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The present work starts by providing a clear identification of correlations between critical parameters (Tc,
Pc, ρc) and bulk quantities at zero temperature of relativistic mean-field models (RMF) presenting third- and
fourth-order self-interactions in the scalar field σ . Motivated by the nonrelativistic version of this RMF model, we
show that the effective nucleon mass (M∗) and the incompressibility (Ko), at the saturation density, are correlated
with Tc, Pc, and ρc, as well as the binding energy and the saturation density itself. We verify the agreement of
results with previous theoretical ones regarding different hadronic models. Concerning recent experimental data
of the symmetric nuclear matter critical parameters, our study allows a prediction of Tc, Pc, and ρc compatible
with such values, by combining them, through the correlations found, with previous constraints related to M∗ and
Ko. An improved RMF parametrization, which better agrees with experimental values for Tc, is also indicated.
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I. INTRODUCTION

One of the most successful methods to treat strongly
interacting matter at the hadronic level is quantum hadro-
dynamics (QHD) [1]. In this quantum field theory, which
adequately incorporates the effects of quantum mechanics
and relativity, nucleons are described by the Dirac spinor
ψ , and the exchanged mesons are described by the σ and
ω fields, which are responsible for taking into account the
attractive nature and the repulsive nature, respectively, of
nuclear interactions. The nuclear saturation is obtained in
this model by the near cancellation of the scalar and vector
potentials, written in terms of the σ and ω mean-field values.
By using this type of treatment, many effective models have
been constructed to better describe infinite nuclear matter
and finite nuclei properties. The starting model was initially
developed by Walecka in the seventies [2]. This seminal work
was followed by many other improved versions, and several
variations (parametrizations) were developed. For a collection
of such models, see, for instance, Refs. [3,4].

Concerning these particular relativistic mean-field (RMF)
models, a specific and detailed study of the possible correla-
tions presented by the bulk parameters they describe, and how
(under what conditions) they can emerge, has not yet been
completed. Many investigations have been performed showing
indications or trends of correlations, but clear conditions
on what physical parameters are important to generate such
trends have not been totally established. In that direction, we
have developed investigations on the subject in Ref. [5] and
verified that, for the RMF model described by the Lagrangian
density presenting only the σ 3 and σ 4 terms for scalar
meson self-interaction, the effective nucleon mass plays an
important role in the arising of correlations between bulk
quantities in both isoscalar and isovector sectors. For the
latter sector, for instance, we have shown [5] how symmetry
energy [6–11] correlates with its next-order bulk parameters,
namely, slope and curvature. In this work, we proceed to
further investigate these possible correlations, now analyzing
the finite-temperature regime of the RMF model presenting

σ 3 and σ 4 self-interactions. We study here how the critical
parameters (Tc, Pc, ρc) of this model can correlate with
zero-temperature bulk quantities, such as effective mass and
incompressibility. To perform such an analysis, we first use
the analytical structure of the nonrelativistic version of this
RMF model to predict correlations of Tc, Pc, and ρc with
bulk parameters at T = 0. The details of these calculations
are presented in Sec. II. In Sec. III, we show how correlations
of the RMF model emerge, motivated by results presented
in the previous section. We also compare our findings with
theoretical results of former investigations [12–15] and with
available experimental values concerning Tc, Pc, and ρc

of infinite symmetric nuclear matter [14,16–21]. We show
which parametrizations are compatible with experimental data,
by combining the critical parameter values with other bulk
parameter constraints, such as one related to the effective
nucleon mass. Finally, in Sec. IV, we provide a summary and
the main conclusions of our work.

II. NONRELATIVISTIC ANALYSIS

To analyze possible correlations of the critical density,
temperature, and pressure of neutron-proton symmetric nu-
clear matter, we investigate a particular nonrelativistic model,
namely, the nonrelativistic limit (NRL) of the relativistic non-
linear point-coupling (zero range) model with self-interactions
in the ψ̄ψ condensate until fourth order. As pointed out in
previous studies [5], the model generated from this NRL
exhibits many explicit correlations among zero-temperature
bulk quantities and can also be used as a starting point to search
the same correlations in finite-range RMF parametrizations
presenting self-interactions in the scalar field (σ ), also until
fourth order. In the following, we present the formalism and
construction of the main equations of state of this NRL model.

A. Formalism at zero temperature

In nuclear physics, point-coupling (or zero range) models
assume that nucleons interact with each other only when
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they are in contact—a zero interaction range means there are
no meson exchanges between protons and neutrons. From a
qualitative point of view, because the nuclear interaction range
is inversely proportional to the mesons’ mass, one can consider
a point-coupling model such as one in which the mesons’ mass
is high enough (infinity), leading to a vanishing nuclear range.

In nonrelativistic frameworks, the most known and used
point-coupling model is the Skyrme one [22], successfully
used in descriptions of infinite nuclear matter and finite nuclei.
In relativistic contexts, on the other hand, nonlinear relativistic
point-coupling (NLPC) models have been applied [23–30]
to extract nuclear ground-state observables, with results
comparable in quality to those obtained by usual relativistic
finite-range models. Here, we use the point-coupling version
of the finite-range RMF model presenting the terms σ 3 and
σ 4 (we discuss this particular model in the next section). Its
Lagrangian density, for the symmetric neutron-proton system
and in the zero-temperature regime, is given by

LNLPC = ψ̄(iγ μ∂μ − M)ψ − 1

2
G2

V(ψ̄γ μψ)2

+ 1

2
G2

S(ψ̄ψ)2 + A

3
(ψ̄ψ)3 + B

4
(ψ̄ψ)4. (1)

The Euler-Lagrange equation applied to ψ̄ in Eq. (1) gives
rise to the following Dirac equation for the ψ field,(

iγ μ∂μ − M + G2
Sρs − γ 0G2

Vρ + Aρ2
s + Bρ3

s

)
ψ = 0, (2)

with ρs = ψ̄ψ . Here, ρ is the nucleon density. The nonrela-
tivistic limit of the NLPC model [29] is then obtained by first
writing the large component, φ, of the Dirac field ψ in terms
of the small one, χ . This procedure leads to

(σ · kB̃σ · k + M + S + V )φ = Eφ, (3)

with

B̃ = B̃0

1 + (ε − S − V )B̃0
� B̃0 + B̃2

0 (S + V − ε), (4)

where B̃0 = 1/[2(M + S)] and ε = E − M . The vector
and scalar potentials are, respectively, V = G2

Vρ and S =
−G2

Sρs − Aρ2
s − Bρ3

s . By using in Eq. (3) the approxima-
tion (4), and taking into account an expansion up to order
(k/M)2, one can derive the following single-particle energy,

H = k2

2M∗ + (
G2

V − G2
S

)
ρ − Aρ2 − Bρ3, (5)

where the density dependence of the nucleon effective mass
M∗ reads

M∗(ρ) = M2(
M + G2

Sρ + 2Aρ2 + 3Bρ3
) . (6)

In the calculations, we have also used that the scalar density
can be approximated by ρs = ρ(1 − 2B̃0k

2).
From the single-particle energy in Eq. (5), we conclude that

the energy of a system of N nucleons is

EN = 2

M∗

kF∑
i=0

k2
i + N

[(
G2

V − G2
S

)
ρ − Aρ2 − Bρ3

]
, (7)

where kF is the Fermi momentum and, due to the Pauli
exclusion principle, four is the number of nucleons in
each energy level. By assuming in one dimension the mo-
mentum discretization as k = 2πn

L
(periodic conditions), we

have
kF∑
i=0

k2
i = L

2π

kF∑
i=0

2π

L
k2
i = L

2π

kF∑
i=0

�kk2
i . (8)

In the continuum limit (�k → 0) we have

kF∑
i=0

k2
i → L

2π

∫ kF

0
k2dk. (9)

Thus, in three dimensions,

kF∑
i=0

k2
i → V

(2π )3

∫
k2d3k = V

2π2

k5
F

5
= 3V λ

20
ρ

5
3 , (10)

where λ = (3π2/2)
2
3 and V = L3 is the system volume. By

applying such analysis to Eq. (7), we can finally write the
system energy density, ε = EN/V , as

ε(NR) = 3λ

10M∗ ρ
5
3 + (

G2
V − G2

S

)
ρ2 − Aρ3 − Bρ4. (11)

From Eq. (11) it is possible to obtain all remaining
thermodynamical quantities of the system. For our purposes
in this paper, we focus on the expression for the pressure,
calculated as P = ρ2 ∂(E/ρ)

∂ρ
. Its form is the following:

P (NR) = (
G2

V − G2
S

)
ρ2 − 2Aρ3 − 3Bρ4

+ λ

5M2

(
M + 5

2
G2

Sρ + 8Aρ2 + 33

2
Bρ3

)
ρ

5
3 . (12)

For other equations of state derived from the NRL model,
including those of the isovector sector, such as the one for
symmetry energy and its slope and curvature, we direct the
reader to Ref. [5].

The coupling constants of the model are G2
S, G2

V,
A, and B. They are adjusted for the model to present
particular values of ρo (saturation density), Bo (binding
energy), Ko (incompressibility), and M∗

o , with the last
three quantities evaluated at ρ = ρo. This is done by
solving a system of four equations, namely, ε(NR)(ρo) =
−Bo, K (NR)(ρo) = 9[∂P (NR)/∂ρ]ρo

= Ko, P (NR)(ρo) = 0, and
M∗(ρo)/M = M∗

o /M ≡ m∗. Following such a procedure, we
are able to construct different parametrizations of the NRL
model, using as input physical values of the observables ρo,
Bo, Ko, and m∗.

B. Finite-temperature regime: Critical parameters
and correlations

As a first comment on the calculations in the finite-
temperature regime, we remind the reader that in any fermion
system with a four-fermion interaction, namely, a contact
one as in the NLPC model or a boson-mediated one as in
the model we discuss in the next section, there are various
zero sounds in scalar, spin, and spin-isospin channels, which
do not contribute to the ground state at zero temperature,
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FIG. 1. Some isotherms of the NRL model constructed for a
parametrization in which ρo = 0.15 fm−3, Bo = 16 MeV, Ko =
250 MeV, and m∗ = 0.6.

but do so at finite temperatures. For the sake of simplicity
and as a first approximation, such contributions are disre-
garded in the present calculations but can be, in principle,
important.

To investigate possible correlations in the finite-temperature
regime of the NRL model, we proceed to include temperature
effects in Eq. (12) by adding the classical ideal gas contribution
ρT as a first approximation, i.e, neglecting any quantum
fluctuations. This term was inspired by the work of Ref. [31].
Despite this very crude approximation, one can verify from
Fig. 1 that the model still presents the qualitative patterns
exhibited by hadronic models at finite temperatures around
T � 20 MeV [15,32–40], i.e., the van der Waals-like isotherms
at different temperatures with the respective spinodal points
(points in which ∂P (NR)/∂ρ = 0).

We also see a critical behavior at a temperature after which
the system shows only a gaseous nuclear matter phase. This
critical temperature, T = Tc, characterizes the system’s critical
point (CP), with thermodynamic coordinates ρ = ρc and P =
Pc. As another feature, it is worth noticing that all isotherms
are confined to a region where the densities are always lower
than ρo, indicating that the liquid-gas phase transition occurs
always at subsaturation densities, a feature shared by all the
usual hadronic models.

In the particular parametrization used in Fig. 1, we see
that the value of the critical temperature lies around 12 MeV.
We highlight that such a value also depends on the way the
equations of state are obtained. In our calculation we are using
the mean-field approximation. In other approaches, such as
the chiral perturbation theory, accounting for the inclusion of
loop contributions leads to a change of Tc to higher values.
In Ref. [41], for instance, a three-loop calculation of nuclear
matter produced Tc = 25.5 MeV.

Still concerning the CP, where P = Pc at the critical density
(ρc) and temperature (Tc), it also satisfies the condition of
vanishing first and second derivatives in the P × ρ function.
Therefore, to exactly locate the CP, it is necessary to impose,

simultaneously, the following conditions:

Pc = P (ρc,Tc),
∂P

∂ρ

∣∣∣∣
ρc,Tc

= 0,
∂2P

∂ρ2

∣∣∣∣
ρc,Tc

= 0. (13)

For the NRL limit, these conditions lead to the following
three equations:

2
(
G2

V − G2
S

) − 12Aρc − 36Bρ2
c

+ 2λ

9M2

(
M + 10G2

Sρc + 352

5
Aρ2

c + 2541

10
Bρ3

c

)
ρ

− 1
3

c

= 0, (14)

Tc = −2
(
G2

V − G2
S

)
ρc + 6Aρ2

c + 12Bρ3
c

− λ

3M2

(
M + 4G2

Sρc + 88

5
Aρ2

c + 231

5
Bρ3

c

)
ρ

2
3
c ,

(15)

and

P (NR)
c = (

G2
V − G2

S

)
ρ2

c − 2Aρ3
c − 3Bρ4

c + ρcTc

+ λ

5M2

(
M + 5

2
G2

Sρc + 8Aρ2
c + 33

2
Bρ3

c

)
ρ

5
3
c .

(16)

One can see that, except for ρc, all critical parameters
have a well-defined analytical form. Thus, for Tc and Pc, it
is possible to search for functional forms relating them to
zero-temperature bulk quantities. To proceed in that direction,
we need to write the coupling constants of the NRL model,
G2

S, G2
V, A, and B, as a function of ρo, Bo, Ko, and m∗.

This calculation was already performed in Ref. [5]. It is
straightforward to implement it in Eqs. (15) and (16). However,
we still need to find out how ρc depends on ρo, Bo, Ko, and m∗.
To perform such analysis, we first fix the saturation density and
binding energy values to those well established in the literature,
namely, ρo = 0.15 fm−3 and Bo = 16 MeV, to specifically
search for the function ρc = ρc(Ko,m

∗). Following this route,
we numerically solve Eq. (14) and present in Fig. 2 the results
of ρc as a function of Ko for different values of m∗.

As shown in Fig. 2, the critical density is much more
sensitive to variation of the incompressibility than of the
effective mass. Furthermore, the Ko variation is practically
linear. From this result, it is possible to parametrize the Ko

dependence of ρc as follows,

ρc = α + βKo, (17)

with α = (0.0278 ± 1.34 × 10−4) fm−3 and β = (6.84 ×
10−5 ± 4.76 × 10−7) MeV−1 fm−3. Thus, the use of this
ρc(Ko) function in Eq. (15), along with the expressions of
G2

S, G2
V, A, and B as a function of ρo, Bo, Ko, and m∗, leads

to the following analytical expression for Tc:

Tc = a0(α + βKo)
2
3 +

6∑
n=1

an

t
(α + βKo)m(tn1Ko + tn2)

− 1

m∗

6∑
n=1

b0

t
bn(α + βKo)m. (18)
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FIG. 2. Critical density of the NRL model as a function of
incompressibility for different effective mass values.

In this expression, m = n for n � 3, and m = n − 7/3 for
n > 3. One also has that t = 3M2 − 19Eo

FM + 18Eo2
F , with

Eo
F = 3λρ

2
3
o /10M . The coefficients are listed in the Appendix.

It is worth noticing that for Tc to be given in MeV, we need to
convert α and β to appropriate units. Such a conversion leads
to α = (59.8 ± 10.1)3 MeV3 and β = (22.9 ± 1.91)2 MeV2.
In these units, the densities are given in MeV3.

Following the same procedure in Eq. (16), we also found
an analytical form for the critical pressure in the NRL model.
The result is

Pc = c0(α + βKo)
5
3 +

6∑
n=1

cn

t
(α + βKo)l(tn1Ko + tn2)

− 1

m∗

6∑
n=1

d0

t
dn(α + βKo)l , (19)

where l = n + 1 for n � 3, and l = n − 4/3 for n > 3. For
complete expressions of the coefficients, including its ρo and
Bo dependence, we direct the reader to the Appendix. The
incompressibility dependence of Tc and Pc is displayed in
Fig. 3 for some fixed values of m∗.

As we see in Fig. 3, Tc and Pc, as well as ρc, are
increasing functions of the incompressibility. On the other
hand, critical temperature and pressure are more sensitive to
effective mass effects than the critical density. Furthermore,
Tc and Pc are also increasing functions of m∗. In the next
section, we verify if such patterns are also exhibited in RMF
models.

III. RMF PARAMETRIZATIONS ANALYSIS

A. Theoretical framework

In the original Walecka model [2], there are two free
parameters adjusted to impose the values of two par-
ticular observables of infinite nuclear matter, namely, ρo

(∼0.15 fm−3) and Bo (∼16 MeV). However, the model fails in
the description of the incompressibility and effective mass ratio
(m∗ = M∗/M) at the saturation density, for the results for their
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/fm
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Ko (MeV)
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11.8
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12.4

T c (M
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)

Bo = 16 MeV

ρo = 0.15 fm-3

(b)(a)

NRL model

FIG. 3. Critical (a) temperature and (b) pressure of the NRL
model as a function of incompressibility for different effective mass
values.

values lie close to 550 MeV and 0.54, respectively. To solve
that problem, Boguta and Bodmer [42] have introduced in
the original Walecka model two additional terms representing
cubic and quartic self-interactions in the σ field, providing two
new free parameters now adjusted to correctly reproduce Ko

and m∗. The Lagrangian density of the Boguta-Bodmer (BB)
model is

L = ψ(iγ μ∂μ − M)ψ + gσσψψ + 1

2

(
∂μσ∂μσ − m2

σ σ 2)

− A
3

σ 3 − B
4

σ 4 − gωψγ μωμψ − 1

4
FμνFμν

+ 1

2
m2

ωωμωμ, (20)

with Fμν = ∂νωμ − ∂μων . The free parameters are gσ , gω, gρ ,
A, and B.

Since the original work of Boguta and Bodmer [42]
published in 1977, many parametrizations of the BB model
were proposed over the years. For a list of 128 of them,
collected in a unique reference, we direct the reader
to Ref. [3]. In the notation of that paper, the authors
named the BB parametrizations as type 2 ones. Those
obtained from the original Walecka model are called type 1
parametrizations.

From Eq. (20), it is possible to construct all thermodynam-
ical quantities at zero and finite temperature by following, for
instance, the steps shown in Ref. [43]. For our purposes in
this paper, we only show the pressure of symmetric (γ = 4)
infinite nuclear matter, which reads

P = G2
ωρ2

2
− (�M)2

2G2
σ

+ g3(�M)3

3
− g4(�M)4

4

+ γ

6π2

∫ ∞

0

dkk4

(
k2 + M∗2

)1/2 [n(k,T ,ν) + n̄(k,T ,ν)],

(21)
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with �M = M∗ − M . The Fermi-Dirac distributions for
particles and antiparticles are, respectively,

n(k,T ,ν) = 1

e(E∗−ν)/T + 1
and

n̄(k,T ,ν) = 1

e(E∗+ν)/T + 1
, (22)

with E∗ = (k2 + M∗2)1/2. The effective mass and chemical
potential are given by

M∗ = M + gσ 〈σ 〉
= M − G2

σ [ρs − g3(�M)2 + g4(�M)3] (23)

and ν = μ − G2
ωρ. The vector and scalar densities are also

written in terms of n and n̄ as follows:

ρ = γ

2π2

∫ ∞

0
dk k2[n(k,T ,ν) − n̄(k,T ,ν)],

ρs = γ

2π2

∫ ∞

0

dk M∗k2

(k2 + M∗2)1/2
[n(k,T ,ν) + n̄(k,T ,ν)]. (24)

Finally, the new free parameters present in Eqs. (21)
and (23), and in definition of ν, are defined in terms of the
previous ones as G2

σ = g2
σ

m2
σ

, G2
ω = g2

ω

m2
ω

, g3 = A
g3

σ
, and g4 = B

g4
σ

.

B. Correlation of critical parameters

We are now able to search for possible correlations between
critical parameters of BB parametrizations. As a starting point,
we remark that in Ref. [5], our results indicate correlations
between zero-temperature bulk parameters in the NRL model
that are also reproduced specifically in the parametrizations of
the BB model. As an example, in that paper we found, for the
isovector sector of the NRL model, that Lo (symmetry energy
slope at ρo) is linearly correlated with J (symmetry energy at
ρo) for those parametrizations presenting fixed values of m∗
and Ko. We also found the same correlation conditions for
the BB model. Many other bulk parameters, including those
from the isoscalar sector, present such a pattern concerning
correlations of the BB model and its nonrelativistic version
(the NRL model). In that sense, we have used the NRL
model as a guide to investigate correlations in the BB model.
Here we proceed in the same direction but now regarding
correlations between finite- and zero-temperature quantities.
Based on this discussion and applying the critical condition
of Eq. (13), we calculated the critical parameters of the
128 BB parametrizations of Ref. [3] to see some evidence
of correlations. The results are shown in Fig. 4.

We see that the critical parameters seem to indicate an
increasing trend as Ko increases. However, the almost linear
pattern exhibited in the NRL parametrizations, or more
precisely, a clear connection with Ko, is not observed, as a
simple comparison between Figs. 2 and 3 suggests. Therefore,
we proceed to impose the condition of fixed values for
m∗ as we did in the NRL case. To perform such analysis,
we construct BB parametrizations in which ρo = 0.15 fm−3

and Bo = 16 MeV, and for the two remaining observables,
namely, m∗ and Ko, we investigate models in particular ranges.
Actually, here we adopt the same constraints used in Ref. [5],
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FIG. 4. Critical (a) temperature, (b) pressure, and (c) density of
the RMF BB parametrizations collected in Ref. [3].

i.e., for the effective mass ratio, 0.58 � m∗ � 0.64, and for
the incompressibility, 250 � Ko � 315 MeV. According to
Ref. [44], the former constraint allows parametrizations of
the BB model to present spin-orbit splittings in agreement
with well-established experimental values for 16O, 40Ca, and
208Pb nuclei. The latter constraint, on the other hand, was
generated in a recent study [45] where the authors based their
calculations on a reanalysis of up-to-date data on isoscalar
giant monopole resonance energies of Sn and Cd isotopes.
They claimed that such a range, close to the Ko value of many
RMF parametrizations, was obtained without any microscopic
assumptions and is basically due to the suitable treatment of
nuclear surface properties. Based on this discussion we show
the critical parameters of BB parametrizations in Fig. 5.

We see in Fig. 5(a) that the Ko dependence of Tc is
qualitatively the same as that in the NRL model [see Fig. 3(a)].
The correlation between these quantities is verified for fixed
values of the effective mass, with Tc being an increasing
function of Ko. The same pattern is also observed for both
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FIG. 5. Critical parameters of BB parametrizations in which ρo =
0.15 fm−3 and Bo = 16 MeV, for fixed values of m∗.
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FIG. 6. Critical parameters of BB parametrizations in which ρo =
0.15 fm−3 and Bo = 16 MeV, for fixed values of Ko.

Pc and ρc, as seen in Figs. 5(b) and 5(c), respectively. The
behavior of these latter critical parameters was also pointed
out by the NRL model, as shown in Figs. 3(b) and 2. For the
sake of completeness, we also display in Fig. 6 the effective
mass dependence of the critical parameters.

It is verified that they are also tightly correlated. By
comparing these results with those from Sec. II, we see that
Tc and Pc of the NRL limit model also depend on m∗, as
in the relativistic case, but ρc is practically not affected (see
Fig. 2). The source of such a difference might be attributed
to the fact that, in the NRL model at finite temperature,
we did not take into account the T dependence of ρ, like
in the relativistic case [see Eq. (24)]. If we had done so,
we would have ρ = ρ(Ekin,T ), with the kinetic energy Ekin

being a function of the effective mass [see the first term of
Eq. (5)]. Thus, in the NRL model, the effect of m∗ on ρc is
underestimated in comparison with the relativistic case.

Based on these results, one can see that most of the
correlations present in the NRL model in the finite-temperature
regime, namely, critical parameters related to saturation
bulk quantities at zero temperature, are reproduced in the
parametrizations of the BB model, because one preserves the
same conditions that drive the arising of such correlations.
These conditions explain why we do not see a tight correlation
of Tc, Pc, and ρc with Ko, for instance, in the BB parametriza-
tions of Fig. 4. In that case, besides having different values
of ρo and Bo, each parametrization presents a particular value
of effective mass and does not satisfy the condition of fixed
m∗, a constraint that produces a clear connection between the
critical parameters and Ko. Similar analysis can be performed
to describe the correlation of the critical parameters and m∗.
In this case, it is established if the condition of having BB
parametrizations presenting the same value of Ko is fulfilled.

Still regarding our findings on the correlations presented
here, and to clarify our discussion, we remind the reader
that they were found for the specific RMF model presenting
the self-coupling in the scalar field up to fourth order. We
are dealing with parametrizations of the BB model in which
the equations of state were obtained through the widely

used mean-field approximation (MFA). Therefore, it is not
our purpose to classify them as universal. A more detailed
study based on other kinds of models described by more
sophisticated Lagrangian densities in comparison with that
of Eq. (20) is in order. Even calculations that go beyond the
MFA can change the correlations found here, stressing the
importance of performing such an investigation to establish
possible correlations between zero- and finite-temperature
quantities in different kinds of hadronic models.

C. Comparison with other theoretical studies

Specifically concerning the relation between Tc and Ko, we
remark here that our findings for the RMF parametrizations
analyzed here are in qualitative agreement with previous
studies on such correlations, as we show in the following. In
the Kapusta model of Ref. [12], for instance, the author derived
an expression for the pressure, based on the Sommerfeld
expansion in the degenerate regime (Fermi energy 
 temper-
ature), that reads P = Koρ

2(ρ − ρo)/9ρ2
o + b2M∗

o ρ1/3T 2/6,
with b = 1.809. This leads to a critical temperature of

T K
c = 0.326ρ1/3

o

√
Ko/M∗

o , (25)

with Tc being an increasing function of Ko. In Ref. [13],
Lattimer and Swesty modified the Kapusta expression for the
critical temperature by introducing an opposite dependence
of the saturation density, but keeping the increasing pattern
concerning Ko. The correlation reads

T LS
c = Cρ−1/3

o

√
Ko, (26)

where C = 0.608 MeV1/2 fm−1. In another study, Natowitz
et al. [14] proposed the inclusion of effective mass effects on
the latter correlation, which produced the expression

T N
c = C ′ρ−1/3

o

√
Ko/m∗, (27)

with C ′ = 0.484 ± 0.074 MeV1/2 fm−1. Finally in Ref. [15],
Rios improved the Kapusta model by introducing, in the
pressure equation of state, the density dependence of M∗
coming from the Skyrme interaction. The result of such
improvement generated the following correlation,

T R
c = 0.326m̄∗ρ1/3

o

√
Ko/M, (28)

where m̄∗ = m∗(ρ = 5ρo

12 ). Again, we have here the by now
familiar pattern of an increasing Tc as a function of Ko. It is
then fair to say that the BB parametrizations share with former
hadronic models the qualitative prediction of an increasing Tc

as Ko increases.
Regarding the Tc × m∗ correlation, the BB parametriza-

tions also show an increasing pattern for Tc (and also for Pc

and ρc). However, the only prediction compatible with such
behavior is that from Ref. [15]. In that case, T R

c increases as
m̄∗ increases, but, for this particular analysis, the correlation
is with the effective mass ratio evaluated at a subsaturation
density of ρ = 5ρo/12, and not exactly at ρ = ρo as in the
case presented in our work.

We have also verified the effect of Ko on the critical
parameters of the BB model in some known (and largely
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FIG. 7. Critical parameters as a function of Ko of some BB
parametrizations of Ref. [3] presenting m∗ = 0.60 (MS2, NL4,
NLSH, NLRA1, Q1, NL3, Hybrid, FAMA1, NL-VT1, NL06, NLS)
and m∗ = 0.70 (S271, P-070, NLM6, NLD, NL07, GM1, GL4,
FAMC2). Full lines: Fitting curves.

used) parametrizations of Ref. [3]. The results are depicted
in Fig. 7.

As we can see from this figure, the BB parametrizations
present a faster increasing of Tc with an increase of Ko

in comparison with the previous investigations shown by
Eqs. (25)–(28). Our results indicate Tc ∼ Ka

o , with a � 1,
different from the result pointed out in the aforementioned
expressions, namely, Tc ∼ K

1/2
o . For those parametrizations

in which m∗ = 0.60, for instance, we found a fitting curve of
Tc = 13 − (1.9 × 10−3)Ko + (2.9 × 10−5)K2

o . To make this
difference more clear, we plot in Fig. 8 the following ratios:

rK = Tc

ρ
1/3
0

√
K0/M

∗
0

, (29)

rLS = Tc

ρ
−1/3
0

√
K0

, (30)
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FIG. 8. Ratios defined in Eqs. (29)–(32) in comparison with
the respective constants presented in Eqs. (25)–(28) for the BB
parametrizations of Fig. 7 in which m∗ = 0.60.
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FIG. 9. Critical parameters as a function of ρo for Bo = 16 MeV,
m∗ = 0.6, and Ko = 270 MeV.

rN = Tc

ρ
−1/3
0

√
K0/m∗ , and (31)

rR = Tc

m̄∗ρ1/3
0

√
K0/M

. (32)

The comparison of these ratios with the ones derived from
Eqs. (25)–(28) shows explicitly the deviations between these
different approaches.

By returning to Fig. 7, one notices also some deviations
from the fitting curves for those parametrizations presenting
m∗ = 0.70. We attribute such differences to the distinct values
of ρo and Bo presented by each model. For those in which
m∗ = 0.70, the variation of ρo and Bo is larger than in those
presenting m∗ = 0.60. The former has �ρo = 0.015 fm−3 and
�Bo = 0.72 MeV, and the latter has �ρo = 0.004 fm−3 and
�Bo = 0.69 MeV. In the BB parametrizations analyzed in
Figs. 5 and 6, we did not see any deviation due to the fact
that we have fixed the values of saturation density and binding
energy; i.e., we had �ρo = �Bo = 0 in all cases. The effects
induced specifically by the variations of ρo and Bo in the
critical parameters can be seen in Figs. 9 and 10.

In Fig. 9, we see an increasing effect of ρo in the critical
parameters with a linear dependence in all three quantities.
The pattern observed in the critical temperature specifically is
also observed in the correlation found in the Kapusta [12]
and Rios [15] models, although they have obtained an
analytical form of ρ

1/3
o that differs from the result of the BB

parametrizations. In the Lattimer-Swesty [13] and Natowitz
et al. [14] models, on the other hand, an opposite effect
is found, because now Tc is proportional to ρ

−1/3
o , i.e., a

decreasing function of saturation density.
In Fig. 10, the increasing pattern is obtained only for Tc. The

two other critical parameters are decreasing functions of Bo.
Furthermore, for the values used in Figs. 9 and 10, we see that
Pc and ρc are less sensitive to the variation of Bo than of ρo.
For a range of around 6% in the central value of Bo = 16 MeV,
the changes found in critical pressure and density are �Pc =
0.007 MeV/fm3 and �ρc = 0.003 fm−3, respectively, while
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FIG. 10. Critical parameters as a function of Bo for ρo =
0.15 fm−3, m∗ = 0.6, and Ko = 270 MeV.

a range of around 7% in ρo = 0.15 fm−3 produces �Pc =
0.035 MeV/fm3 and �ρc = 0.007 fm−3, i.e., about five and
two times higher variations, respectively. Regarding the critical
temperature, �Tc is practically the same for the two cases.

D. Comparison with experimental data

For a direct application of our findings, we use the correla-
tions exhibited by the BB model to generate parametrizations
in which critical parameters can be compared with experimen-
tal data reported in different works over the years. Specifically
regarding the critical temperature, many studies have been
successful in obtaining this quantity. In summary, a beam
of relativistic incident light particles that transfers excitation
thermal energy (E∗) is used to heat a nucleus. The relationship
between E∗ and T is found through the so-called caloric
curve. This heating procedure gives rise to different emission
processes, namely, γ -ray emission, occurring for 1 � T � 2
MeV; nucleon evaporation, in the range of 2 � T � 5 MeV;
and multifragmentation, for T � 5 MeV, this latter process
being one that generates emission of α particles, nucleons,
and intermediate-mass fragments (IMF). Theoretical models
are commonly used to fit experimental data of IMF charge
distributions by having the critical temperature as a free
parameter. Thus, the value of Tc is indirectly calculated.
In Fig. 11, we compare our theoretical predictions with
experimental data obtained for Tc.

In this figure, the horizontal band bounds the possible values
of Tc for BB parametrizations presenting effective mass in
the range of 0.58 � m∗ � 0.64 [44] and incompressibility
within 250 � Ko � 315 MeV [45]. One can see that such
parametrizations are compatible with four experimental points,
by taking into account the error bars. However, if we simply
discard the constraint related to m∗, it is possible to construct a
BB parametrization in which six (of seven) experimental points
are reproduced, including the more recent data on the critical
parameters obtained in Ref. [21], where Tc = 17.9 ± 0.4 MeV.
In Fig. 11, we indicate by the dashed blue line this specific
parametrization presenting m∗ = 0.7626 and Ko = 315 MeV.
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FIG. 11. Theoretical predictions (band and dashed line, for ρo =
0.153 fm−3 and Bo = 16.32 MeV) and experimental data (circles)
on critical temperature of symmetric nuclear matter. The references
are Karnaukhov 1997, [16]; Natowitz et al. 2002, [14]; Karnaukhov
et al. 2003, [17], Karnaukhov et al. 2004, [18]; Karnaukhov et al.
2006, [19]; Karnaukhov 2008, [20]; and Elliott et al. 2013, [21].

We see that this choice is more compatible with the trend of
higher values for Tc pointed out by the experimental data.

Finally, concerning critical pressure and density, we have
also verified that the constraints on m∗ and Ko produce
BB parametrizations presenting the range of 0.19 � Pc �
0.27 MeV/fm3 and the value of ρc = 0.05 fm−3 (with one
significant figure), respectively. By comparing such values
with those of Elliott et al. [21], who found ranges of
Pc = 0.31 ± 0.07 MeV/fm3 and ρc = 0.06 ± 0.01 fm−3 from
experimental analysis of compound nuclear and multifrag-
mentation reactions, we found an overlap of around 21% with
the former range and agreement within the error bar with the
latter one. Moreover, for the parametrization represented in
Fig. 11 by the dashed line, where the effective mass constraint
is neglected, we found critical pressure and density given,
respectively, by Pc = 0.34 MeV/fm3 and ρc = 0.06 fm−3.
Notice the very good agreement with the experimental Pc and
ρc values from Ref. [21]. As a side remark, we also provide
for this parametrization the compressibility factor (Zc = Pc

ρcTc
),

namely, Zc = 0.31. For the experimental values of critical
parameters of Ref. [21], Zc = 0.29.

IV. SUMMARY AND CONCLUSIONS

In the present work, we studied correlations between bulk
quantities of symmetric nuclear matter at zero temperature and
their critical parameters (CP), namely, Tc, Pc, and ρc in the
finite-temperature regime. We performed this analysis in the
RMF model presenting nonlinear couplings in the scalar field
σ up to fourth order, here named the BB (Boguta-Bodmer [42])
model. The motivation for such an investigation comes from
the results (correlations) presented by the nonrelativistic
version of the BB model. As in previous works [5], the
correlations presented in the NRL model are reproduced also in
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the BB one, by imposing the same physical conditions needed
to make the relationships arise.

To explore in a fully analytical way the NRL model, we
proceeded to include the temperature effects in the pressure
equation of state by simply adding in Eq. (12) an ideal gas
contribution. Such an approximation neglects quantum effects,
but still reproduces qualitatively the van der Waals behavior
of warm nuclear matter, as displayed in Fig. 1. By imposing
the critical conditions of Eq. (13) in the NRL model, we found
that ρc, Tc, and Pc are directly correlated with ρo, Bo, m∗, and
Ko, as shown by Eqs. (17)–(19). For fixed values of ρo and
Bo, the results pointed out to an increasing Ko dependence of
the CP. For ρc, this dependence is verified independently of
the effective mass value (see Fig. 2). For Tc and Pc, on the
other hand, we verified a positive correlation with Ko only
for fixed values of m∗ (see Fig. 3). Inspired by these results,
we have calculated the CP of the 128 BB parametrizations of
Ref. [3], looking for possible correlations with bulk quantities
at T = 0. We found a general trend of increasing values of
the CP as Ko increases (see Fig. 4). Such a trend is confirmed
as clear correlations if we choose parametrizations in which
the effective mass value is kept fixed, exactly as we have
concluded in the NRL model case for Tc and Pc. In Fig. 5
we showed this analysis for BB parametrizations constructed
with the ranges of 0.58 � m∗ � 0.64 and 250 � Ko � 315
MeV. The former range [44] ensures BB models presenting
spin-orbit splittings within accepted experimental values,
and the latter [45] was recently proposed from a reanalysis
of up-to-date data on isoscalar giant monopole resonance
energies.

The comparison of our findings with previous correlations
results of Refs. [12–15], obtained from other hadronic models,
pointed out a qualitative agreement concerning the Tc × Ko

correlation (Tc is an increasing function of Ko). We also found
a clear correlation between the CP and the effective mass if
Ko of each BB parametrization is kept fixed (see Fig. 6). For
the sake of completeness, we also investigated the relationship
of the CP with the saturation density and the binding energy.
Our results showed an increasing behavior of the CP with ρo,
in qualitative agreement with the models of Refs. [12,15]. For
the case of Bo, the BB model presents Tc × Bo as an increasing
function, while Pc and ρc exhibit a decreasing dependence (see
Figs. 9 and 10, respectively).

A direct comparison of our findings for Tc with experi-
mental data collected from Refs. [14,16–21] was performed
in Fig. 11. By constraining the BB parametrizations to
present values of 0.58 � m∗ � 0.64 [44] and 250 � Ko �
315 MeV [45], we predicted critical temperatures of 14.2 �
Tc � 16.1 MeV, lower than most of the experimental points,
but compatible with four (of seven) of them within the error
bars. By neglecting the restriction of effective mass, we
could construct a BB parametrization presenting Tc = 18.3
MeV, a value closer to the experimental data, including the
more recent one of Tc = 17.9 ± 0.4 MeV from Ref. [21].
For such a parametrization, the effective mass is given by
m∗ ∼ 0.76, a higher value than those from the range 0.58 �
m∗ � 0.64, obtained through an analysis of finite nuclei
spin-orbit splittings. If we discard this constraint, we can
use the correlation between Tc and m∗ to predict new ranges

of effective mass. For example, from Fig. 11, we see that
the range of 0.64 � m∗ � 0.76 produces critical temperatures
compatible with all experimental data. We remind the reader
that this procedure indicates higher values for m∗, apparently
not compatible with finite nuclei calculations of Ref. [44], but
within an analysis of the BB model, i.e., a model with only
mesonic self-interactions in the attractive scalar field σ . A
more complete study, taking into account more sophisticated
RMF models, such as that named the “type 4” model in
Ref. [3], is needed to verify if the ranges of m∗ are kept and
even to investigate the role played by the effective mass, and
other bulk quantities, in possible correlations with the CP. We
will address such study in a future work.

As a last remark, we verified in our study, the first one
relating CP and bulk quantities at zero temperature of the RMF
BB model, that BB parametrizations constrained to 0.58 �
m∗ � 0.64 and 250 � Ko � 315 MeV present values of
0.19 � Pc � 0.27 MeV/fm3 and ρc = 0.05 fm−3, compatible
with the experimental values of Pc = 0.31 ± 0.07 MeV/fm3

and ρc = 0.06 ± 0.01 fm−3 of Ref. [21]. The theoretical values
can be further improved if we relax the effective mass condition
and choose, for instance, m∗ ∼ 0.76. In this case, we predicted
Pc = 0.34 MeV/fm3 and ρc = 0.06 fm−3 for this particular
BB parametrization (m∗ = 0.7626 and Ko = 315 MeV).
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APPENDIX: COEFFICIENTS OF EQS. (18) AND (19)

The coefficients presented in the expression of Tc, Eq. (18),
of the NRL limit model, are given as follows,

an:

a0 = − λ

3M
, a1 = a2 = a3 = 2, a4 = 2λ, (A1)

a5 = 88λ

5
, a6 = 77λ

5
; (A2)

bn:

b0 = 2Eo
F, b1 = −

(
2M2 − 19Eo

FM + 54Eo2
F

)
3ρo

, (A3)

b2 = −8M
(
M − 6Eo

F

)
ρ2

o

, b3 = 2M
(
M − 10Eo

F

)
ρ3

o

, (A4)

b4 = 2λ
(
9M2 − 70Eo

FM + 120Eo2
F

)
9MEo

Fρo

, (A5)

b5 = 352λ
(
M − 6Eo

F

)
45Mρ2

o

, b6 = −77λ
(
M − 10Eo

F

)
30Mρ3

o

.

(A6)
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For the critical pressure, Pc, showed in Eq. (19) we have
the following,

cn:

c0 = − 2λ

15M
, c1 = 1, c2 = 4

3
, c3 = 3

2
, (A7)

c4 = 5λ

4
, c5 = 64λ

5
, c6 = 121λ

10
; (A8)

dn:

d0 = Eo
F, d1 = b1, d2 = 4

3
b2, d3 = 3

2
b3, (A9)

d4 = 5

4
b4, d5 = 16

11
b5, d6 = 11

7
b6. (A10)

The remaining coefficients presented in both expression are
the following,

tn1,tn2:

t11 = −M
(
M − 4Eo

F

)
6ρo

, (A11)

t12 = 1

ρo

[
Bo

(
9M2 − 48Eo

FM + 18Eo2
F

)

+Eo
FM

(
4M − 21Eo

F

)]
, (A12)

t21 = M
(
M − 3Eo

F

)
ρ2

o

, (A13)

t22 = −9BoM
(
3M − 13Eo

F

) + 3Eo
FM

(
5M − 27Eo

F

)
ρ2

o

,

(A14)

t31 = −M
(
M − 2Eo

F

)
ρ3

o

, (A15)

t32 = 6BoM
(
3M − 10Eo

F

) + 6Eo
FM

(
M − 6Eo

F

)
ρ3

o

, (A16)

t41 = M − 6Eo
F

9Mρo

, (A17)

t42 = −Bo

(
6M − 32Eo

F

) − 2M2 + 52Eo
FM/3 − 36Eo2

F

Mρo

,

(A18)

t51 = −
(
M − 3Eo

F

)
9Mρ2

o

, (A19)

t52 = Bo

(
3M − 13Eo

F

) + Eo
F

(
5M/3 − 9Eo

F

)
Mρ2

o

, (A20)

t61 = M − 2Eo
F

6Mρ3
o

, (A21)

t62 = −Bo

(
3M − 10Eo

F

) + Eo
F

(
M − 6Eo

F

)
Mρ3

o

. (A22)

[1] B. D. Serot, Rep. Prog. Phys. 55, 1855 (1992).
[2] J. D. Walecka, Ann. Phys. 83, 491 (1974).
[3] M. Dutra, O. Lourenço, S. S. Avancini, B. V. Carlson, A. Delfino,

D. P. Menezes, C. Providência, S. Typel, and J. R. Stone, Phys.
Rev. C 90, 055203 (2014).

[4] B.-A. Li, L. W. Chen, and C. M. Ko, Phys. Rep. 464, 113 (2008).
[5] B. M. Santos, M. Dutra, O. Lourenço, and A. Delfino, Phys.

Rev. C 90, 035203 (2014); 92, 015210 (2015).
[6] L. W. Chen, C. M. Ko, and B.-A. Li, Phys. Rev. Lett. 94, 032701

(2005).
[7] R. Chen, B.-J. Cai, L. W. Chen, B.-A. Li, X.-H. Li, and C. Xu,

Phys. Rev. C 85, 024305 (2012).
[8] C. Xu, B.-A. Li, and L. W. Chen, Phys. Rev. C 82, 054607

(2010).
[9] O. Hen, B.-A. Li, W.-J. Guo, L. B. Weinstein, and E. Piasetzky,

Phys. Rev. C 91, 025803 (2015).
[10] B. J. Cai and B.-A Li, Phys. Rev. C 93, 014619 (2016).
[11] R. N. Mishra, H. S. Sahoo, P. K. Panda, N. Barik, and T.

Frederico, Phys. Rev. C 92, 045203 (2015).
[12] J. Kapusta, Phys. Rev. C 29, 1735 (1984).
[13] J. M. Lattimer and F. D. Swesty, Nucl. Phys. A 535, 331 (1991).
[14] J. B. Natowitz, K. Hagel, Y. Ma, M. Murray, L. Qin, R. Wada,

and J. Wang, Phys. Rev. Lett. 89, 212701 (2002).
[15] A. Rios, Nucl. Phys. A 845, 58 (2010).
[16] V. A. Karnaukhov, Phys. At. Nucl. 60, 1625 (1997).
[17] V. A. Karnaukhov et al., Phys. Rev. C 67, 011601(R) (2003).
[18] V. A. Karnaukhov et al., Nucl. Phys. A 734, 520 (2004).
[19] V. A. Karnaukhov et al., Nucl. Phys. A 780, 91 (2006).
[20] V. A. Karnaukhov, Phys. At. Nucl. 71, 2067 (2008).

[21] J. B. Elliott, P. T. Lake, L. G. Moretto, and L. Phair, Phys. Rev.
C 87, 054622 (2013).

[22] T. H. R. Skyrme, Philos. Mag. 1, 1043 (1956).
[23] J. J. Rusnak and R. J. Furnstahl, Nucl. Phys. A 627, 495 (1997).
[24] D. G. Madland, T. J. Bürvenich, J. A. Maruhn, and P.-G.

Reinhard, Nucl. Phys. A 741, 52 (2004).
[25] O. Lourenço, M. Dutra, A. Delfino, and R. L. P. G. Amaral, Int.

J. Mod. Phys. E 16, 3037 (2007).
[26] P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82,

054319 (2010).
[27] T. Niksic, D. Vretenar, and P. Ring, Prog. Part. Nucl. Phys. 66,

519 (2011).
[28] B. A. Nikolaus, T. Hoch, and D. G. Madland, Phys. Rev. C 46,

1757 (1992).
[29] A. Sulaksono, T. Bürvenich, J. A. Maruhn, P.-G. Reinhard, and

W. Greiner, Ann. Phys. 308, 354 (2003).
[30] Y. Tanimura and K. Hagino, Phys. Rev. C 85, 014306 (2012).
[31] A. L. Goodman, J. I. Kapusta, and A. Z. Mekjian, Phys. Rev. C

30, 851 (1984).
[32] H. Müller and B. D. Serot, Phys. Rev. C 52, 2072 (1995).
[33] J. B. Silva, O. Lourenço, A. Delfino, J. S. Sá Martins, and M.
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