2
c.m.vrel

dσnp(Ec.m.,θ )

dθc.m.

,

�np→npγB
= − 2π

ω
αemε2

B

∫
d3p1

(2E1)(2π )3
fn(E1)

×
∫

d3p2

(2E2)(2π )3
fp(E2)

∫
d�
(
εμJ (4)

μ

)2
32π

× E2
c.m.vrel

dσnp(Ec.m.,θ )

dθc.m.

.

The nonrelativistic expansion of the currents to leading order
in the expansion in powers of the radiated energy of the LVB,
ω, has been performed in Appendix A, and after integrating

over the angle between the center-of-mass momentum of one
of the incoming nucleons and the momentum of the outgoing
LVB, we find

1

4π

∫
d�LμLμ ≡ Ec.m.

M

J (2)

ω2
(1 − cos θc.m.),

1

4π

∫
d�JμJμ ≡ Ec.m.

M

J (4)

ω2
(1 − cos2 θc.m.), (C1)

where

J (2) = 2

(
1 − k2

3ω2

)
,

J (4) = 8

45

Ec.m.

M

k2

ω2

(
5 − 2k2

3ω2

)
. (C2)

The integration over initial states of the nucleons can be
simplified when they are nondegenerate and we find that∫

d3p1

(2π )3

∫
d3p2

(2π )3
fi(E1)fj (E2)

= ninj

2
√

πT 3/2

∫
dEc.m.e

−Ec.m./T
√

Ec.m.. (C3)

Putting all these expressions back into expressions for the
decay rate, the mean free paths in our work can be easily
derived.
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