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Bulk viscosity for pion and nucleon thermal fluctuation in the hadron resonance gas model
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We have calculated microscopically bulk viscosity of hadronic matter, where equilibrium thermodynamics for
all hadrons in medium are described by the hadron resonance gas (HRG) model. Considering pions and nucleons
as abundant medium constituents, we have calculated their thermal widths, which inversely control the strength
of bulk viscosities for respective components and represent their in-medium scattering probabilities with other
mesonic and baryonic resonances, present in the medium. Our calculations show that bulk viscosity increases
with both temperature and baryon chemical potential, whereas viscosity to entropy density ratio decreases with
temperature and with baryon chemical potential, the ratio increases first and then decreases. The decreasing nature
of the ratio with temperature has been observed in most of the earlier investigations with few exceptions. We
find that the temperature dependence of bulk viscosity crucially depends on the structure of the relaxation time.
Along the chemical freeze-out line in nucleus-nucleus collisions with increasing collision energy, bulk viscosity
as well as the bulk viscosity to entropy density ratio decreases, which also agrees with earlier references. Our
results indicate the picture of a strongly coupled hadronic medium.
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I. INTRODUCTION

The extraction of the transport properties of the strongly
interacting medium created in heavy ion collision (HIC)
experiments is currently a very active topic of research in the
HIC community. The methods of relativistic hydrodynamics
with minimal viscous correction have been quite successful
in describing the time evolution of the hot and dense fireball
created in the HIC experiments. These kinds of investigations
have also concluded that the shear viscosity (η) to entropy
density (s) ratio, η/s, of the medium created in HIC exper-
iments is very close to its quantum lower bound 1/4π [1].
Similar to η, another transport coefficient is the bulk viscosity,
ζ , which is defined as the proportionality constant between
the nonzero trace of the viscous stress tensor to the divergence
of the fluid velocity, and usually it appears associated with
processes accompanied by a change in fluid volume or
density. The viscous coefficient ζ has received much less
attention than the η in hydrodynamical simulations because its
numerical value is assumed to be very small, as it is directly
proportional to the trace of the energy-momentum tensor,
which generally vanishes for conformally symmetric matter
[2]. However, according to lattice quantum chromodynamics
(LQCD) calculations [3], the trace of the energy momentum
tensor of hot QCD medium might be large near the QCD
phase transition, which indicates the possibility of a nonzero
and large value of ζ as well as ζ/s near the transition
temperature. This indication is confirmed by Refs. [4,5],
related with LQCD estimation, where Ref. [5] exposes the
possibility of divergence of ζ near the transition temperature.

*sabyaphy@gmail.com
†sandeepc@niser.ac.in
‡bedanga@niser.ac.in

In recent times, different phenomenological investigations
[6–18] demonstrated that bulk viscosity can have a non-
negligible effect on heavy ion observables, where the values
of ζ/s in Ref. [18] is assumed to be quite large.

On the basis of phenomenological importance, microscopic
calculations of ζ for quark gluon plasma (QGP) and hadronic
matter is of contemporary interest to the HIC community. A
list of references are [2,19–38], where Ref. [19] addressed high
temperature perturbative QCD calculations of ζ , Refs. [20–25]
have gone through Nambu–Jona-Lasinio (NJL) model calcula-
tions of ζ , and Refs. [26–28] provided the discussions on linear
sigma model (LSM) estimation of ζ . These effective QCD
model calculations [20–28] cover both QGP and hadronic
phases while hadronic-model calculations of Refs. [32–37]
are restricted within hadronic phase only. The present work
addresses the estimation of ζ in the hadronic phase only.
At vanishing baryonic chemical potential, most of the mi-
croscopic calculations predict that ζ (T ) increases but ζ/s(T )
decreases in the hadronic temperature domain. However, few
exceptions are there depending on different scenario. For
example, Ref. [28] showed that the decreasing function of
ζ/s(T ) is transformed to an increasing function in the hadronic
temperature domain, when its medium constituents sigma
meson becomes heavier. Similar observation is also made in
Ref. [27] depending on the different nature of phase transition
as well as methodological differences of LSM calculations.
In the hadronic temperature domain, a decreasing nature of
ζ (T ) is observed in Ref. [20] while Ref. [33] estimated
increasing ζ/s(T ). Thus the nature of ζ (T ) and ζ/s(T ) are
not settled issues. Again, the numerical strength of ζ and ζ/s
from different model calculations exhibit a large band—ζ ∼
10−5 GeV3 [32] to 10−2 GeV3 [20] or ζ/s ∼ 10−3 [32] to
100 [20]. These uncertainties in nature as well as numerical
values of ζ (T ) from the earlier investigations demand further
research on these kind of microscopic calculations. Owing
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to that motivation, we have gone through a microscopic
calculations of ζ and ζ/s, where the equilibrium hadronic
matter is emulated by the standard HRG model and the
nonequilibrium picture of medium constituents is introduced
via quantum fluctuation of pion and nucleon in medium.

Among the earlier HRG calculations of ζ [33–36],
Refs. [33,36] have taken the Kubo-type expression of ζ in the
QCD sum rule approach [2,5], while Ref. [34] has taken the
expression of ζ , based on the relaxation time approximation,
which is adopted in the present work. The thermal width, which
is inversely equal to the relaxation time, plays an important role
to determine the numerical strength of ζ . Reference [34] has
considered constant thermal width or relaxation time and a
constant hard sphere cross section. Hence, the dependence on
the medium temperature and baryon chemical potential enters
only through the phase space of the medium constituents.
In contrast to this approach, in the present work we have
performed an explicit calculation of thermal width based on an
underlying interaction Lagrangian. This calls for a nontrivial
dependence on the momentum of medium constituents and
on the medium temperature and baryon chemical potential.
Assuming pions and nucleons as most abundant constituents
of medium, we have calculated their thermal width, which
comes from their in-medium scattering with different possible
mesonic and baryonic resonances.

The article is written as follows. The main formalism for the
thermal width calculations of pion and nucleon are explicitly
described in Sec. II. We provide a brief description of the HRG
model that models the equilibrium part. Next, the numerical
results are discussed in Sec. III and lastly, our investigations
have been summarized and concluded in Sec. IV.

II. FORMALISM

The HRG is an ideal gas of hadrons and resonances taken
from the Particle Data Book [39]. Here we consider all those
resonances with masses up to 2 GeV. The recent LQCD
data at zero baryon chemical potential (μB) show that for
temperatures up to the crossover region (150–160 MeV),
HRG provides a reasonably good description of the LQCD
thermodynamics [40–42]. All thermodynamic quantities of
the HRG can be computed from the logarithm of total partition
function

ln ZHRG(T ,μB,μQ,μS) =
∑

i

ln Zi
s(T ,μB,μQ,μS), (1)

where

ln Zi
s = gi

2π2
V T 3

∞∑
n=1

(∓1)(n+1)

n4

(nmi

T

)2
K2

(nmi

T

)
enβμi (2)

is the single particle partition function of the ith hadron.
In Eq. (2), gi is the degeneracy factor of ith particle with
mass mi , V is volume of the medium, and K2(· · · ) is the
modified Bessel function. Under the condition of complete
chemical equilibrium, all the hadron chemical potentials can
be expressed in terms of only three chemical potentials
corresponding to the QCD conserved charges

μi = BiμBi + QiμQi + SiμSi, (3)

where Bi , Qi , and Si are the baryon number, electric charge and
strangeness of the ith hadron. It is straightforward to compute
other thermodynamic quantities from ZHRG, such as pressure
(P ), energy density (ε), entropy density (s):

P = −T

V
ln ZHRG, (4)

ε = 1

V

{
T 2 ∂ ln ZHRG

∂T
+

∑
i

μiT
∂ ln ZHRG

∂μi

}
, (5)

s = 1

T

{
ε + P − 1

V

∑
i

μiT
∂ ln ZHRG

∂μi

}
. (6)

Square of the speed of sound for constant baryon density (nB),
entropy density (s), and entropy per baryon (σ = s/nB) are,
respectively, defined as

v2
n,s,σ =

(
∂P

∂ε

)
nB,s,σ

. (7)

Among them, sound wave at constant σ only propagates in
the expanding nuclear medium, produced in heavy ion colli-
sions, because σ is conserved during ideal hydrodynamical
expansion of the medium and therefore, it must be fixed
during the estimation of thermodynamical variations from the
equilibrium [43].

From the relaxation time approximation (RTA) of kinetic
theory approach [28,31,43] or from the one-loop expression of
diagrammatic approach based on Kubo formula [37], we can
get standard expressions of bulk viscosity coefficient for pion
and nucleon components [43]

ζπ =
(gπ

T

) ∫
d3�k

(2π )3

nπ [1 + nπ ]

ω2
π 
π

{(
1

3
− v2

n

)
�k2 − v2

nm
2
π

}2

(8)

and

ζN =
(gN

T

) ∫
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1

ω2
N 
N

[
n+

N (1 − n+
N )

{ �k2

3

+ v2
nT

2ωN

∂

∂T

(
ωN − μB

T

)
σ

}2

+
{ �k2

3

+ v2
nT

2ωN

∂

∂T

(
ωN + μB

T

)
σ

}2

n−
N (1 − n−

N )

]

=
(

gN

T

) ∫
d3�k

(2π )3

1

ω2
N 
N

[{(
1

3
− v2

n

)
�k2 − v2

nm
2
N

−ωN

(
∂P

∂nB

)
ε

}2

n+
N (1 − n+

N ) +
{(

1

3
− v2

n

)
�k2

− v2
nm

2
N + ωN

(
∂P

∂nB

)
ε

}2

n−
N (1 − n−

N )

]
, (9)

where nπ = 1/{eωπ /T − 1} is the Bose-Einstein (BE) dis-
tribution function of pion with energy ωπ = {�k2 + m2

π }1/2,
n±

N = 1/{e(ωN ∓μB )/T + 1} are the Fermi-Dirac (FD) distribu-
tion functions of nucleon and antinucleon, respectively, with
energy ωN = {�k2 + m2

N }1/2 at finite temperature T and baryon

045208-2



BULK VISCOSITY FOR PION AND NUCLEON THERMAL . . . PHYSICAL REVIEW C 94, 045208 (2016)

( a ) M

( k )

( l )

(u=k−l)

( k )

( b )

N

B

( k )

( l )

( u = l + k )

( k )

( c )

N

B

( k )

( l )

(u=l−k)

( k )

( d )

N
B

( k )

( l )

(u=k−l)

( k )

N

FIG. 1. Pion self-energy diagram with mesonic loops (a) and
baryonic loops [(b) and (c) are direct and cross diagrams] and nucleon
self-energy diagram (d).

chemical potential μB . The degeneracy factors of pion and
nucleon components are gπ = 3 and gN = 2 × 2, respectively.

Next, let us come to the important quantities 
π and

N of Eqs. (8) and (9), which are called thermal widths
of pion and nucleon, respectively. During propagation in
the medium, pion, and nucleon may go through different
on-shell scattering with other mesonic (M) and baryonic
(B) resonances, which can be quantified by their different
possible self-energy diagrams. From the imaginary part of
their self-energy functions, their respective thermal widths 
π

and 
N can be found. Figure 1(a) represents pion self-energy
with internal lines of pion (π ) and other mesonic resonances
(M), which we can shortly call the πM loop. We will take
M = σ and ρ, as they are dominant resonances of ππ decay
channel (within the invariant mass range of 1 GeV). Now, from
the retarded self-energy of pion for πM loop �R

π(πM)(k), the
corresponding thermal width 
π(πM) can be obtained as


π(πM) = −Im�R
π(πM)(k0 = ωπ,�k)/mπ, (10)

where the subscript notation stands for external (outside the
bracket) and internal (inside the bracket) particles for Fig. 1(a).
Following similar notation, we can define


π(NB) = −Im�R
π(NB)(k0 = ωπ

k ,�k)/mπ, (11)

where intermediate states of pion self-energy are nucleon
N and other baryonic resonance B as shown in Fig. 1(b)
along with its cross diagram (c). As a dominant four-
star baryons with spin JB = 1/2 and 3/2, we have taken
B = (1232), N∗(1440), N∗(1520), N∗(1535), ∗(1600),
∗(1620), N∗(1650), ∗(1700), N∗(1700), N∗(1710), and
N∗(1720). Adding all these mesonic (πM) and baryonic (NB)
loops, the total thermal width of pion 
π can be obtained as


π = 
M
π + 
B

π =
∑
M


π(πM) +
∑
B


π(NB). (12)

Similarly, one-loop self-energy of nucleon with pion (π )
and baryon (B) intermediate states, which is denoted as

�R
N(πB) (retarded part), will be our matter of interest to

estimate corresponding nucleon thermal width 
N(πB). The
diagrammatic anatomy of �R

N(πB) is shown in Fig. 1(d). Here
we have taken all the four-star spin 1/2 and 3/2 baryons,
mentioned above. Hence, summing all the πB loops, we can
get our total nucleon thermal width:


N =
∑
B


N(πB) = −
∑
B

Im�R
N(πB)(k0 = ωN,�k). (13)

The imaginary part of self-energies, given in Eqs (10), (11),
and (13), have been derived with help of standard thermal field
theoretical techniques. At first, the expression for Im�R

π(πM)
is [44]

Im�R
π(πM)(k0 = ωπ,�k) =

∫
d3�l

32π2ωlωu

LππM (k,l)|(l0=−ωl,k0=ωk )

(nl − nu)δ(ωπ + ωl − ωu), (14)

where nl , nu are BE distribution functions of π , M mesons,
respectively, at energies ωl = {�l2 + m2

π }1/2 and ωu = {(�k −
�l)2 + m2

M}1/2. The vertex factors Lπ(πM)(k,l) [44] have been
calculated by using the effective Lagrangian density,

LππM = gρ �ρμ · �π × ∂μ �π + gσ

2
mσ �π · �π σ, (15)

where gρ and gσ are, respectively, effective coupling constants
of ρ meson field ( �ρμ) and σ meson field (σ ), which are coupled
with the pion field (�π).

Next, the direct and cross diagrams of pion self-energy for
the NB loop combined are expressed as [46,47]

Im�R
π(NB)(k0 = ωπ,�k) =

∫
d3�l

32π2ωlωu

LπNB(k,l)|(l0=−ωl,k0=ωk)

{(−n+
l + n+

u )δ(ωπ + ωl − ωu)

+ (−n−
l + n−

u )δ(ωπ − ωl + ωu)},
(16)

where n±
l , n±

u are FD distribution functions of N and B (± for
particle and antiparticle), respectively, at energies ωl = {�l2 +
m2

N }1/2 and ωu = {(�k ± �l)2 + m2
B}1/2 [± for diagrams (b) and

(c), respectively]. With the help of the effective Lagrangian
densities for πNB interactions [45],

LπNB = f

mπ

ψBγ μ

{
iγ 5

11

}
ψN∂μπ + h.c. for JP

B = 1

2

±
,

= f

mπ

ψ
μ

B

{
11

iγ 5

}
ψN∂μπ + h.c. for JP

B = 3

2

±
,

(P stands for parity of B) (17)

one can deduce the vertex factors LπNB(k,l) [46,47]. At last,
the expression for Im�R

N(πB) is [48,49]

Im�R
N(πB)(k0=ωπ,�k) =

∫
d3�l

32π2ωlωu

LNπB (k,l)|(l0=−ωl,k0=ωk)

× (nl + n+
u )δ(ωπ + ωl − ωu), (18)
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FIG. 2. Momentum dependence of pion thermal width for
mesonic (dash-dotted line), baryonic loops (dotted line), and their
total (solid line) and nucleon thermal width (dashed line) at
three different medium parameters: (a) (T ,μB ) = (0.130 GeV, 0),
(b) (0.170 GeV, 0), and (c) (0.130 GeV, 0.300 GeV).

where nl is BE distribution functions of π at energy ωl = {�l2 +
m2

π }1/2 and n+
u is FD distribution of B at energy ωu = {(�k −

�l)2 + m2
M}1/2. With the help of the interaction Lagrangian

densities from Eq. (17), the vertex factors LNπB(k,l) [48] have
been obtained.

After the integration of the internal momentum �l, Eqs. (14),
(16), and (18) will give the respective thermal width as a
function of external momentum �k, T , and μB . With the
help of Eqs. (12) and (13), the summation of different loop
contributions will provide a detailed structure of 
π and 
N ,
which will have a nontrivial influence on the ζ (T ,μB). This is
the main contribution which makes our studies different from
the earlier HRG calculations of ζ [33–36].

III. RESULTS AND DISCUSSION

Let us start our numerical discussion with Fig. 2, where
momentum dependence of thermal widths of pion and nucleon
have been displayed. With the help of Eqs. (10), (11), (12),
(14), and (16), 
M

π , 
B
π , and their total 
π can be found

whose momentum dependence are, respectively, shown by
dash-dotted, dotted and solid lines in Fig. 2. Similarly, 
N

can be deduced by using Eqs. (18) and (13) and its momentum
distribution is represented by dash line. Panels (a), (b), and
(c) of Fig. 2 are for a different set of temperature T and
baryon chemical potential μB of the medium. Though 
N

is approximately constant with nucleon momentum, but 
M
π

and 
B
π exhibit a peak structure in some point of the �k axis,

which depends on the medium parameters T and μB . These
momentum distribution of 
π and 
N will be integrated out
when we will estimate ζπ and ζN from Eqs. (8) and (9),
respectively.

Let us come to the different loop contributions of pion
and nucleon thermal width in bulk viscosity coefficient of
hadronic matter. Figure 3(c) shows individual contributions of
πσ (dotted line) and πρ (dash line) loops in ζπ , which reveals

0

4×10-4

8×10-4

0

1×10-4

2×10-4

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
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FIG. 3. ζ (T ) due to pion thermal width for πσ (dotted line), πρ

(dashed line) loops, and their total (solid line) at v2
n = 0 (a), v2

n = 1/3
(b), and v2

n(T ) from HRG (c). Blue circles represents the results of
Ref. [37].

that they are respectively important in low (T < 0.080 GeV)
and high (T > 0.080 GeV) temperature domain for getting a
nondivergent values of ζπ . These are respectively obtained
by putting 
π(πσ ) and 
π(πρ) in place of 
π of Eq. (8).
Putting 
M

π = 
π(πσ ) + 
π(πρ) in place of 
π of Eq. (8), we
get the solid line, representing total bulk viscosity of pionic
component due to meson loops. After a mild decrement in
low T (<0.080 GeV), it receives an increment nature in high
T (>0.080 GeV). We find good qualitative agreement with
Ref. [37] shown by blue circles in Fig. 3(c). Along with
Fig. 3(c), where an explicit temperature dependent v2

n is taken
from HRG model, the results for v2

n = 0 and v2
n = 1/3 are

also displayed in Figs. 3(a) and 3(b), which are little different
in nature. Just to show the phase space sensitivity of bulk
viscosity via v2

n, these two results are displaying two extreme
limits of v2

n. Therefore, we can understand Fig. 3(c) as some
sort of superposition of Figs. 3(a) and 3(b).

According to Eq. (12) different baryon loops contribution
(
B

π ) should add with meson loops contribution (
M
π ) to

give total pion thermal width 
π . In Fig. 4(a), changing
the nature of dash-dotted line to dotted line indicates that
inclusion of baryon loops with meson loops becomes the
reason for reducing the rate of increment of ζπ (T ) at high
temperature region, T > 0.100 GeV. Putting our calculated
nucleon thermal width 
N in Eq. (9), we get ζN as shown by
the dashed line in Fig. 4(a). Now adding ζN with ζπ we have
total bulk viscosity

ζT = ζπ + ζN, (19)

as shown by solid line in Fig. 4(a). In Fig. 4(b), this ζT (solid
line) has been compared with the results generated for two
constant values of v2

n (v2
n = 0.25: dashed line and v2

n = 0.15:
dotted line), within which v2

n(T ,μB = 0) from HRG model
more or less varies.

At two different values of μB , ζ (T ) due to nucleon thermal
width (
N ), pion thermal width for meson loops (
M

π ), and
meson + baryon loops (
π ) are shown in Figs. 5(a), 5(b),
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FIG. 4. (a) Temperature dependence of bulk viscosity for pion
thermal width with mesonic loops (dash-dotted line), meson + baryon
loops (dotted line), for nucleon thermal width (dashed line), and their
total ζT = ζπ + ζN (solid line). (b) ζ (T ) for v2

n(T ) from HRG and two
constant values of v2

n (v2
n = 0.15: dotted line and v2

n = 0.25: dashed
line).

and 5(c) respectively. Similarly, Figs. 6(a), 6(b), and 6(c)
displays different loop contributions in ζ (μB) at T = 0.050
GeV (dotted line), 0.100 GeV (dashed line), and 0.150 GeV
(solid line). From Figs. 5(a) and 6(a), we see that ζN increases
with T as well as μB . From Fig. 5(b), we see the ζπ due
to 
M

π at finite μB first decreases at low T then increases
at high T . The nature of these curves is quite similar to the
curve of ζπ (T ) at vanishing μB but their minima are only
shifted towards lower T as μB increases. Following the same
story of vanishing μB , the inclusion of baryon loops in pion
self-energy is again influencing ζπ (T ) in the high temperature
domain. The variations with μB of ζN (μB) in Fig. 6(a) and
ζπ (μB) in Fig. 6(b) and 6(c) are grossly the same as their
temperature dependence. For small T and μB , ζN and ζπ

are of similar order. However, with increasing T and μB , ζN
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FIG. 5. ζ (T ) due to nucleon thermal width (a), pion thermal
width for meson loops (b), and meson + baryon loops (c) at
μB = 0.250 GeV (dotted line) and 0.500 GeV (dashed line).
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FIG. 6. Same as Fig. 5 along μB axis at T = 0.050 GeV (dotted
line), 0.100 GeV (dashed, line) and 0.150 GeV (solid line).

dominates over ζπ . ζN receives additional contribution from
( ∂P
∂nB

)
ε
. One should keep in mind that the term ( ∂P

∂nB
)
ε

goes

to zero for μB = 0. The T and μB dependence of ( ∂P
∂nB

)
ε

are
shown in Figs. 7(b) and 7(d), respectively, while Figs. 7(a)
and 7(c) displays the T and μB dependence of v2

n. From
Fig. 7(a), we see that our v2

n(T ,μB = 0) curve (solid line)
is in good agreement with LQCD results [3] (circles) within
the hadronic temperature domain (T < 0.160 GeV). Total bulk
viscosity ζT (a), entropy density s (b), and their ratio ζ/s (c)
are plotted against T in Fig. 8 and μB in Fig. 9 at three different
values μB and T , respectively. Since the increment of s(T ) is
larger than the increment of ζ (T ), therefore, ζ/s appears as a
decreasing function of T . On the other hand, both ζ (μB) and
s(μB) monotonically increase with μB but the ratio ζ/s(μB)
increases first and then decreases at a high μB domain. Next,

0
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0.32

v n2

μB=0
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/d

n B
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)
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(c)

(d)

(a)

(b)

FIG. 7. (a) v2
n(T ) at μB = 0 (solid line), 0.250 GeV (dotted line),

and 0.500 GeV (dashed line), and LQCD results of v2
n(T ,μB = 0)

(circles) [3]; (b) ( ∂P
∂nB

)
ε

vs T at μB = 0.250 GeV (dotted line) and

0.500 GeV (dashed line); (c) v2
n(μB ) at T = 0.050 GeV (dotted line),

0.100 GeV (dashed line), and 0.150 GeV (solid line); (d) ( ∂P
∂nB

)
ε

vs
μB at T = 0.050 GeV (dotted line), 0.100 GeV (dashed line), and
0.150 GeV (solid line).
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FIG. 8. T dependence of total bulk viscosities (a), entropy
densities from HRG (b), and their ratios ζ/s (c) at μB = 0 (solid
line), 0.250 GeV (dotted line) and 0.500 GeV (dashed line).

Figs. 10(a), 10(b), and 10(c) reveals, respectively, the variation
of total bulk viscosity ζ , entropy density s, and their ratio with
the variation of center of mass energy

√
s. (The reader is

requested to be careful of the same symbol s, used for entropy
density and square of beam energy.) The beam energy depen-
dence of T and μB used in computation are those obtained
from fits to hadron yields. We have used the parametrization
from Ref. [50]. We notice in Fig. 10 that ζ (a) as well as ζ/s
(c) decrease with

√
s, which is qualitatively agreeing with the

results of earlier studies [33,34]. The decreasing trend of ζ and
ζ/s with

√
s can be understood from the fact that μB decreases

with
√

s while T remains fairly constant in the range of
√

s
analyzed here and according to Figs. 9(a) and 9(c), the ζ and
ζ/s decrease with decreasing of μB .

Figure 11 is dedicated to a comparative understanding of
our results with respect to the earlier investigations. As most
of the works have been done at μB = 0, so we have plotted
ζ (a) and ζ/s (b) against T for μB = 0, which are compared
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FIG. 9. μB dependence of total bulk viscosities (a), entropy
densities from HRG (b), and their ratios ζ/s (c) at T = 0.050 GeV
(dotted line), 0.100 GeV (dashed line), and 0.150 GeV (solid line).
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FIG. 10. Center of mass energy (
√

s) dependence of total bulk
viscosity (a), entropy density from HRG (b), and their ratio ζ/s (c).

with the results, obtained by Sasaki et al. (green triangles down
[20]), Deb et al. (pink solid squares [25]), Chakraborty et al.
(brown stars [28]), Marty et al. (open circles [21]), Kadam
et al. (violet pluses [34]), Fraile et al. (blue solid circles [37]),
Hostler et al. (open squares [36]), Mitra et al. (grey triangles
up [32]). We have presented our results for π component,
(π + N ) components and (π + N+ other resonances R)
components by dotted, dashed, and solid lines, respectively.
We see a large numerical band for ζ (10−5–10−2 GeV3) or
ζ/s (10−3–100), within which earlier estimations are located.
Most of the earlier works [20,21,25,27,28,32,34–37] based
on effective QCD model calculations [20,21,25,27,28] as well
as effective hadronic model calculations [32,34–37] predicted
a decreasing function of ζ/s(T ) in the hadronic temperature
domain, which is qualitatively similar with our results. These
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π
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π + N + R
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Chakraborty et al.
Marty et al.
Kadam et al.
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Mitra et al.

μB=0

(a)

(b)

FIG. 11. Our results of ζ (a) and ζ/s (b) vs T at μB = 0 for
π component (dotted line), (π + N ) components (dashed line) and
(π + N + other resonances R) components are compared with the
earlier results of Sasaki et al. (green triangles down [20]), Deb et al.
(pink solid squares [25]), Chakraborty et al. (brown stars [28]), Marty
et al. (open circles [21]), Kadam et al. (violet pluses [34]), Fraile et al.
(blue solid circles [37]), Hostler et al. (open squares [36]), Mitra et al.
(grey triangles up [32]).
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do not support the fact that ζ/s diverges or becomes large
near the transition temperature as indicated by Refs. [2,4,5],
within the temperature domain of the quark phase. Some
of the effective QCD model calculations [22–24,27], which
can predict estimations of ζ/s in both temperature domains,
exposed a peak structure near the transition temperature.

For quantitative comparison, the results of other HRG
model calculations [33–36] may be more meaningful to focus
on rather than other microscopic calculations. Among them
[33–36], only Ref. [34] has taken the RTA expression of ζ like
us but Refs. [33,36] have taken the Kubo-type expression of ζ
in the QCD sum rule approach [2,5]. Hence, Ref. [34] may be
the best one to compare. While Ref. [34] uses (approximately)
constant values of relaxation time for all hadrons, our ζ is
constructed by the momentum dependent relaxation time of
pion and nucleon. In order to treat our results in equal footing
with Ref. [34], we have added the contributions of other
resonances by taking our thermal width of pion and nucleon
for other mesons and baryons, respectively. By this way, the
total contribution of ζ and ζ/s, as shown by solid lines in
Figs. 11(a) and 11(b), respectively, are approximately (in order
of magnitude) close to the results of Ref. [34], shown by violet
pluses. The main contributing ingredient of our work is using
the explicit structure of momentum and temperature dependent
thermal width or relaxation time of hadrons assuming an
underlying model for the interaction dynamics, instead of
their (approximately) constant values, adopted in Ref. [34].
This quantitatively modifies the numerical values of ζ and ζ/s
(solid lines) with respect to those of Ref. [34] (violet pluses).

Taking shear viscosity η(T ,μB = 0) from Ref. [47], based
on same pion and nucleon thermal fluctuations, we get
ζ/{(1/3 − v2

n)2η} ≈ 5 − 4 and ζ/{(1/3 − v2
n)η} ≈ 0.8 − 0.7.

This supports the estimation of gravity dual theory [51]
instead of the relation ζ/{(1/3 − v2

n)2η} ≈ 15, followed by
photon fields [52], scalar fields [53], or QCD theory [19].
So our estimation within the hadronic temperature domain
represents the strongly coupled picture instead of weakly
coupled scenario [19].

IV. SUMMARY

We have gone through a detailed microscopic calculation
of the bulk viscosity coefficient for hadronic matter, where
thermodynamical equilibrium conditions of all hadrons in
medium have been treated by the standard HRG model, which
is very successful to generate LQCD thermodynamics up to
the transition temperature. The thermal widths of medium con-
stituents in the bulk viscosity expressions inversely determine
their numerical strengths. Assuming pions and nucleons as the
most abundant medium constituents, we have concentrated
on the bulk viscosity contributions from pion and nucleon
components, where their corresponding thermal widths are
derived from their in-medium scattering probabilities with
different mesonic and baryonic resonances in the hadronic
matter. Owing to the field theory version of the optical theorem,
the imaginary part of pion and nucleon self-energies (on-shell)
at finite temperature give the estimation of their corresponding
thermal widths. In the one-loop diagrams of pion self-energy,

we have taken different mesonic and baryonic loops, while
pion-baryon intermediate states are considered in the one-loop
diagrams of nucleon self-energy. Their thermal widths are
basically on-shell values of their corresponding Landau cut
contributions, which disappear in the absence of medium and
therefore, these are inversely interpreted as their respective
relaxation times, which proportionally control the numerical
strength of ζ . Our results show that ζ (T ) at μB = 0 increases
in the high temperature domain [0.080 < T (GeV) < 0.175]
but a decreasing nature of ζ (T ) has also been observed at low
T (< 0.08 GeV). The πσ and πρ loops of pion self-energy
are respectively responsible for the decreasing and increasing
nature of ζ (T ) at low and high T domains. The addition of
baryon loops in pion self-energy mainly make ζ (T ) reduce at
the high T domain. Bulk viscosity for the nucleon component
monotonically increases with T . At finite μB , the nucleon
component of bulk viscosity is highly dominant over the pion
component. Adding nucleon and pion components, the total
ζ increases with both T and μB . However, after dividing by
total entropy density, ζ/s appear as a decreasing function of
T and with the variation of μB , it increases first at the low μB

region and then decreases at the high μB region. Along the
beam energy axis, the ζ and ζ/s both decrease, as noticed in
some earlier works [33–35].

During a comparison with theearlier results of ζ/s(T ) at
μB = 0, one can notice that the qualitative as well as quantita-
tive nature is not a very settled issue. Some of them [2,4,5] indi-
cated a divergence tendency of ζ/s near transition temperature,
some effective QCD model calculations [22–24,27] revealed
a peak structure near transition temperature, whereas most of
the effective QCD model calculations [20,21,25,27,28] as well
as effective hadronic model calculations [32,34–37], including
our present work, predict a decreasing function of ζ/s(T ) in
the hadronic temperature domain, with a few exceptional HRG
calculations [33,36]. From the relation between shear [47] and
bulk viscosities, having the same dynamical origin, a strongly
coupled picture of hadronic matter is revealed by this present
work.
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