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Minor extensions of the soft-wall model are used to accommodate two variants of Regge trajectories of vector
meson excitations. At nonzero temperatures, various options for either sequential or instantaneous disappearance
of vector mesons as normalizable modes are found, thus emulating deconfinement at a certain temperature in the
order of the (pseudo)critical temperature of QCD. The crucial role of the blackness function, which steers the
thermodynamic properties of the considered system, is highlighted.
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I. INTRODUCTION

The quest for in-medium modifications of hadrons ini-
tiated a series of investigations, both experimentally and
theoretically. The suggestive picture of deconfinement and
dissociation of hadrons into quark and gluon constituents was
at the origin of relativistic heavy-ion collision experiments
seeking and pinning down quark-gluon plasma signatures.
The insight that, for 2+1 flavor QCD with physical quark
masses, deconfinement happens within a cross over transition
at temperatures of T QCD

c = O(150 MeV) [1,2] (cf. [3,4] for
recent reviews at zero net baryon density) makes such a picture
more involved. Also the hints of bound states with charm
above T QCD

c [5] point to a complex behavior of the strongly
interacting matter and its constituents or degrees of freedom.

At lower temperatures, T < T QCD
c , and nonzero baryon

density, significant modifications of hadron properties have
been expected, too [6–11]. In that regime, the Brown-Rho
scaling hypothesis [12,13] mn ∝ 〈q̄q〉xn , where mn stands
for the mass of a hadron and xn is a specific power of
the chiral quark-condensate 〈q̄q〉, triggered dedicated studies,
most notably turning subsequently in QCD sum rule analyses
(cf. [14–16] for ρ mesons, [17] for ω mesons, [18] for φ
mesons, [19–21] for D mesons, [22,23] for nucleons, for
instance) or hadron-based modeling with relation to chiral
restoration effects [24,25]. The particular role of vector mesons
(V ) roots in their direct decay channel V → l̄l, i.e., dileptons.
Dedicated experiments have been performed, e.g., by HADES
[26,27], HELIOS-3 [28], CERES [29], NA60 [30], PHENIX
[31,32], STAR [33,34], uncovering heavy-ion collisions from
1 GeV (fixed target) to 200 GeV (collider), and at the CERN
Large Hadron Collider (LHC) (previous experiments up to
5 TeV, collider) one is awaiting also dilepton spectra. While
the first expectations focused on effective mass shifts of vector
mesons caused by the ambient hot and dense medium, it seems
nowadays merely to turn to a broadening of the respective
spectral functions. Electromagnetic probes, such as the above-
mentioned dileptons, are penetrating and carry thus primary
information through the strongly interacting medium created
transiently in the course of heavy-ion collisions. However,
other approaches are conceivable too, for instance, the width
determination, via transparency ratios thus accessing cold
nuclear matter as ambient medium, cf. [35] for an example.

The advent of the AdS/CFT correspondence [36–38]
provides a new theoretical tool to access phenomena of
in-medium modifications of hadrons. Thereby, hadrons are
described as normalizable modes of certain wave equations,
or as spectral functions, riding on a gravitational background
which in turn is coupled to other fields, most importantly often
a dilaton. Issues such as deconfinement and chiral symmetry
restoration are addressable within these approaches [39–41].
An important starting point is the soft-wall (SW) model [42],
where a real-valued dilaton field � = c2z2 and a gravitational
warp factor A = − ln(z2/L2) act together to deliver an energy
spectrum of normalizable hadron modes corresponding to a
mass spectrum m2

n = 4c2(1 + n), where n = 0 refers to the
ground state and n = 1,2,3 . . . enumerates the excitation.
Here, z is the holographic coordinate of the five-dimensional
anti–de Sitter space (AdS) with metric determined by the
infinitesimal line element squared

ds2 = eA(dt2 − d�x 2 − dz2). (1)

The dilaton (with scale parameter c) and warp factor (with
the AdS parameter L) combine to an effective Schrödinger
equation type potential U0 = 3/(4z2) + c4z2, and the states
follow from a Schrödinger equation (∂2

z − (U0 − mn)2)ψ = 0.
The scale c can be fixed, e.g., by the choice of the ground
state ρ meson mass, m0 = mρ . Remarkable is the Regge type
behavior, m2

n = β0 + β1n, with β0 = β1 = 4c2 in the original
SW model.

One could be tempted to study within an extended approach
the impact of small and/or moderate temperatures, similar
to QCD sum rules which are often employed in a low-
temperature expansion. Accordingly, the AdS (1) is modified
by a black brane (encoded in the blackness function f ) to
become ds2 = eA(f (z,zH )dt2 − d�x 2 − dz2/f (z,zH )), where
the Hawking temperature follows as

T (zH ) = −∂zf |z=zH
/(4π ) (2)

and the entropy density à la Bekenstein-Hawking is

s(zH ) = exp{3A(zH )/2}; (3)

zH is the horizon position and z = 0 marks the boundary
of the AdS. The Schrödinger type equation reads then
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FIG. 1. Scaled Schrödinger equivalent potential UT /c2 from Eq. (4) (solid curves, labeled by the temperature in units of MeV) as a function
of cz (left panel: set 1.2, czH = 2 and 4, right panel: set 2.0, czH = 1.75 and 3.5; the sets are defined in Table I below). The dashed curve
shows U0, i.e., UT (zH → ∞) corresponding to T = 0, with the first three normalizable states (horizontal dotted lines).

(∂2
ξ − (UT − m2

n))ψ = 0 with

UT (z) = U0f
2 + 1

4

(
1

2
∂zA − ∂z�

)
∂zf

2 (4)

and z(ξ ), where the tortoise coordinate ξ (cf. [43]) follows
from dz = f (z,zH )dξ . Figure 1 exhibits the resulting potential
UT (z) for two values of zH together with U0, which is nothing
but UT (zH → ∞).

To make all relations explicit, we adopt here, for the moment
being, the pure AdS blackness function f = 1 − (z/zH )4,
i.e., T (zH ) = 1/(πzH ). The impact of a finite temperature,
corresponding to zH < ∞, consists in cutting off the right
hand side branch of the U-shaped potential (see Fig. 1), with
marginal modifications of UT relative to U0 for z < zM , where
zM is the local maximum of UT . Clearly, only states with
m2

n � UT (zM ) could be accommodated in UT (z,zH ), when
ignoring for the moment being the slight deformation of UT vs.
U0 and that properly ξ instead of z should be used. Estimating
the right branch of the U-shaped potential by U0 ≈ c4z2, zM =
ξ̂ zH with ξ̂ ≈ 1/1.4, UT (zM ) ≈ U0(zM ), the rough minimal re-
quirement UT (zM ) � m2

ρ to accommodate a state with ground
state mass of the ρ meson mρ , becomes T0 � mρη

2ξ̂ /π ,
where we put c = ηmρ , η = 1/2, and use T = 1/(πzH ) to
arrive at T0 � mρ/15 = O(30 MeV), a number confirmed
by numerical evaluations without approximations. Repeating
the analysis for excited states, the above formula reads
Tn � mρη

2/(π
√

1 + n), i.e., a sequential disappearance of
states upon temperature increase: all states n > (mρη

2ξ̂ /πT )2

disappear for given T ; increasing T means decreasing n.
Obviously, the above ground state disappearance temperature
of O(30 MeV) can hardly be related to deconfinement at the
scale of the (pseudo)critical temperature from QCD, as already
noted in [44] and exercised in [41,45–51] for other particle
species too.

One could argue that the reason of the too small value(s) of
T0 is anchored in the use of ad hoc ansätze for the dilaton profile
�(z), the warp factor A(z), and the blackness function f (z). To

test the sensitivity of T0 against moderate variations of �, A,
and f we consider here one-parameter extensions, in particular
to show that a blackness function with some relation to QCD
thermodynamics is needed to cure the problem of T0 < T QCD

c .
Our paper is organized as follows. Section II recalls a

short derivation of the Schrödinger type equation of motion
of vector meson modes. In Sec. III we consider one-parameter
extensions of the dilaton profile and the warp factor at T = 0,
i.e., f = 1. We constrain the parameters to retain a Regge
type excitation spectrum. The construction of a modified
blackness function is presented in Sec. IV, where also the
relation to QCD thermodynamics is briefly discussed, in
particular with respect to phase transitions. The options of
sequential disappearance vs. instantaneous disappearance of
vector modes or a combination of both ones are considered
in Sec. V, where we analyze the vector meson spectrum
for blackness functions mimicking either a first-order phase
transition (Sec. V A) or a featureless thermodynamic behavior
(Sec. V B). The discussion of our results, a summary, and
the avenue toward a consistent approach by solving Einstein
equations, instead of relying on ad hoc ansätze, can be found
in Sec. VI.

II. SETUP: VECTOR MESONS

We consider the commonly used vector meson action (cf.
[52] for a recent recollection)

SV = − 1

4kV

∫
dz d4x

√
ge−�(z)F 2 (5)

(kV is to be chosen to render SV dimensionless, but irrelevant
in our context; � is the dilaton field; g is the determinant the
metric tensor) over a Riemann space with infinitesimal line
element squared

ds2 = eA(z)

(
f (z)dt2 − d �x 2 − 1

f (z)
dz2

)
, (6)
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where FMN = ∂MVN − ∂NVM (indices M,N = 0, . . . ,4) is
the field strength of a U (1) vector field with the components VM

thought to be dual to the current q̄γμq of the boundary theory;
the components of the metric can be read off of Eq. (6). The
warp factor A depends, as the blackness function f , only on
the holographic coordinate z. A simple zero of f (z,zH ) at the
horizon, z = zH , ensures the applicability of standard black
hole (brane) thermodynamics, i.e., the temperature follows as
mentioned above and is assigned to the temperature of the
boundary system at z → 0 (UV), where f → 1.

In radiation gauge, Vz = 0, and Lorenz gauge, ∂μVμ = 0,
the ansatz Vμ = εμϕ(z) exp(ipνx

ν) with pMpM = m2 and εμ

as four-polarization vector (indices μ, ν = 0, . . . ,3) yields the
equation of motion from Eq. (5):

∂2
z ϕ +

(
1

2
∂zA − ∂z� + ∂zf

f

)
∂zϕ + m2

f 2
ϕ = 0 (7)

which becomes a one-dimensional Schrödinger equation
by transforming to ψ(z) = ϕ(z) exp{− 1

2 (A(z) − �(z))} and
employing the tortoise coordinate ξ with dξ = dz/f :(

∂2
ξ − (

UT − m2
n

))
ψ = 0, (8)

where

UT =
(

1

2

(
1

2
∂2
z A − ∂2

z �

)
+ 1

4

(
1

2
∂zA − ∂z�

)2
)

f 2

+ 1

4

(
1

2
∂zA − ∂z�

)
∂zf

2 (9)

is understood to depend on the coordinate z(ξ ). m2
n follow from

normalizable solutions of Eq. (8). The zero-temperature case
is recovered by f → 1 and ξ = z. For a reasoning about the
theoretical foundations, see [42].

In a closed complete setting, which goes far beyond Eq. (5),
the warp function A(z), the blackness function f (z), and the
dilaton profile �(z) would follow consistently from solving
Einstein’s field equations and the equations of motion of the
involved fields beyond the metric ones.

III. ONE-PARAMETER EXTENSIONS OF THE DILATON
PROFILE AND THE WARP FACTOR

At T = 0, i.e., f = 1, a modest extension of the SW model
for the dilation profile �(z) and the warp factor A(z) is

�(z) = (cz)p, p > 1, (10)

A(z) = ln

(
L2

z2
+ μ2

)
, μ2 � 0. (11)

The Schrödinger equivalent potential at zero temperature
becomes

U0(z) = 1

2z2

(
3 + p(cz)p

1 + μ2c2z2
− 3

2(1 + μ2c2z2)2

−p(p − 1)(cz)p + 1

2
p2(cz)2p

)
. (12)

We fit the spectra emerging from Eq. (8) by

m2
n = β0 + β1n + β2n

2 + . . . (13)

TABLE I. Optimized parameters to describe the Regge trajecto-
ries of Refs. [53–55].

# Input p μ c [GeV] β0 [GeV2] β1 [GeV2] β2 [GeV2]

1.1 [53] 2.11 50 0.530 0.60 1.33 0.02
1.2 [54] 2.28 50 0.501 0.59 1.49 0.05
2.0 [55] 1.99 0.5 0.443 0.71 0.75 0.001

under the requirement of |β2| 
 |β0,1| and the smallness of
subsequent terms in . . . which imply a Regge type spectrum.
The freedom of p, μ, and c (note that we use L = 1/c) can
be exploited to get certain wanted spectra. Three possibilities
are listed in Table I. The set 1.1 is optimized with respect to
the spectrum advocated in [53], while 1.2 uses [54] as input.
The set 2.0 uses the spectrum in [55] as input; it is remarkably
similar to the SW model. The sets 1.1 and 1.2 are distinguished
from 2.0 by a large value of μ and a slight hardening of the SW
dilaton profile. Despite some difference of the scale parameter
c, resulting in differences of β0, also the Regge slopes β1 are
fairly different for the different input spectra. Nevertheless, the
experimental data are well described, see Fig. 2.

The AdS blackness function f = 1 − (z/zH )4 gives rise to
the potential

UAdS
T (z) =

(
U0(z; c,p,μ)(1 − (πT z)4) + 2z2(πT )4

×
(

1

1 + μ2c2z2
+ p(cz)p

))
(1 − (πT z)4) (14)

in parametric representation with tortoise coordinate ξ (z) =
1
4zH ln zH +z

zH −z
+ 1

2zH arctan z
zH

. We replace here zH by the
temperature according to zH = 1/(πT ).

Solving the Schrödinger equation (8) under the condition
to accommodate just the ground state ρ with mass of mρ =
768 MeV yields, for each pair (p,μ), a disappearance temper-
ature T

g.s.
dis . That is for T > T

g.s.
dis no state is accommodated in

the potential. The contour plot of T
g.s.

dis over the p-μ plane is
exhibited in Fig. 3. Additionally, we have indicated in Fig. 3
the region wherein |β2| � 0.01|β1| (according to the first three
states). Only in that region the T = 0 potential (12) allows for
a Regge type excitation spectrum of the lowest few states. For
an orientation, also the optimized points (p,μ) from Table I
are indicated. One observes in fact that these are on contour
curves with T

g.s.
dis = O(50 MeV), thus being in the same order

of magnitude as anticipated in the Introduction for the SW
model. Therefore, the minor modifications (10, 11) of the SW
dilaton profile and warp factor cannot cure the problem of too
low values of T

g.s.
dis , even over a large range of variations of p

and μ. This calls for a proper modification of the blackness
function f .

IV. MODIFYING THE BLACKNESS FUNCTION

Our goal is now to establish suitable modifications of the
blackness function f in order to evade from the pure scale-free
AdS relation T (zH ) = 1/(πzH ). We are guided by the idea to
employ a polynomial structure in z which ensures a smooth
transition to the AdS blackness function in a certain limit of
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FIG. 2. Squared vector meson masses (crosses) from (8) at T = 0 in comparison with data (circles) for set 1.2 (left panel, [54]) and set
2.0 (right panel, [55]) from Table I.

parameters, but allows for some flexibility for the emerging
relation of T (zH ). A possible class of blackness functions is
provided by

f (z) = 1 − 1

2

(
z

zH

)4

− 1

2

(
z

zH

)8(πzH T (zH )− 1
2 )

(15)

for T (zH ) � 1
πzH

. It fulfills the generic relation (2) as well
as the minimal requirements at boundary, f (z = 0,zH ) = 1,
(∂i

zf )z→0 = 0 for i = 1,2,3, and has the simple zero at
the horizon, f (z = zH ,zH ) = 0. We consider the following

FIG. 3. Contour plot (gray curves) of the disappearance temper-
ature T

g.s.
dis /c of the ground state over the p-μ plane when employing

the potential (14). The black dot at p = 1.99 and μ = 0.5 with
c = 443 MeV belongs to the set 2.0. The other optimized parameter
points for sets 1.1 and 1.2 are outside the plot on the T

g.s.
dis /c = 0.11

curve. The black curves limit the corridor wherein |β2| � 0.01|β1|.

ansatz:

T (zH ) = 1

πzH

+ Tmin − 2

πzmin
+ zH

πz2
min

(16)

which displays either

(i) a minimum of T (zH = zmin) = Tmin at nearly arbitrar-
ily selectable value zmin = Z/(πTmin) < ∞ [note that
Eq. (15) is valid, if zH � zmin(2 − πzminTmin)] with
a particular value Z = 2 yielding the one-parameter
form T (zH ) = 1/(πzH ) + 4πT 2

minzH or
(ii) a monotonically decreasing function for zmin → ∞

with asymptotic value Tmin; putting the latter one to
zero recovers the pure AdS blackness function.

The option (i) is of particular interest. Recalling the general
relation v2

s = ∂ ln T/∂ ln s for the velocity of sound squared
one finds v2

s = s(zH )/T (zH ) ∂T (zH )/∂zH (∂s(zH )/∂zH )−1,
i.e., multiplicative factors in both T and s cancel. Suppose
a strictly monotonously dropping entropy density s(zH ) from
the generic relation (3), then a minimum of T (zH ) at zmin

corresponds to a zero of the sound velocity. According to the
general discussion in [56,57] this a first-order phase transition.
The explicit construction needs the pressure as a function of
T or zH to find the critical temperature Tc > Tmin, which
we discard here. The important point is that at T < Tmin

the thermal gas solution without horizon applies and the
branch zH > zmin is unstable. In other words, at least in
the temperature interval 0 < T < Tmin the thermal effects
are negligible in leading order of the large-Nc expansion on
which the AdS/CFT correspondence is based, i.e., the T = 0
solution for the spectrum has to be used. Our expectation is
that, at Tmin in the order of the QCD transition, the ground
and excited states cannot be accommodated in the potential
UT , which we refer to as instantaneous disappearance. Such a
behavior emulates deconfinement. In Sec. V A we quantify this
issue.
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FIG. 4. Schematic plot of the temperature T of the ambient medium as a function of the horizon position zH (bottom panels, unstable
sections are dotted) according to Eqs. (15), (16) [left panels: option (ii) for a small value of Tmin, middle and right panels: option (i)] and the
temperature dependence of states (top panels, thermal gas sections are dashed).

Clearly, the ansatz (16) does also not allow for an access
to the low-temperature effects in the range 0 < T < Tmin, but
may serve as an indicator of possible effects in the range T >
Tmin in the case of a given scale Tmin. Considering Tmin < Tc

with Tc from QCD, there is nothing in the modeling which
refers to a cross over scale Tc.

Item (ii) also leaves the region T < Tmin as thermal gas
solution, i.e., in the large Nc expansion, the T = 0 properties
persist in leading order up to Tmin.

The bottom panels of Fig. 4 exhibit schematically the
dependence of the temperature T on the horizon position
zH . The regions of the validity of the black brane solution
are indicated. In addition, the top panels show the expected
behavior of the states m2

n as a function of the temperature. The
thermal gas solution is in leading order as the T = 0 solution
and does not receive a temperature dependence in contrast to
the black brane solution which is affected by the temperature
effects (for the sake of simplicity such possible temperature
effects are suppressed here). The disappearance points of
the states are marked by bullets. For a quantitative account,
see Figs. 6 and 8 below.

We emphasize that beyond the above items (i) and (ii)
as some extreme cases further options are conceivable. For
instance, T (zH ) may display a stationary or nonstationary
inflection point, thus mimicking a second-order or sharp
crossover transition in the ambient thermalized medium [58–
60]. Such cases are left for a separate study; see also [39,61–63]
for further work modifying the black brane metric to achieve
first-order or second-order transitions.

V. SEQUENTIAL VS. INSTANTANEOUS DISAPPEARANCE

We now consider implications of the ansätze (15), (16)
together with Eqs. (10), (11) with respect to options for

instantaneous and sequential disappearance of modes (cf. top
panels of Fig. 4) in the Schrödinger equivalent potential (9) as
well as implementing the QCD scale of Tc.

A. First-order phase transition: Instantaneous disappearance

Let us consider the temperature T (zH ) according to Eq. (16)
with option (i). In Fig. 5 we exhibit a contour plot of the
disappearance temperature T

g.s.
dis of the ground state over the

Tmin-zmin plane. That is, for each point (Tmin,zmin) there is
a critical value of zdis

H , corresponding to a temperature T
g.s.

dis
according to Eq. (16), where the ground state just disappears.
Of course, zdis

H � zmin is required to stay on the stable branch.
Selecting, for instance, the T

g.s.
dis = 150 MeV curve as QCD

relevant, one can infer from Fig. 5 possible combinations of
(Tmin,zmin) that deliver the wanted disappearance of all states at
T � T

g.s.
dis . In the case of T

g.s.
dis > Tmin, however, it could happen

that the potential UT (zH ,zmin,Tmin) accommodates still a few
vector meson states. To ensure the disappearance of all states
at Tmin one can dial zmin at the endpoint of a given T

g.s.
dis contour.

Then, in fact, at T � T
g.s.

dis = Tmin no vector meson states are
accommodated in the potential UT , and at T < T

g.s.
dis = Tmin

the thermal gas solution, i.e., T = 0 states, applies. This is
the instantaneous disappearance situation, which could be
considered as an emulation of a certain deconfinement type.
The above mentioned case of T

g.s.
dis > Tmin = Tc is related to an

emulation, where above the (pseudo)critical temperature Tc a
few lower states could still persist, while higher states already
disappeared. Such an option is discussed in the open charm
sector [5]; it refers to a partially sequential disappearance.

It is worth emphasizing that for too small values of zmin

no normalizable state can be accommodated in UT ; that is the
region in Fig. 5, where no contour curves are displayed.
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FIG. 5. Contour plot of the disappearance temperature T
g.s.

dis in units of MeV of the ground state for the parameters of set 1.2 (left panel)
and set 2.0 (right panel). The thick gray curve highlights T

g.s.
dis = 150 MeV. If zmin is too small no normalizable states can be found (left part of

the panels), i.e., the contour curves end at Tmin = T
g.s.

dis .

Figure 6 exhibits, besides the disappearance temperature
T

g.s.
dis of the ground state (solid curves), the first (dashed curves)

and the second excited states as a function of Tmin for three
values of czmin. For large values of czmin (e.g., czmin = 6, left
panel), all three states persist in the displayed interval of Tmin,
while at smaller values of czmin (e.g., czmin = 4, middle panel)
the second excited state disappears at all and the first excited
state can be accommodated in UT only for Tmin > 80 MeV.
The first excited state is absent for even smaller values of
czmin (e.g., czmin = 3, right panel), and the ground state exists
only for Tmin > 70 MeV. At even smaller values of czmin, no
normalizable states can be found, as anticipated above. Some
examples of Schrödinger equivalent potentials are shown in
Fig. 7. In the case of the left panel, czmin = 6, Tmin = 120 MeV,
the first two excited states disappear sequentially when the

temperature rises from 122 MeV to 140 MeV. In the case
of middle panel, czmin = 4, Tmin = 130 MeV, the third and
all higher states have (instantaneously) disappeared already,
where the ground state disappears at T = 146 MeV. The right
panel, czmin = 3, Tmin = 140 MeV, displays the instantaneous
disappearance of all excited states, but the ground state.

These cases can be distinguished by the temperature
dependence of the m2

n. The thermal gas leaves the masses
of the states independent of T in leading order unless they
disappear, see right panel of Fig. 8.

B. A featureless example: Sequential disappearance

We turn now to the option (ii) of the temperature model (16)
with zmin → ∞. Results for the disappearance temperature

FIG. 6. Disappearance temperature Tdis of the first three states (solid lines: g.s., dashed lines: first excited state, dotted lines: second excited
state) as a function of the parameter Tmin for various values of zmin. Left panel: czmin = 6 displays again the case of sequential disappearance, i.e.,
at given value Tmin, T g.s.

dis > T 1st

dis > T 2nd

dis . Middle panel: czmin = 4; up to Tmin = 70 MeV, the second and the third mode disappear simultaneously
at T = Tmin, but for greater values of Tmin the modes disappear sequentially. Right panel: czmin = 3; all states disappear instantaneously up to
Tmin = 70 MeV; for greater values of Tmin the ground state survives. The chosen values of p, μ, and c belong to set 2.0 of Table I, i.e., the plots
display a cross section through Fig. 5 (right panel) with respect to the ground state.
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FIG. 7. Scaled Schrödinger equivalent potentials UT /c2 from Eq. (9) (solid curves, labeled by the temperature in units of MeV) and U0

(dashed curves) as a function of cz, parameter set 2.0. Left panel: czmin = 6, Tmin = 120 MeV, the first three states disappear sequentially.
Middle panel: czmin = 4, Tmin = 130 MeV, the second excited state and all higher ones disappear instantaneously at T = Tmin and the remaining
two states disappear sequentially. Right panel: czmin = 3, Tmin = 140 MeV, all excited states disappear instantaneously.

Tdis as a function of Tmin are exhibited in Fig. 9. Tmin = 0
recovers the situation studied in [44] and discussed in the
Introduction, clearly showing the unrealistically small values
of the disappearance temperature. Only choosing a sufficiently
large value of Tmin ensures disappearance temperatures of
the order of Tc from QCD. In any case, the sequential
disappearance is evident: At given value of Tmin, the states
disappear at T

g.s.
dis > T 1st

dis > T 2nd

dis . The differences for higher
states become gradually smaller pointing to a narrow corridor
of temperatures, where they disappear. Such a narrow corridor
is in agreement with [64] and seems to be consistent with the
successful statistical hadronization models [65–67]. By some
fine tuning one can squeeze the corridor which should contain
T QCD

c , both for options (i) and (ii).

FIG. 8. Temperature behavior of the first three states (set 2.0) for
the blackness function f from (15) with T taken from Eq. (16) with
Tmin = 150 MeV and czmin = 2 (left panel) and Tmin = 120 MeV and
czmin = 6 (right panel). The dashed lines represent the range of T

where the thermal gas solution is valid, and the solid curves belong to
the black hole solution. This figure provides the quantitative results
corresponding to Fig. 4, middle and right top panels.

VI. SUMMARY

In summary, we consider in this paper a minor extension
of the soft-wall model. Modest generalizations of both the
dilaton profile and the warp factor can be adjusted to obtain
a rather strict Regge behavior of radial excitations of vector
mesons. Basically, two options for the choice of the intercept
and the slope parameter are considered which are distinguished
by the selections of states to be attributed to a sequence of
radial excitations. When extending this approach to finite
temperatures by introducing a black brane, encoded in the
blackness function, the pure AdS type form faces the problem
of the disappearance of the vector meson states at temperatures
significantly below the QCD (pseudo)critical temperature, as
discussed in [44]. At the origin of such an unwanted effect is
the strong deformation of a Schrödinger equivalent potential
not accommodating normalizable solutions. (Note that the
equation of motion of the vector meson modes is a second-
order differential equation which can be cast into the form of a
one-dimensional Schrödinger equation. There is no relation to
quark-antiquark bound states since the model operates solely
with metric functions, a dilaton field and a U (1) gauge field.
Therefore, one cannot speak of the ‘dissociation’ of two-body
bound states. Instead we use the term ‘disappearance’ of vector
meson states.)

To cure that problem we consider an extension of the
blackness function keeping the requirements at the AdS
boundary. The chosen class of blackness functions allows for
several options. One of them [referring to option (ii) in the
main text] is the introduction of only one scale, Tmin, allowing
to shift the disappearance temperatures to suitable values, e.g.,
to O(T QCD

c ). In such a case, for low temperatures, T < Tmin,
the thermal gas solution applies, meaning that the vector meson
states are as for T = 0. For T > Tmin, the black brane solution
applies. Here, the excited states disappear sequentially upon
increasing temperature, up to a certain temperature, where also
the ground state disappears.
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FIG. 9. Disappearance temperature Tdis of the ground state (solid lines), the first excited state (dashed lines), and the second excited state
(dotted lines) versus the parameter Tmin for set 1.2 (left panel) and for set 2.0 (right panel) for zmin → ∞ in (15, 16), i.e., option (ii). Choosing
for instance Tmin = 55 MeV (left) or Tmin = 95 MeV (right) the ground state disappears at T = 150 MeV, the first excited state at T = 98 MeV
or T = 132 MeV, respectively.

Having in mind an emulation of deconfinement we select
furthermore a special setting of the blackness function de-
pending on two parameters, Tmin and zmin, which allow either
for an instantaneous disappearance of the vector meson states
at Tmin, to be identified with T QCD

c or another possibility
which consists in a parameter choice of zmin, where at Tmin

higher states disappear but a few lower states disappear
sequentially upon temperature increase. The ground state
disappears at T

g.s.
dis > Tmin. One can dial Tmin = T QCD

c or
T

g.s.
dis = T QCD

c or Tmin < T QCD
c < T

g.s.
dis . (While in the charm,

respective charmonium sector the lattice QCD results support
the choice Tmin = T QCD

c , in the light-quark vector meson sector
we meet lacking knowledge.)

Our very phenomenological study focuses on vector
mesons, since these are sources of dileptons which serve as
penetrating probes in heavy-ion collisions as important tools
to monitor the space-time dynamics. The above described
approaches within the extended soft-wall model exhibits only
a few options, without stringent contact to the thermodynamics
of the ambient medium wherein the vector mesons are
immersed. Further options, such as mimicking a cross over
or a second-order phase transition are conceivable, but miss a

convincing foundation. Instead of ad hoc choices of the dilaton
profile, warp factor and blackness function, a systematic
approach should be attempted where these functions follow
from solutions of Einstein equations and equations of motion.
Clearly, in doing so many more hadron species must be
included to arrive at a self-consistent description of the thermo-
dynamics of the medium. Moreover, further order parameters
beyond the dilaton should be accounted for, most notably
the chiral condensate to address properly chiral restoration
effects. At T = 0 such an attempt is reported in [55]. The
extension to T > 0 looks promising to avoid the ambiguities
of our present approach, which stays in the framework of
the soft-wall model as a famous application of the AdS/CFT
correspondence toward understanding the hadron spectrum
and medium modification hereof. The extension to nonzero
baryon density is a further important issue.
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