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Spectral functions of the nucleon and its negative-parity excited state in nuclear matter are studied by using
QCD sum rules and the maximum entropy method (MEM). It is found that in-medium modifications of the
spectral functions are attributed mainly to density dependencies of the 〈qq〉 and 〈q†q〉 condensates. The MEM
reproduces the lowest-energy peaks of both the positive- and negative-parity nucleon states at finite density up to
ρ ∼ ρN (normal nuclear matter density). As the density grows, the residue of the nucleon ground state decreases
gradually while the residue of the lowest negative-parity excited state increases slightly. On the other hand, the
positions of the peaks, which correspond to the total energies of these states, are almost density independent for
both parity states. The density dependencies of the effective masses and vector self-energies are also extracted
by assuming phenomenological mean-field-type propagators for the peak states. We find that, as the density
increases, the nucleon effective mass decreases while the vector self-energy increases. The density dependence
of these quantities for the negative-parity state on the other hand turns out to be relatively weak.
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I. INTRODUCTION

The question of how nucleons behave in dense matter is
of great importance both from the point of view of nuclear
physics and QCD. In particular, the role played by the partial
restoration of chiral symmetry in nuclear matter and its
influence on properties of the nucleonic ground and excited
states has attracted continued interest. In this context, it is
especially worth mentioning the potential medium modifica-
tions of the negative-parity nucleon state, which are interesting
from the viewpoint of the chiral symmetry and η mesic nuclei.
Considering the relation between chiral symmetry and the
spectral functions of chiral partners, the symmetry requires
their spectral functions to be degenerate if chiral symmetry
is restored. Chiral partners among hadronic states as well
as hadronic spectral functions have been discussed already
a long time ago [1]. Assuming that the chiral partner of
the positive-parity nucleon ground state N(939) is the lowest
lying negative-parity state N(1535), the relation between the
restoration of chiral symmetry and the modifications of N(939)
and N(1535) has been investigated within effective models
such as linear sigma models [2,3]. These studies show that two
assignments; namely, the naive and mirror assignments, of the
chiral transformation to the chiral partners lead to different
characteristic modifications of the physical nucleon states at
finite density.

Potentially η nuclear systems, so-called η-mesic nuclei,
were first investigated by Haider and Liu [4]. The formation
of η-mesic nuclei is strongly related to in-medium modifica-
tions of N(939) and N(1535) since the ηN system strongly
couples to N(1535) and its threshold is close to the mass of
N(1535). Such nuclei have been studied both in theoretical
[5–8] and experimental approaches [9–11]. The studies of
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meson-nucleus bound systems are interesting because the
hadron properties at finite density, which are related to the
restoration of spontaneous breaking of the chiral symmetry,
can be investigated in laboratories.

In this paper, we study the spectral functions of both the
positive and negative-parity nucleons in nuclear matter by
using QCD sum rules. This method was initially developed
and applied to the investigation of the meson properties
in vacuum by Shifman et al. [12,13]. It was subsequently
used to study baryonic channels by Ioffe [14]. Especially
for the nucleon, the analyses were thereafter continuously
improved over the years by including higher-order terms in the
perturbative Wilson coefficients [15–20] or nonperturbative
power corrections [16,21,22]. Additionally, it was pointed
out that the nucleon operator couples to both positive and
negative-parity states [23]. The combined contributions of
these states make the analysis complicated and especially spoil
the result of the negative-parity states. This difficulty can be
remedied by the methods of parity projection, which were
proposed by Jido et al. [24] and Kondo et al. [25]. In these
studies, the αs corrections, which are large for the nucleon
channel, were not considered. To include these αs corrections
in the parity-projected sum rules, the present authors have
improved the parity projection for baryonic QCD sum rules and
studied the masses of both positive-parity and negative-parity
nucleon states in vacuum [26].

QCD sum rules have also been used to investigate hadron
properties in nuclear matter [27–29]. The generalization of
nucleonic QCD sum rules in nuclear matter was first proposed
by Drukarev [30]. Since then, many studies have been carried
out for the medium modifications of its energy, effective
mass, and vector self-energy, which characterize properties of
the nucleon in nuclear matter [31,32]. However, all previous
studies have so far focused only on the positive-parity state
N(939).
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In this work, we apply the parity-projected nucleon QCD
sum rule with the phase-rotated Gaussian kernel, which was
already used for the vacuum [26], to the analyses in nuclear
matter. Properties of the nucleon and its negative-parity excited
state are extracted from the sum rules with the help of
the maximum entropy method (MEM). The MEM analysis
combined with QCD sum rules can provide the most probable
spectral function without any strong constraint on its form and
has so far been successfully applied to the ρ meson vacuum
channel [33], the nucleon vacuum channel [26,34], and others
[35–37]. Assuming the peaks in the spectral functions to be
described by in-medium nucleon propagators, we furthermore
investigate the density dependence of the effective masses and
vector self-energies of both the nucleon ground state and its
negative parity first-excited state.

The paper is organized as follows: In Sec. II, we construct
the parity-projected in-medium nucleon QCD sum rules and
discuss the behavior of the resulting equations. The results
of the analyses are summarized in Sec. III where the density
dependence of the spectral functions of both positive- and
negative-parity states, the effective masses, and the vector self-
energies are presented. Next, effects of the uncertainties of the
condensates and their in-medium behavior on the results are
studied in Sec. IV. We additionally discuss the validity of
the parity projection at finite spatial momentum in the same
section. Summary and conclusions are given in Sec. V.

II. PARITY-PROJECTED NUCLEON QCD SUM
RULE IN NUCLEAR MATTER

A. Parity projection of nucleon QCD sum
rules in nuclear matter

The parity-projected QCD sum rules are constructed from
the “forward-time” correlation function [24]

�m(q0,|�q|) = i

∫
d4xeiqxθ (x0)

×〈�0(ρ,uμ)|T [η(x)η(0)]|�0(ρ,uμ)〉, (1)

where η(x) is the nucleon interpolating field and |�0(ρ,uμ)〉
represents the ground state of nuclear matter, which is
characterized by its velocity uμ and the nucleon density ρ.
We assume that |�0(ρ,uμ)〉 is invariant under parity and time-
reversal transformations. In the rest frame of nuclear matter,
the velocity is given by uμ = (1,�0 ). Note that, in Ref. [24],
this correlator was called the “old-fashioned” correlator. The
essential difference from the time-ordered correlation function
is the insertion of the Heaviside step function θ (x0) before
carrying out the Fourier transform. This correlator contains
contributions only from states which propagate forward in
time. With the help of the Lorentz covariance, parity invariance
and time reversal invariance of the nuclear matter ground
state, the correlation function can be decomposed into three
components [31]:

�m(q0,|�q|) = /q�m1(q0,|�q|) + �m2(q0,|�q|)
+ /u�m3(q0,|�q|). (2)

The scalar functions �m1, �m2, and �m3 depend on two scalar
variables q2 and q · u. In what follows, we denote (q2, q · u) as

(q0,|�q|) since we only work in the rest frame of nuclear matter.
Note that �m1, �m2, and �m3 contain information about the in-
medium properties of both positive- and negative-parity states
because replacing the operator η(x) → γ5η(x) only changes
the sign of �m2.

To separate these positive- and negative-parity contribu-
tions, we multiply the parity projection operators P± = γ0±1

2
to the correlator, take the trace over the spinor index and thus
obtain the parity-projected correlation functions:

�+
m(q0,|�q|) ≡ q0�m1(q0,|�q|) + �m2(q0,|�q|) +u0�m3(q0,|�q|),

�−
m(q0,|�q|) ≡ q0�m1(q0,|�q|) − �m2(q0,|�q|) +u0�m3(q0,|�q|).

(3)

Note that the parity projection can be carried out in accordance
with that in vacuum because it is based on the invariance of
the ground state of nuclear matter under parity transformation.

QCD sum rules are relations between correlators computed
in different regions of q0. Specifically, �±

mOPE, which is
calculated at a large −q2

0 by the operator product expansion
(OPE), and the spectral function ρ±

m ≡ 1
π

Im[�±
m] at q0 > 0 can

be related. By making use of the analyticity of the correlation
function, one can construct the parity-projected QCD sum
rules:

∫ ∞

−∞
Im[�±

mOPE(q0,|�q|)]W (q0)dq0

= π

∫ ∞

0
ρ±

m (q0,|�q|)W (q0)dq0. (4)

Here we have introduced a weighting function W (q0), which
is real at real q0 and analytic in the upper half of the imaginary
plane of q0. The details of the derivation of Eq. (4) are discussed
in Ref. [26].

B. Operator product expansion in nuclear matter

In this section, we provide the explicit form of �±
mOPE,

including all known αs corrections. For the nucleon, there are
two independent local interpolating operators:

η1(x) = εabc[uT a(x)Cγ5d
b(x)]uc(x), (5)

η2(x) = εabc[uT a(x)Cdb(x)]γ5u
c(x). (6)

Here, a, b, and c are color indices, C = iγ0γ2 stands for
the charge-conjugation matrix, while the spinor indices are
omitted for simplicity. A general interpolating field can be
expressed as

η(x) = η1(x) + βη2(x), (7)

where β is a real parameter. The choice β = −1 is called
the Ioffe current, which is widely used in sum-rule analyses
studying the nucleon ground state. It is straightforward to
obtain the imaginary part of the forward-time correlator of
Eq. (1) from the time-ordered correlator given in the literature
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[18,26,38]. The explicit expressions are given as

1

π
Im[q0�m1OPE(q0,|�q|)]

= C1

211π4

{
1 + αs

π

[
71

12
− ln

(
q2

μ2

)]}
q0(q2)2θ (q0 − |�q|) + C1

210π2

〈
αs

π
G2

〉
m

q0 θ (q0 − |�q|) − C1

2532π2
〈q†iD0q〉m

× [5q0θ (q0 − |�q|) − 4|�q|2δ(q0 − |�q|)] − C1

2932π2

〈
αs

π
(E2 + B2)

〉
m

[q0θ (q0 − |�q|) − 2|�q|2δ(q0 − |�q|)]

+ 1

243

(
C2 + αs

π
C3

)
〈qq〉2

mδ(q0 − |�q|) − C4

233π

αs

π
〈qq〉2

m

× Im

[
ln(2|�q|) |�q|

(q0 + iε)2 − |�q|2 + ln (|�q| − (q0 + iε))
q0

(q0 + iε)2 − |�q|2
]

+ C1

243
〈q†q〉2

mδ(q0 − |�q|) − C1

253π2
〈q†q〉mq2

0 θ (q0 − |�q|) − 1

253π2

[
C5 − C1 ln

(
q2

μ2

)]
αs

π
〈q†q〉mq2

0 θ (q0 − |�q|)

− C6

2532π2
〈q†gσ · Gq〉m |�q|

2
δ(q0 − |�q|) − C1

243π2

[
〈q†iD0iD0q〉m + 1

12
〈q†gσ · Gq〉m

]

×
(

−2|�q|δ(q0 − |�q|) + 2|�q|4Im

[
1

4π |�q|2 − iε

1

(q0 − |�q| + iε)2

])
, (8)

1

π
Im[�m2OPE(q0,|�q|)]

= − 1

26π2

(
C2 + C7

αs

π

)
〈qq〉mq2θ (q0 − |�q|) + 3C8

26π2
〈qgσ · Gq〉m θ (q0 − |�q|) − C9

6π2

[
〈qiD0iD0q〉m + 1

8
〈qgσ · Gq〉m

]

× |�q|
2

δ(q0 − |�q|) + C2

25π2
〈qiD0q〉mq0θ (q0 − |�q|) + C2

233
〈qq〉m〈q†q〉m δ(q0 − |�q|), (9)

1

π
Im[�m3OPE(q0,|�q|)]

= 5C1

2332π2
〈q†iD0q〉mq0θ (q0 − |�q|) + C1

2732π2

〈
αs

π
(E2 + B2)

〉
m

q0θ (q0 − |�q|) + C1

233
〈q†q〉2

m δ(q0 − |�q|)

− C1

243π2
〈q†q〉m

(
q2

0 − |�q|2) θ (q0 − |�q|) − 1

243π2

[
C10 − C1 ln

(
q2

μ2

)]
αs

π
〈q†q〉m

(
q2

0 − |�q|2)θ (q0 − |�q|)

+ C6

263π2
〈q†gσ · Gq〉mθ (q0 − |�q|) − C1

23π2

[
〈q†iD0iD0q〉m + 1

12
〈q†gσ · Gq〉m

] |�q|
2

δ(q0 − |�q|), (10)

where q2 = q2
0 − �q 2 and the coefficients Ci are defined as

C1 = 5 + 2β + 5β2, C2 = 7 − 2β − 5β2, C3 = 325

18
+ 448

9
β + 511

18
β2, C4 = 47

3
− 10

3
β − 61

3
β2,

C5 = 49

3
+ 14

3
β + 49

3
β2, C6 = 7 + 10β + 7β2, C7 = 15

2
− 3β − 9

2
β2, C8 = 1 − β2,

C9 = 2 − β − β2, C10 = 211

12
+ 31

6
β + 211

12
β2. (11)

The matrix elements 〈O〉m stand for the expectation value of operators O in nuclear matter.

C. QCD condensates at finite nucleon density

The correlation functions are characterized by in-medium QCD condensates. While the value of the vector quark condensate
〈q†q〉m at density ρ is 3

2ρ exactly, the other condensates are not precisely determined and their density dependencies may be
more complicated. In this paper, we estimate their values in the linear density approximation, which is valid at sufficiently
low density [30,39]. The in-medium condensates 〈O〉m are in this approximation expressed as 〈O〉m = 〈O〉0 + ρ〈O〉N with the
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vacuum condensates 〈O〉0 and the nucleon matrix elements 〈O〉N ≡ 〈N |O|N〉. Each matrix element is evaluated as follows:

〈qq〉m = 〈qq〉0 + ρ〈qq〉N = 〈qq〉0 + ρ
σN

2mq

, 〈q†q〉m = ρ
3

2
,

〈
αs

π
G2

〉
m

=
〈
αs

π
G2

〉
0

+ ρ

〈
αs

π
G2

〉
N

,

〈q†iD0q〉m = ρ〈q†iD0q〉N = ρ
3

8
MNA

q
2,

〈
αs

π
(E2 + B2)

〉
m

= ρ

〈
αs

π
(E2 + B2)

〉
N

= ρ
3

2π
MNαs(μ

2)Ag
2,

〈qiD0q〉m = mq〈q†q〉m 	 0, 〈qgσ · Gq〉m = 〈qgσ · Gq〉0 + ρ〈qgσ · Gq〉N ≈ m2
0〈qq〉m,

〈q†gσ · Gq〉m = ρ〈q†gσ · Gq〉N,

〈q†iD0iD0q〉m + 1

12
〈q†gσ · Gq〉m =

(
〈q†iD0iD0q〉N + 1

12
〈q†gσ · Gq〉N

)
ρ = ρ

1

4
M2

NA
q
3,

〈qiD0iD0q〉ρN
+ 1

8
〈qgσ · Gq〉m =

(
〈qiD0iD0q〉N + 1

8
〈qgσ · Gq〉N

)
ρ = ρ

3

4
M2

Ne2, (12)

where E and B are the color electric and color magnetic
fields, respectively. 〈qq〉 denotes the averages over up and
down quarks, 1

2 (〈uu〉 + 〈dd〉).
The quantities A

q
2 , Ag

2 , Aq
3 , e2 can be expressed as moments

of the parton distribution functions [31]. The values of the
parameters appearing in Eq. (12) are given in Table I. The
uncertainties of the values of mq and σN will be discussed
in Sec. IV. Note that the higher-order density terms of the
chiral condensate 〈qq〉 have been computed by using chiral
perturbation theory [40,41]. These contributions are, however,
small up to the normal nuclear mater density and thus we do
not take them into account in this study.

D. Phase-rotated Gaussian QCD sum rules

To explicitly compute both the left- and right-hand sides
of Eq. (4), we have to specify the kernel W (q0). In a
previous study, in which the nucleon properties in vacuum
were investigated [26], we tested several kinds of kernels,
such as the Borel and Gaussian kernels, and found that the
phase-rotated Gaussian kernel is most suitable for studying the
nucleon ground state and its negative-parity excitation. As it
was pointed out in Ref. [26], by choosing an appropriate phase
parameter θ , the kernel improves the convergence of the OPE

TABLE I. Values of parameters appearing in Eq. (12).

Parameter Value

〈qq〉0 −(0.246 ± 0.002 GeV)3 [42]
mq 4.725 MeV [43]
σN 45 MeV
〈q†q〉m ρ 3

2〈
αs

π
G2

〉
0

0.012 ± 0.0036 GeV4 [44]〈
αs

π
G2

〉
N

−0.65 ± 0.15 GeV [45]

A
q
2 0.62 ± 0.06 [46]

A
g
2 0.359 ± 0.146 [46]

A
q
3 0.15 ± 0.02 [46]

e2 0.017 ± 0.047 [47]
m2

0 0.8 ± 0.2 GeV2 [44]
〈q†gσ · Gq〉N −0.33 GeV2 [45]

and at the same time suppresses the αs corrections. Moreover,
the four-quark condensate contributions are suppressed with
this kernel, and therefore the uncertainties caused by the four-
quark condensates, whose values are only weakly constrained,
will not seriously affect the results of the QCD sum rule
analysis.

We will later carry out the sum-rule analysis for the nucleon
at rest relative to nuclear matter and also at the Fermi surface.
There is no guarantee that the above desirable features are kept
when investigating the in-medium nucleon properties at finite
|�q|. We, in fact, find that the suppression of the contributions
from the αs corrections becomes less effective as |�q| increases.
Therefore, we improve the phase-rotated kernel W (q0,|�q|)
as

W (s,τ,θ,q0,|�q|)

= 1√
4πτ

1

2

[
(q0 − |�q|)e−2iθ exp

(
− (q2e−2iθ − s)2

4τ

)

+ (q0 − |�q|)e2iθ exp

(
− (q2e2iθ − s)2

4τ

)]
. (13)

s, τ , and θ are parameters in our QCD sum rule and whose
analyzed parameter regions will be discussed in the next
section. For |�q| = 0, the above kernel is equivalent to that
used previously in Ref. [26].

Substituting Eqs. (8)–(10) and (13) into Eq. (4), we finally
obtain the parity-projected nucleon QCD sum rules as

G±
mOPE(s,τ,θ )

≡
∫ ∞

−∞

1

π
Im[� ±

mOPE(q0,|�q|)]W (s,τ,θ,q0,|�q|)dq0

= Gm1OPE(s,τ,θ ) ± Gm2OPE(s,τ,θ ) + Gm3OPE(s,τ,θ )

=
∫ ∞

0
ρ±

m (q0)W (s,τ,θ,q0,|�q|)dq0. (14)

Here, GmiOPE(s,τ,θ ) (i = 1,2,3) are defined as

Gm1OPE(s,τ,θ )

=
∫ ∞

−∞
Im

[
q0�m1OPE(q0,|�q|)

π

]
W (s,τ,θ,q0,|�q|)dq0,
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G−(s,τ,θ)

Perturbative
<q-q>
<q  †q>

(b)  ρ= 0.25ρN

-3

-2

-1
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 1

 2

-2 -1  0

G
(s

,τ,
θ)
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0-5

G
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6 ]
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(c)  ρ= 0.5ρN

-2 -1  0
s[GeV2]

(d)  ρ= 0.75ρN

-2 -1  0  1
s[GeV2]

(e)  ρ= 1.0ρN

FIG. 1. The density dependence of G±
mOPE(s,τ,θ ). The perturbative, chiral condensate 〈qq〉, vector quark condensate 〈q†q〉 terms and the

total are shown at τ = 0.5 GeV4, β = −0.9, θ = 0.108π , and |�q| = 0. The 〈q†q〉 term stands for the sum of the terms proportional to the
condensate 〈q†q〉 in Gm1OPE(s,τ,θ ) and Gm3OPE(s,τ,θ ).

Gm2OPE(s,τ,θ )

=
∫ ∞

−∞
Im

[
�m2OPE(q0,|�q|)

π

]
W (s,τ,θ,q0,|�q|)dq0,

Gm3OPE(s,τ,θ )

=
∫ ∞

−∞
Im

[
�muOPE(q0,|�q|)

π

]
W (s,τ,θ,q0,|�q|)dq0. (15)

The functions G±
mOPE(s,τ,θ ) are shown in Fig. 1 at τ =

0.5 [GeV4], θ = 0.108π , and |�q| = 0 for various densities.
The qualitative behavior at finite spatial momentum is similar
to that at |�q| = 0. In this figure, also shown are the perturbative,
chiral condensate 〈qq〉 and vector quark condensate 〈q†q〉
terms, which are dominant. From Eq. (14) and Fig. 1, one
sees that the chiral condensate term dominates in vacuum and
is responsible for the difference between G+

mOPE and G−
mOPE.

This observation shows clearly that the difference between
the positive- and negative-parity spectral functions is caused
by the emergence of the chiral condensate 〈qq〉. We also find
that, as the density increases, G+

mOPE becomes small due to
the decrease of the absolute value of 〈qq〉 and the increase of
the vector quark condensate. On the other hand, G−

mOPE shows
no significant change since the modifications of the 〈qq〉 and
〈q†q〉 condensates cancel each other out to a large degree.

III. NUMERICAL ANALYSIS OF SUM RULES

A. Spectral functions of positive- and negative-parity states

We first discuss the parameter regions of τ , s, θ , and β
used for the analyses of this work. Considering the form
of W (s,τ,θ,q0,|�q|) in Eq. (13), we expect that, for small τ

values, G±
m(s,τ,θ ) will retain traces of the peak structures of

the spectral function, while at large τ , it will be dominated
by continuum contributions. This is because τ represents the
typical energy scale over which the kernel W (s,τ,θ,q0,|�q|)
averages the spectral function. We therefore use several
values of τ (τ = 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0 GeV4)
simultaneously and determine the corresponding parameter
region of s for each τ . The minimum values of s at fixed
τ are determined based on the criterion that the ratio of the
highest-dimensional OPE term to the total G±

mOPE(s,τ,θ ) is less
than 0.25. The maximum values of s are chosen to satisfy the
condition that the second node of the kernel as a function of q0

is less than 2.0 GeV because it is difficult to extract information
in the q0 region above this second node due to the suppression
and fast oscillation of the kernel. The specific values of the
minimum and maximum s for each τ are shown in Table II.
The values of θ and β are set to 0.108π and −0.9 to suppress
the effects of higher-order αs corrections and uncertainties of
condensates, respectively. For more details about the parameter
determination, we refer the reader to Ref. [26].

TABLE II. Values of smin/max [GeV2] at β = −0.9 and fixed τ

[GeV4].

τ 0.5 0.75 1.0 1.25 1.5 1.75 2.0

smin of G+
m −2.44 −3.92 −5.41 −6.90 −8.39 −9.88 −11.37

smax of G+
m 0.90 −0.10 −1.20 −2.20 −3.40 −4.50 −5.70

smin of G−
m −1.27 −2.26 −3.27 −4.28 −5.30 −6.32 −7.35

smax of G−
m 0.90 −0.10 −1.20 −2.20 −3.40 −4.50 −5.70
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FIG. 2. The positive- (left) and negative-parity (right) spectral
functions extracted from G±

mOPE(s,τ,θ ) of Eq. (14) by MEM. The
red, green, blue, magenta, and light blue lines correspond to the
spectral functions at the density 0.0ρN , 0.25ρN , 0.5ρN , 0.75ρN ,
and 1.0ρN , respectively. Here ρN denotes the normal nuclear matter
density.

We apply the maximum entropy method (MEM) to the
OPE data of Eq. (14) and extract the spectral functions of
both positive and negative-parity states. The advantage of this
method is that the most probable spectral function can be
obtained without assuming its specific form such as the “pole
+ continuum” ansatz [33]. In the MEM analysis, however,
we have to introduce the so-called default model m(q0),
which should include our prior knowledge of the spectral
function. To correctly reflect the spectral behavior both in the
high- and low-energy regions, we use the following default
model:

m(q0) = m̄(β)
1

1 + e(qth−q0)/δ
,

m̄(β) = 5 + 2β + 5β2

128(2π )4
, (16)

where the values of qth and δ are chosen as 3.0 GeV and
0.1 GeV, respectively. The factor m̄(β) is determined so that
m(q0) agrees with the asymptotic behavior of the spectral
function at high energy. For further technical details of the
MEM, we refer the reader to Refs. [33,48,49]. The errors of
the OPE data in vacuum σ (s,τ )ρ=0 are evaluated based on the
method proposed in Ref. [50], while the errors σ (s,τ )ρ=ρN

in
nuclear matter are determined by assuming that the relative
errors are density independent, [σ (s,τ )/GmOPE(s,τ )]ρ=ρN

=
[σ (s,τ )/GmOPE(s,τ )]ρ=0.

We first analyze the in-medium spectral functions of the
nucleons at rest relative to nuclear matter (�q = 0). The
obtained spectral functions are shown in Fig. 2. For positive
parity, the peak appears at about 910 MeV in vacuum. This
peak corresponds to the nucleon ground state N(939). As the
density increases, the height of the peak decreases while the
peak position does not change much. For negative parity, two
peaks appear at 1550 and 1870 MeV in vacuum. The first peak
lies close to the lowest negative-parity excitation N(1535) and

thus most likely corresponds to this state. Note, however, that
it is generally difficult to disentangle two adjoining peaks in
a narrow region from QCD sum-rule analyses. It is therefore
possible that the lowest peak contains contributions of the
higher N(1650) state. The second peak is statistically less
significant than the first and its position does not correspond to
any known 1

2
−

nucleon excited sates. This peak may therefore
be a manifestation of the continuum. Consistently with the
behavior of the OPE data shown in Fig. 1, the negative-parity
spectral function is not modified significantly at finite density.
These findings indicate that the energies of the lowest-lying
states of both positive and negative parity are almost density
independent while the coupling strength of the employed
interpolating field to the N(939) state decreases as the density
increases.

B. Estimation of self energies

So far, we have found that the peak positions; namely, the
total energies of the nucleon and its negative-parity excited
state, are not sensitive to matter effects up to nuclear matter
density. The behavior of the nucleon ground state is consistent
with the small binding energy per nucleon of nuclear matter.
The results for the negative-parity state are, on the other hand,
unexpected because one would naively anticipate that its peak
moves towards the peak of the positive-parity spectral function
as the chiral symmetry is partially restored in the nuclear
medium.

The quantum hadrodynamics (QHD) model has been suc-
cessfully applied to the investigation of nuclei and in-medium
nucleon properties [51,52]. In this framework, the nearly
density-independent single-particle energy of the nucleon in
nuclei is caused by the cancellation of the scalar and vector
self-energies. The investigation of the self-energies of the
negative-parity state, to be carried out in this section within
our QCD sum-rule approach, will hence be similarly helpful
to comprehend its remarkable behavior.

Consider the nucleon propagator in nuclear matter,

G(q0,|�q|) = Z
′
(q0,|�q|)

q − M − �(q0,|�q|) + iε
, (17)

where �(q0,|�q|) is the nucleon self-energy and Z
′
(q0,|�q|)

means the renormalization factor of the nucleon wave function.
As in Eq. (2), the self-energy can be decomposed as

�(q) = �s ′
(q0,|�q|) + �v′

(q0,|�q|) u + �q ′
(q0,|�q|) q. (18)

It turns out to be convenient to redefine the quantities �q ′
to

�s ′
, �v′

, and Z
′
as

M∗ ≡ M + �s ′
(q0,|�q|)

1 − �q ′ = M + �s(q0,|�q|),

�v(q0,|�q|) ≡ �v′
(q0,|�q|)

1 − �q ′ ,

Z(q0,|�q|) ≡ Z
′
(q0,|�q|)

1 − �q ′ ,

(19)
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after which the nucleon propagator can be described as

G(q0,|�q|) = Z(q0,|�q|) q− u�v + M∗

(q0 − E + iε)(q0 + E − iε)
, (20)

where

E = �v +
√

M∗2 + �q 2, E = −�v +
√

M∗2 + �q 2. (21)

Now we assume that the phenomenological side of the nucleon
correlation function is constituted of several sharp (zero-width)
positive- and negative-parity states and the continuum. Then,
each scalar function of the forward-time correlation function
can be expressed by a sum of the contributions from the
individual states as

q0�m1(q0,|�q|) =
∑

n

|λ+
n |2 E+

n

2
√

M∗2
n+ + �q 2

1

q0 − E+
n + iε

+ |λ−
n |2 E−

n

2
√

M∗2
n− + �q 2

1

q0 − E−
n + iε

+ · · · , (22)

�m2(q0,|�q|) =
∑

n

|λ+
n |2 M∗

n+

2
√

M∗2
n+ + �q 2

1

q0 − E+
n + iε

− |λ−
n |2 M∗

n−

2
√

M∗2
n− + �q 2

1

q0 − E−
n + iε

+ · · · , (23)

�m3(q0,|�q|) =
∑

n

|λ+
n |2 −�v

n+

2
√

M∗2
n+ + �q 2

1

q0 − E+
n + iε

+ |λ−
n |2 −�v

n−

2
√

M∗2
n− + �q 2

1

q0 − E−
n + iε

+ · · · , (24)

where |λ±
n |2 are the residues of the nth states. The phenomenological side of the parity-projected correlation functions can thus

be expressed as follows:

�±
m(q0,|�q|) =

∑
n

∣∣λ±
n

∣∣2

2
√

M∗2
n± + �q 2

(√
M∗2

n± + �q 2 + M∗
n±

)
q0 − E±

n + iε
+

∣∣λ∓
n

∣∣2

2
√

M∗2
n∓ + �q 2

(√
M∗2

n∓ + �q 2 − M∗
n∓

)
q0 − E∓

n + iε
+ · · · . (25)

We next fit the combinations �m1(q0,|�q|) + �m2(q0,|�q|),
�m1(q0,|�q|) − �m2(q0,|�q|), and �m3(q0,|�q|) to the respec-
tive OPE functions to extract the effective masses M∗2

±
and the vector self-energies �v

±. To be more precise,
we substitute the imaginary parts of Eqs. (22)–(24) into
Eq. (15), compute the (trivial) q0 integral, and fit the
result to Gm1OPE(s,τ,θ ) + Gm2OPE(s,τ,θ ), Gm1OPE(s,τ,θ ) −
Gm2OPE(s,τ,θ ), and Gm3OPE(s,τ,θ ). To carry out this fit, we
keep E±

0 and |λ±
0 |2 fixed to the values obtained from the

MEM analysis of G±
mOPE(s,τ,θ ). Specifically, E±

0 is taken
at the energy of the peak maximum and |λ±

0 |2 is obtained
by integrating the spectral function in the region of the
corresponding peak. The remaining parameters that need to
be fit are then the factors

E±
0 + M∗

0±

2
√

M∗2
0± + �q 2

, − �v
0+

2
√

M∗2
0± + �q 2

,

from which we can extract the effective masses and vector
self-energies.

In the above fit, one also needs to take the continuum
states [not shown in Eqs. (22)–(24)] into account. For this
purpose, we regard the continuum obtained from the MEM
analysis of G+

mOPE(s,τ,θ ) and G−
mOPE(s,τ,θ ) as the continuum

contributions from �m1 + �m2 and �m1 − �m2, respectively.
Concretely, we assume the q0 � 1050 MeV (q0 � 1750 MeV)
region to be the continuum of �m1 + �m2 (�m1 − �m2). We
have checked that the choice of the lower boundaries has
no strong effects on the fitting results. The contribution of
the continuum state in �m3 may furthermore be neglected
because there are no perturbative contributions to this term in
the high-energy limit.

The fit results are given in Fig. 3. The left figure shows
the behavior for the positive-parity state. As the density
increases, the effective mass decreases, while the vector
self-energy increases. The values of the effective mass and
vector self-energy at normal nuclear matter density are about
130 and 770 MeV, respectively. These findings are qualitatively
similar to the results of the previous QCD sum-rule analyses
[31,32], while the magnitude of the in-medium modifications
are larger than those in Refs. [31,32]. The right figure shows
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FIG. 3. The density dependence of the effective masses and
vector self-energies of positive (left) and negative-parity (right) states.
The red, green, and blue lines correspond to the effective masses,
vector self-energies and total energies, respectively. The dashed lines
are the results in which the four-quark condensate are assumed to be
independent of the density (see Sec. IV A).
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the negative-parity effective mass and self-energy. The density
dependencies of both quantities clearly turn out to be much
weaker than those of the positive-parity state.

The obtained spectral function, effective mass, and vec-
tor self-energy for the negative-parity state differ from the
predictions of the chiral doublet models [2,3]. The models
predict that the mass difference between the nucleon and its
negative-parity excited state is reduced at finite density because
it is proportional to the chiral condensate 〈qq〉. The models fur-
thermore predict that both the masses monotonically decrease
and finally become degenerate in the chirally restored phase.
Therefore, one expects in this framework that the energy of the
negative-parity excited state moves towards the positive-parity
state as the density increases. Our study, however, shows
that the energy of the negative-parity excited state is almost
density independent. The disagreement between the results
of the chiral doublet model and QCD sum rules can be traced
back to the 〈q†q〉 condensate at finite density. The cancellation
between the changes of 〈qq〉 and 〈q†q〉 in the medium
leaves the correlation function (almost) unchanged for the
negative-parity sum rule. The behavior of the negative-parity
nucleon in the medium may be experimentally studied from
η-mesic nuclei since their structures may be sensitive to the
difference between the energies of the nucleon ground state and
its first negative-parity excitation [6,7]. It will be interesting to
see whether such an experiment can discriminate between the
above two pictures and whether it can determine which of the
two is realized in nature.

IV. DISCUSSION

In this section, we discuss the uncertainties of the in-
medium condensates and their effects on the sum-rule analysis
results. As we have mentioned in Sec. II B, in-medium
condensates are evaluated in this work within the linear
density approximation and their (linear) density dependencies
are determined by the values of the quark mass, parton
distribution functions, etc. The values of these quantities have
some uncertainties. Furthermore, the in-medium values of the
higher-order condensates such as the four-quark condensates,
which are usually evaluated by using the factorization hy-
pothesis, are poorly known because factorization can only
be justified in the large-Nc limit. We also discuss the spatial
momentum dependence of the results and examine the validity
of the parity projection for the finite-momentum case.

A. Dependence on in-medium four-quark condensates

Four-quark condensates can, just like the chiral condensate,
be related to the spontaneous breaking of chiral symmetry.
Their contributions to the OPE expression of the correlation
function are given in Eqs. (8)–(10). In the case of the
nucleon QCD sum rules in vacuum, the four-quark condensates
give the dominant nonperturbative contribution to the chiral
even part �1(q2). The in-medium values of the four-quark
condensates are only poorly constrained because we at present
have to rely on the factorization hypothesis, according to
which the four-quark condensates are given by the square of
the chiral condensate. This hypothesis may not be justified

even in vacuum, while its validity at finite density is even
more questionable [16,53,54]. The density dependence of the
four-quark condensates and their effects on nucleon properties
have been studied previously in Refs. [16,55–57], but its effect
on the lowest negative-parity excited state is worked out here
for the first time.

In Eqs. (8)–(10), three kinds of four-quark condensates;
namely, scalar-scalar 〈qq〉2, scalar-vector 〈qq〉〈q†q〉, and
vector-vector 〈q†q〉2 four-quark condensates appear. Our inte-
gral kernel of Eq. (13), in fact, eliminates the contributions of
〈qq〉〈q†q〉 and 〈q†q〉2 at leading order in αs . The αs corrections
of these contributions are not considered in this study because
the 〈qq〉〈q†q〉 and 〈q†q〉2 condensates are not expected to
have large contributions up to normal nuclear matter density,
and thus their αs corrections presumably are numerically
small. We therefore study only the effects of the in-medium
modification of the scalar-scalar four-quark condensates to
both the positive and negative-parity nucleon states. Since only
chiral-invariant four-quark condensates appear in the nucleon
QCD sum rule with the Ioffe current [β = −1 in Eq. (7)]
[55], one could expect that the medium modification of the
〈qq〉2 condensate may also be small in the vicinity of the
Ioffe current (we use β = −0.9). Previous studies actually
pointed out that a small density dependence of the four-quark
condensate causes realistic results with a slightly decreasing
total energy of the positive-parity ground state, consistent with
our knowledge of nuclear phenomenology [31]. Therefore, to
test this possibility, we here assume the 〈qq〉2 condensates
to be density independent, repeat the previous analysis, and
compare the two results.

This comparison is shown in Fig. 3 as the dashed lines. In
these plots, we see that the density dependence of the 〈qq〉2

condensate mainly affects the self-energies of the positive-
parity state. The density-independent four-quark condensate
causes the effective mass to increase while the vector self-
energy decreases. On the other hand, the behavior of the
negative-parity state remains almost completely unchanged.

B. Dependence on in-medium chiral condensates

As we have seen in Fig. 1, the chiral condensate 〈qq〉m
term contributes dominantly to the phase-rotated QCD sum
rule of the nucleon. Its density dependence at leading order in
nucleon density is determined by the ratio of πN sigma term
to the light quark mass, ξ = σN

2mq
are taken as σN = 45 MeV,

mq = 4.725 MeV, and ξ ∼= 4.76 in Sec. III. However, both
σN and mq have some uncertainties and these precise values
are not well determined [58–65]. Especially for the σN value,
a recent dispersion analysis of πN scattering data gives a
rather large value of σπN = (59 ± 1.9 ± 3.0) MeV [64], while
another recent lattice calculation that uses quark masses at
the physical point obtains a much smaller value of σπN =
38(3)(3) MeV [65].

To check the dependence of the self-energies on their
values, we additionally consider two cases; namely, ξ =
3.5, 5.5, and show the results in Fig. 4. The dependence on
the factorization hypothesis for the four-quark condensates is
also given in this figure. One sees that the uncertainty of ξ
mainly affects the effective mass and vector self-energy of
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FIG. 4. The σN/2mq dependence of the effective masses and
vector self-energies of positive- (left) and negative-parity (right)
states. The red and green lines correspond to the effective masses and
vector self-energies, respectively. The solid lines show the results with
full density dependence according to the factorization hypothesis for
the four-quark condensates, while the dashed lines correspond to the
density-independent 〈qq〉2 case.

the positive-parity state, regardless of the density dependence
of the four-quark condensate. The values of the effective mass
and vector self-energy at ξ = 3.5 and 5.5 are changed by about
100 and 70 MeV, respectively. On the other hand, the other
quantities; namely, the total energies of both parity states and
M∗ and �v of the negative-parity state, appear to be fairly
insensitive to ξ . The change of ξ also affects the heights of
the first peaks in the spectral functions of both the positive-
and negative-parity states and thus the values of the respective
residues are modified.

C. Dependence on three-dimensional momentum

As a last point, we investigate in this section the spatial
momentum dependencies of the nucleon and its negative-parity
excited state. In the previous sections, we have so far carried
out the analyses at rest relative to nuclear matter while we
shall next study the density dependence of the total energies,
effective masses, and vector self-energies of both positive-
and negative-parity states at the Fermi momentum |�qf | =
( 3π2ρN

2 )
1
3 .

The results are shown in Fig. 5 as solid lines, while
the dashed lines correspond to the case of the zero spatial
momentum. The momentum dependencies of the total en-
ergies, effective masses, and vector self-energies of positive
and negative-parity states turn out to be small. The solid
curves are not extended to the normal nuclear matter density
because the MEM analysis of the positive-parity states does
not work well above ρ = 0.75ρN . The reason for this failure
is the rapid decrease of the ground-state residue, which is
faster than for |�q| = 0, making it impossible to extract the
positive-parity spectral function at ρ = ρN . (The lines of
the negative-parity state similarly cannot be extended to the
normal nuclear matter density because, when extracting the
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FIG. 5. The density dependence of the effective masses and
vector self-energies of positive- (left) and negative-parity (right) states
at the Fermi momentum. The red, green, and blue lines correspond
to the effective masses, vector self-energies, and total energies,
respectively. For comparison, their values at |�q| = 0 are shown as
dashed lines.

values of the effective mass and vector self-energies, both
the positive- and negative-parity spectral function are needed.)
The |�q| dependence of the OPE part originates from the Wilson
coefficients, which depend on the two variables q2 and q · u.
Only terms involving q · u lead to |�q| dependencies of the
in-medium spectral functions. Such contributions are small up
to 0.75ρN and hence the solid and dashed curves in Fig. 5
show qualitatively the same behavior. Therefore, the weak |�q|
dependencies of the total energies, effective masses, and vector
self-energies are consistent with the OPE side of the correlation
function. To investigate the nucleon properties in more detail,
higher-order contributions to the Wilson coefficients and the
condensates would be needed, which is a task that goes beyond
the scope of this work.

Finally, we comment on the validity of the parity projection
for the nonzero-momentum case. As can be understood from
Eq. (25), the parity projection can only be carried out exactly at
|�q| = 0, meaning that �±

m(q0,|�q|) only receives contributions
of states with fixed parity. On the other hand, the obtained
spectral function ρ±

mPhys.(q0,|�q| = 0) may involve some con-
tributions of the opposite-parity states and thus the peak
positions, the effective masses, and vector self-energies can
in principle be affected by such mixings. The contamination
can be estimated from the coefficient of the second term in
Eq. (25). The ratios of the coefficient of the second term to its
of first term, namely

|λ∓
n |2

2
√

M∗2
n∓+�q 2

(√
M∗2

n∓ + �q 2 − M∗
n∓

)
|λ±

n |2
2
√

M∗2
n±+�q 2

(√
M∗2

n± + �q 2 + M∗
n±

) ,

are shown in Fig. 6. In this figure, one observes that, for both
positive- and negative-parity states, the first term is much larger
than the second and thus the mixing effect can in practice be
ignored for momenta around the Fermi surface.
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V. SUMMARY AND CONCLUSION

We have studied the spectral functions of the nucleon and
its negative-parity excited state in nuclear matter by using
QCD sum rules and the maximum entropy method. All known
first-order αs corrections to the Wilson coefficients are taken
into account and the density dependencies of the condensates
are treated within the linear density approximation. With
these inputs, we have constructed the parity-projected in-
medium nucleon QCD sum rules and have analyzed them
with the MEM. As a result, we have found that the density
dependencies of the OPE parts are dominated by those of the
chiral condensate 〈qq〉 and vector quark condensate 〈q†q〉.
The difference between the positive- and negative-parity OPE
expressions is mainly caused by the chiral condensate term,
whose sign depends on the parity of the respective nucleon
state. Therefore, the density dependencies of the positive- and
negative-parity OPE parts are rather different. As the density
increases, the positive-parity OPE decreases rapidly because
the in-medium modifications of 〈qq〉 and 〈q†q〉 are added up
to reduce the OPE part. On the other hand, the negative-parity
OPE depends little on the density due to the cancellation of
these modifications.

We have analyzed these OPE data by MEM and extracted
the spectral functions of positive- and negative-parity, which in
the vacuum exhibit sharp peaks near the experimental values
of the lowest-lying states. The positions of these peaks turned
out to be almost density independent, which means that the
total energies of both the positive- and negative-parity states
are not modified by nuclear matter effects up to normal nuclear
matter density. On the other hand, as the density increases, the
residue of the positive-parity nucleon ground state decreases
while that of the negative-parity first-excited state remains
almost unchanged.

Assuming mean-field type phenomenological nucleon
propagators, we have next investigated the density depen-
dencies of the effective masses and vector self-energies. For

positive-parity, we have found that, as the density increases,
the effective mass decreases while the vector self-energy
increases. For negative parity, the medium modifications of
these quantities are very small. We have examined potential
effects of the uncertainties of the input parameters; namely,
the in-medium four-quark condensates 〈qq〉2

m and the chiral
condensate 〈qq〉m, on the results of the analyses. It is found that
these uncertainties mainly affect the effective mass and vector
self-energy of the positive-parity ground state. For larger
in-medium modifications of these condensates, the effective
mass and vector self-energy become more pronounced. These
results suggest that the effective mass and vector self-energy
are strongly correlated with the partial restoration of chiral
symmetry. For negative parity, the in-medium modifications
are not much affected by the density dependencies of both 〈qq〉
and 〈qq〉2, which suggests that the results qualitatively do not
depend on our specific choices for the in-medium condensates.
We have also investigated the spatial momentum dependence
of the nucleon spectra and found that the |�q| dependence of
the total energies, the effective masses, and vector self-energies
of both positive and negative parity are small at low density.
Here, we have restricted ourselves to momenta up to the Fermi
momentum at normal nuclear matter density. We have also
discussed the validity of the parity projection at finite |�q| and
showed that, even though parity projection is not exact at
finite |�q|, the mixing contributions of opposite parity states are
sufficiently small up to the Fermi momentum.

The behavior of the positive- and negative-parity states
can be attributed mainly to the modifications of the 〈qq〉 and
〈q†q〉 condensates and thus our results indicate that both the
〈qq〉 and 〈q†q〉 condensates are important in describing the
in-medium properties of the nucleon and its negative-parity
excited state. It is, however, difficult to provide an intuitive
physical interpretation for these findings. Our results show that
the spectral function, effective mass, and vector self-energy of
the negative-parity state are not modified significantly up to
normal nuclear matter density. This behavior differ from that
obtained from the chiral doublet model, which predicts that the
effective masses of both the positive- and negative-parity states
decrease monotonically and finally become degenerate in the
chirally restored phase. As a further point, the decrease of the
peak height of the positive-parity spectral function indicates
that the coupling strength of the nucleon ground state to the
interpolating field is reduced rapidly as the density increases.
These new features of the direct application of QCD are quite
interesting, while their physical picture is not yet clear and
requires further investigation.
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