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Spin-flavor structure of chiral-odd generalized parton distributions in the large-Nc limit
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We study the spin-flavor structure of the nucleon’s chiral-odd generalized parton distributions (transversity
GPDs) in the large-Nc limit of QCD. In contrast to the chiral-even case, only three combinations of the four
chiral-odd GPDs are nonzero in the leading order of the 1/Nc expansion: ĒT = ET + 2H̃T ,HT , and ẼT . The
degeneracy is explained by the absence of spin-orbit interactions correlating the transverse momentum transfer
with the transverse quark spin. It can also be deduced from the natural Nc scaling of the quark-nucleon helicity
amplitudes associated with the GPDs. In the GPD ĒT the flavor-singlet component u + d is leading in the 1/Nc

expansion, while in HT and ẼT it is the flavor-nonsinglet components u − d . The large-Nc relations are consistent
with the spin-flavor structure extracted from hard exclusive π0 and η electroproduction data, if it is assumed that
the processes are mediated by twist-3 amplitudes involving the chiral-odd GPDs and the chiral-odd pseudoscalar
meson distribution amplitudes.
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I. INTRODUCTION

Generalized parton distributions (GPDs) have become an
essential tool in the study of nucleon structure in QCD;
see Refs. [1–4] for a review. They parametrize the nucleon
matrix elements of quark and gluon light-ray operators at
nonzero momentum transfer and unify the concepts of parton
density and elastic form factor. As such they provide a
comprehensive description of the nucleon’s quark and gluon
single-particle structure and its spin-flavor dependence. At
twist-2 level the nucleon’s quark structure is described by four
chiral-even (quark helicity-conserving) and four chiral-odd
(quark helicity-flipping) GPDs; the number corresponds to
that of independent quark-nucleon helicity amplitudes [5].
The chiral-even GPDs reduce to the usual unpolarized and
helicity-polarized quark parton distribution functions (PDFs)
in the limit of zero momentum transfer. These GPDs appear
in the collinear QCD factorization of amplitudes of hard
exclusive processes such as deeply virtual Compton scattering
[6–8] and exclusive meson electroproduction with longitudinal
photon polarization [9] and can be accessed experimentally in
this way. The chiral-odd GPDs reduce to the quark transversity
PDFs in the limit of zero momentum transfer. Relating these
GPDs to hard exclusive processes has proved to be challenging.
The chiral-odd GPDs decouple from single vector meson
electroproduction at leading twist in all orders in perturbative
QCD due to the chirality requirements for massless fermions
[10]. It has been argued that the chiral-odd GPDs could be
probed in diffractive electroproduction of two mesons with
large invariant mass (rapidity gap) [11–13], but the proposed
kinematics is difficult to access and no data are presently
available.

Recent theoretical work suggests that hard exclusive
electroproduction of pseudoscalar mesons (π0,η,π+) may
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be described by a hard scattering mechanism involving the
twist-2 chiral-odd nucleon GPDs and the twist-3 chiral-odd
meson distribution amplitude [14–17]; see Ref. [18] for a
summary. A large chiral-odd distribution amplitude is induced
by the dynamical breaking of chiral symmetry in QCD, and
its normalization can be determined model-independently in
terms of the chiral condensate [15,16]. While the mechanism
is formally power-suppressed and no strict factorization has
been established at this level, the pseudoscalar production
amplitudes have been calculated in a modified hard scattering
approach, which implements suppression of large-size qq̄
configurations in the meson through the QCD Sudakov form
factor [15,16]. The results agree well with the π0 and η
electroproduction data from the JLab CLAS experiment at
6 GeV incident energy, regarding both the absolute cross
sections and the dominance of transverse photon amplitudes
(L/T ratio) inferred from the azimuthal-angle-dependent
response functions [19,20]. A tentative spin-flavor separation
of the chiral-odd GPDs has been performed by combining data
in π0 and η electroproduction using the different sensitivity
of the two channels [20]. Further dedicated experiments in
pseudoscalar meson electroproduction are planned with the
JLab 12 GeV upgrade.

In order to interpret the pseudoscalar meson production
data and assess the potential of this method for GPD studies,
it is necessary to gain more insight into the properties of
the chiral-odd GPDs from other sources. In contrast to the
chiral-even GPDs, in the chiral-odd case neither the zero-
momentum transfer limit of the GPDs (transversity PDFs)
nor the local operator limit (form factors of local tensor
operators) correspond to structures that are easily measurable,
so that little useful information can be obtained in this way.
The transversity PDFs can be extracted from polarization
observables in semi-inclusive deep-inelastic scattering, and
in principle also from dilepton production in polarized proton-
proton collisions, but the methods have large theoretical and
experimental uncertainties; see Refs. [21–23] and references
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therein. The form factors of local tensor operators, which
constrain the lowest x moments of the chiral-odd GPDs, have
been calculated in lattice QCD [24] and in various dynamical
models of nucleon structure; see Refs. [25,26] for a review.
The x-dependent chiral-odd GPDs have been studied in quark
bound-state models of nucleon structure [27–32]. Besides
these estimates not much is known about the properties of
the chiral-odd GPDs.

The limit of a large number of colors in QCD (large-Nc

limit) provides a powerful model-independent method for
studying the spin-flavor structure of nucleon matrix elements
[33–35]. The conceptual basis and practical implementation of
this approach have been described extensively in the literature,
see Ref. [36] for a review. In the large-Nc limit QCD becomes
semiclassical, and baryons can be described by mean field
solutions in an effective theory formulated in terms of meson
fields [34]. While the dynamics remains complex and cannot
be solved exactly, and the form of the mean field solution is
not known, qualitative insights can be obtained by exploiting
its known symmetry properties [37,38]. The resulting scaling
relations for baryon mass splittings, meson-baryon coupling
constants, electromagnetic and axial form factors, and other
observables are generally in good agreement with experiment
[36,39–42]. In matrix elements of quark bilinear operators
(vector or axial vector currents, tensor operators) the large-Nc

limit identifies leading and subleading spin-flavor components
and implies a parametric hierarchy in nucleon structure.
The approach can be extended to parton densities [43,44],
where it suggests a large flavor asymmetry of the polarized
antiquark distribution �ū − �d̄, as supported by the recent
BNL Relativistic Heavy Ion Collider W∓ production data
[45,46]. The Nc scaling of chiral-odd quark distributions
(transversity PDFs) was considered in Refs. [47–49], and that
of local chiral-odd operators (tensor charges) in Refs. [50,51],
in the context of calculations in the chiral-quark soliton model
of the large-Nc nucleon. A general method for the 1/Nc

expansion of GPDs was described in Ref. [1] and applied
to chiral-even GPDs.

In this article we study the spin-flavor structure of the
nucleon’s chiral-odd GPDs in the large-Nc limit and discuss
its implications. We derive the Nc scaling of the chiral-odd
GPDs using the method of Ref. [1] and observe interesting
differences between the chiral-even and chiral-odd cases. We
show that the findings can be explained as the result of
natural Nc scaling of the nucleon-quark helicity amplitudes
associated with the chiral-odd GPDs [5,53]. The spin-flavor
structure obtained in the large-Nc limit is found to be consistent
with that observed in an analysis of the JLab CLAS π0

and η hard exclusive electroproduction data, assuming that
these processes are mediated by twist-3 chiral-odd meson
distribution amplitudes.

The present study generalizes previous results in the
1/Nc expansion of chiral-even GPDs [1], quark transversity
distributions [47–49], and matrix elements of local chiral-
odd operators [50] and uses the formal apparatus developed
in these earlier works. The description of the apparatus
and explicit quotation of chiral-even results is intended
only to make the present article readable. An intuitive and
independent derivation of the Nc scaling of the chiral-odd

GPDs based on nucleon-quark helicity amplitudes was given
in Ref. [52].

II. CHIRAL-ODD GPDS

GPDs parametrize the nonforward nucleon matrix elements
of QCD light-ray operators of the general form [1–4]

M(�) = P +
∫

dz−

2π
eixP +z−〈N,p′|ψ̄(−z/2)

×�ψ(z/2)|N,p〉|z+=0,zT =0, (1)

where P ≡ 1
2 (p′ + p) is the average nucleon four-momentum,

z is a light-like distance, and the four-vectors are described
by their light-cone components z± = (z0 ± z3)/

√
2,zT =

(z1,z2), etc. The light-ray operators generally contain a gauge
link along the light-like path defined by z, which we do not
indicate for brevity. � denotes a generic matrix in spinor
indices and defines the spin structure of the operator. In the
chiral-even case the relevant spinor matrices are � = γ + and
γ +γ5, and the matrix elements are parametrized as

M(γ +) = ū′
[
γ +H + iσ+j�j

2MN

E

]
u, (2)

M(γ +γ5) = ū′
[
γ +γ5H̃ + γ5�

+

2MN

Ẽ

]
u. (3)

In the chiral-odd case the spinor matrix is � = iσ+j (j = 1,2),
and the matrix element is parametrized as [5]

M(iσ+j ) = ū

[
iσ+jHT + P +�j − �+P j

M2
N

H̃T

+γ +�j − �+γ j

2MN

ET + γ +P j − P +γ j

MN

ẼT

]
u.

(4)

Here u ≡ u(p,λ) and u′ ≡ u(p′,λ′) are the bispinors of the
initial and final nucleon (the choice of polarization states will
be specified later) and � ≡ p′ − p is the four-momentum
transfer. The GPDs H ≡ H (x,ξ,t), etc., are functions of the
average quark plus momentum fraction x, the plus momentum
transfer to the quark, ξ ≡ −�+/(2P +) = (p − p′)+/(p +
p′)+, and the invariant momentum transfer to the nucleon,
t ≡ �2. For brevity we do not indicate the dependence of the
GPDs on the normalization scale of the QCD operator.

The quark fields in Eq. (1) carry flavor indices (suppressed
for brevity), and the correlator is generally a matrix in flavor
space. The usual flavor-diagonal GPDs are obtained with the
operator

Hf ↔ ψ̄f . . . ψf (f = u,d), (5)

where the matrix element refers to the proton state. Al-
ternatively one may consider the isoscalar and isovector
combinations u ± d of operators and GPDs. In the following
we shall specify the flavor and isospin structure of the matrix
elements as needed.

The chiral-even and odd GPDs satisfy certain sym-
metry relations in ξ , resulting from time reversal
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invariance,

GPD(x, − ξ,t) =
{+GPD(x,ξ,t) for GPD = H,H̃ ,E,Ẽ,HT ,H̃T ,ET ,

−GPD(x,ξ,t) for GPD = ẼT .
(6)

Integration over the variable x reduces the light-ray operators
in Eq. (1) to local operators. In the chiral-even case these are
the vector and axial vector currents, so that the x integrals (or
first moments) of the GPDs coincide with the electromagnetic
and axial form factors of the nucleon [6]. In the chiral-odd
case the local operator is the tensor operator ψ̄(0)iσμνψ(0),
and the first moments of the GPDs are∫ 1

−1
dx{HT ,H̃T ,ET ,ẼT }(x,ξ,t)

= {HT (t),H̃T (t),ET (t),0}, (7)

where HT (t),H̃T (t), and ET (t) are the nucleon’s tensor form
factors [with the same flavor structure as the GPDs, cf. Eq. (5)].
The vanishing of the first moment of ẼT is a consequence
of the antisymmetry in ξ , Eq. (6); its higher moments are
nonzero. The higher x moments of chiral-even and odd GPDs
are polynomials in ξ (generalized form factors).

In the limit of zero momentum transfer (forward limit)
the chiral-even GPDs H and H̃ reduce, respectively, to the
unpolarized and helicity PDFs, H (x,ξ = 0,t = 0) = f1(x)
and H̃ (x,ξ = 0,t = 0) = g1(x). The GPDs E and Ẽ are
also non-zero in the forward limit but do not reduce to
any known PDFs, as these GPDs correspond to nucleon
helicity-flip components of the matrix element (see Sec. IV).
The chiral-odd GPD HT reduces in the forward limit to the
transversity PDF,

HT (x,ξ = 0,t = 0) = h1(x). (8)

Its first moment is known as the nucleon’s tensor charge.
Because the local tensor operator is not a conserved current,
the tensor charge is scale-dependent and cannot directly be
related to low-energy properties of the nucleon. The forward
limit of the chiral-odd GPDs H̃T and ET is not related to any
known PDFs, while ẼT vanishes in the forward limit again
due to its antisymmetry in ξ , Eq. (6). Other aspects of the
GPDs, such as their partonic interpretation, are described in
Refs. [1–4].

In Eqs. (2)–(4) the GPDs appear as invariant amplitudes,
arising from a particular decomposition of the matrix elements
into bilinear forms in the nucleon spinors. In applications
to exclusive pseudoscalar meson production processes it is
natural to introduce the combination

ĒT ≡ ET + 2H̃T (9)

of the chiral-odd GPDs, which corresponds to a different
invariant decomposition of the matrix element Eq. (4) [16].
An alternative representation of the GPDs as nucleon-quark
helicity amplitudes will be described in Sec. IV.

III. CHIRAL-ODD GPDS IN LARGE-Nc LIMIT

In the large-Nc limit the nucleon mass scales as MN ∼ Nc,
while the nucleon size remains stable, ∼ N0

c . The 1/Nc

expansion of GPDs is performed in a class of frames where the
initial and final nucleon move with three-momenta pk,p′k ∼
N0

c (k = 1,2,3) and have energies p0,p′0 = MN + O(1/Nc),
which implies an energy and momentum transfer �0 ∼
N−1

c ,�k ∼ N0
c , and thus

�i ∼ N0
c (i = 1,2), ξ ∼ N−1

c , |t | ∼ N0
c . (10)

In the partonic variable x one considers the parametric region

x ∼ N−1
c , (11)

corresponding to nonexceptional longitudinal momenta of the
quarks and antiquarks relative to the slowly moving nucleon,
xMN ∼ (nucleon size)−1 ∼ N0

c . Likewise, it is assumed that
the normalization scale of the light-ray operator is ∼ N0

c , so
that the typical quark transverse momenta are ∼ N0

c . Equation
(11) corresponds to the intuitive picture of a nucleon consisting
of Nc “valence” quarks and a “sea” of O(Nc) quark-antiquark
pairs, with the quarks/antiquarks carrying on average a fraction
∼ 1/Nc of the nucleon’s light-cone momentum. Altogether,
the Nc-scaling relations for GPDs can then be expressed in the
form

GPD(x,ξ,t) ∼ Nk
c × function (Ncx,Ncξ,t), (12)

where the scaling exponent k depends on the GPD in
question and the isospin component (u + d,u − d) and can
be established on general grounds, while the scaling function
on the right-hand side is stable in the large-Nc limit and can
only be determined in specific dynamical models.

A practical method for performing the 1/Nc expansion of
baryon matrix elements of quark bilinear operators was given
in Refs. [1,54], using collective quantization of an abstract
mean-field solution with known symmetry properties. One
considers a generic correlator of the form

〈B ′, p′|ψα′f ′ (x ′)ψαf (x)|B, p〉, (13)

where the quark fields are at space-time points x and x ′, and
(α,α′) and (f,f ′) are the Dirac spinor and flavor indices. We
restrict ourselves to the SU (2) flavor sector and assume exact
isospin symmetry. The baryon states are characterized by their
momenta p and p′, and spin-isospin quantum numbers B ≡
{S,S3,T ,T3} and B ′ ≡ {S ′,S ′

3,T
′,T ′

3}, and normalized such that

〈B ′, p′|B, p〉 = 2p0(2π )3δ(3)( p′ − p)δBB ′ ,

δBB ′ ≡ δSS ′δS3S
′
3
δT T ′δT3T

′
3
. (14)

For simplicity we do not specify the color indices of the quark
fields in Eq. (13) and do not indicate the gauge link (in the
case of GPDs the gauge link can be eliminated by choosing
the light-cone gauge; in a more general case it can be included
explicitly by an appropriate redefinition of the quark fields
[49]). One evaluates the correlator Eq. (13) starting with the
expectation value of the bilinear operator in the localized mean

045202-3



P. SCHWEITZER AND C. WEISS PHYSICAL REVIEW C 94, 045202 (2016)

field characterizing the large-Nc baryon (“soliton”), centered
at the origin,

〈ψα′f ′(x ′)ψαf (x)〉 = F(x ′0 − x0,x′,x)αf ;α′f ′ . (15)

While the specific form of the functionF depends on dynamics
and can only be determined in models, its symmetry properties

in the large-Nc limit can be established on general grounds.
In leading order of 1/Nc the baryon mean field is static (time-
independent), so that the correlator depends only on the relative
time x ′0 − x0. Most importantly, the mean field intertwines
spatial and isospin degrees of freedom (“hedgehog symmetry”)
[37], so that a rotation in flavor space by an SU (2) matrix R,
and a simultaneous spatial rotation with a rotation matrix O(R)
and spin rotation S(R), leave the correlator Eq. (15) invariant,

S(R)αβRfgF(x ′0−x0,O(R)x′,O(R)x)βg,β ′,g′R−1
g′f ′S(R−1)β ′α′ = F(x ′0 − x0,x′,x)αf ;α′f ′ , (16)

where

Oji(R) ≡ 1
2 tr[R−1τ jRτ i] (i,j = 1,2,3), (17)

and O(R)x′ and O(R)x denote the rotation of the three-vectors x′ and x with the matrix O(R). The mean field breaks
translational and rotational/isorotational invariance and does not correspond to states of definite momentum and spin/isospin
quantum numbers. The matrix element between baryon states of definite momentum and spin/isospin is obtained by quantizing
the collective motion in coordinate and isospin space and projecting on states with appropriate quantum numbers. In this way
one obtains a representation of the baryon matrix element Eq. (13) in the form [34,54]

〈B ′, p′|ψα′f ′(x ′)ψαf (x)|B, p〉 = 2MBNc

∫
dR φ∗

B ′(R)φB(R)

×
∫

d3X ei( p− p′)·XRfgF(x ′0−x0,x′ − X,x−X)αg;α′g′(R−1)g′f ′+ · · · , (18)

where the dots indicate subleading terms in 1/Nc and MB ∼ Nc is the baryon mass (note that MB ′ = MB in leading order of
1/Nc). The integral over the position of the center of the mean field, X , with wave functions exp(−i p′ X) and exp(i pX) projects
the correlator Eq. (15) on baryon states with momenta p and p′. The integral over the flavor rotation R with rotational wave
functions φB(R) and φ∗

B ′(R) projects on baryon states with spin/isospin quantum numbers B and B ′. The hedgehog symmetry of
the mean field [cf. Eq. (16)] implies that the baryon states occur in representations with equal spin and isospin, S = T , and the
rotational wave functions are given by the Wigner finite rotation matrices as [1]

φB(R) ≡ φS=T
S3T3

(R) = √
2S + 1(−1)T+T3DS=T

−T3,S3
(R). (19)

Using Eq. (18) one can evaluate the matrix element of any bilinear quark operator in leading nonvanishing order of the 1/Nc

expansion. The hedgehog symmetry of the mean field, Eq. (16), restricts the spin-isospin structures emerging from the rotational
integral and determines the Nc scaling of the spin-flavor components of the matrix element. These relations depend on the specific
form of the operator considered.

The chiral-even GPDs were evaluated in this way in Ref. [1]. Here the operators are the light-ray operators of Eq. (1) with the
chiral-even spinor matrices � = γ + and � = γ +γ 5, cf. Eq. (2). It is instructive to perform the integration over collective coordi-
nates in Eq. (18) in two steps. In the first step one considers the correlator integrated over the coordinate X but not yet over rotations,
i.e., projected on momentum states but not yet on spin/isospin states. This correlator describes the GPDs of a large-Nc baryon
that has not yet been projected on spin-isopsin states (“soliton GPDs”). In the chiral-even case it was found to be of the form [1]

MN

∫
dz−

2π
eixP +z−〈sol, p′|ψ̄f ′(−z/2)

{
γ +

γ +γ5

}
ψf (z/2)|sol, p〉

∣∣∣∣
z+=0,zT =0

=

⎧⎪⎪⎨⎪⎪⎩
δf ′f Hsol − iε3jk�j

2MN

Dk
f ′f Esol

D3
f ′f H̃sol − �3�j

(2MN )2
D

j
f ′f Ẽsol

⎫⎪⎪⎬⎪⎪⎭, (20)

where Hsol,Esol,H̃sol, and H̃sol are functions of x,ξ , and t , and [cf. Eq. (17)]

Di
f ′f ≡ Di

f ′f (R) ≡ 1
2 (τ j )f ′f Oji(R). (21)

This expression embodies the hedgehog symmetry expressed by Eq. (16): the flavor-singlet structure ∝ δf ′f is independent of the
rotation matrix R defining the orientation of the soliton, while the flavor-nonsinglet structures ∝ (τ j )f ′f are accompanied by rota-
tion matrices and coupled with the spatial directions defined by the light-ray operator (z direction) and the momentum transfer �. In
the second step one then projects the soliton matrix element on spin-isospin states by performing the integral over rotations, using∫

dR φ
∗S ′=T ′=1/2
S ′

3T
′

3
(R)φS=T =1/2

S3T3
(R)

{
1

Oji(R)

}
=

{
δS ′

3S3
δT ′

3T3

− 1
3 (σ i)S ′

3S3
(τ j )T ′

3T3

}
. (22)
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The resulting nucleon matrix elements can be expressed in a
transparent form by introducing a shorthand matrix notation
for the nucleon spin components,

σ 0 ≡ σ 0(S ′
3,S3) ≡ δS ′

3,S3
, σ i ≡ σ i(S ′

3,S3) ≡ (σ i)S ′
3,S3

,
(23)

and correspondingly for the quark flavor components,

τ 0 ≡ τ 0(f ′,f ) ≡ δf ′f , τ j ≡ τ j (f ′,f ) ≡ (τ j )f ′f . (24)

In this notation the nucleon matrix elements become (we
consider the proton with T ′

3 = T3 = 1/2)

M(γ +) = σ 0τ 0Hsol + i(� × σ )3τ 3

3(2MN )
Esol, (25)

M(γ +γ5) = −σ 3τ 3

3
H̃sol + �3� · σ τ 3

3(2MN )2
Ẽsol. (26)

Equations (25) and (26) express the spin-flavor symmetry
characteristic of the large-Nc limit: the spin-singlet matrix
element is also a flavor-singlet, and the spin-nonsinglet one
is a flavor-nonsinglet. They also allow one to determine the
explicit Nc scaling of the chiral-even GPDs. The Nc scaling
of the soliton GPDs in Eq. (20) follows from the fact that
the spatial size of the mean field is ∼ N0

c , and from the
kinematic prefactors emerging from the 1/Nc expansion of
the spin structures in the matrix element, and is given by [cf.
Eq. (12)]

{Hsol,Esol,H̃sol,Ẽsol}(x,ξ,t)

∼ {
N2

c ,N3
c ,N2

c ,N4
c

} × function (Ncx,Ncξ,t). (27)

The Nc scaling of the leading flavor components of the chiral-
even nucleon GPDs is thus obtained as [1]

{Hu+d,Eu−d ,H̃ u−d ,Ẽu−d}(x,ξ,t)

∼ {
N2

c ,N3
c ,N2

c ,N4
c

} × function (Ncx,Ncξ,t). (28)

The respective opposite flavor combinations are suppressed by
one order in 1/Nc, i.e., Hu−d ∼ Nc, etc.

We now apply this method to the chiral-odd GPDs and
derive their Nc scaling. The calculations are performed in
complete analogy to the chiral-even case described above [1].
Using the specific decomposition of the chiral-odd correlator
Eq. (4) and performing the 1/Nc expansion of the components,
we obtain the chiral-odd soliton GPDs as [cf. Eqs. (20) and
(21)]

MN

∫
dz−

2π
eixP +z−〈sol, p′|ψ̄f ′(−z/2)iσ+j

×ψf (z/2)|sol, p〉|z+=0,zT =0

= �j

2MN

δf ′f ĒT ,sol + iε3jkDk
f ′f HT,sol

+ iεjkl�k

2MN

Dl
f ′f ẼT ,sol. (29)

The hedgehog symmetry is again manifest in the structure of
the right-hand side. Notice that the large-Nc matrix element has
only three independent structures, and that the GPDs ET and
H̃T appear only in the combination ĒT , Eq. (9). Projecting
on nucleon states (T ′

3 = T3 = 1/2) we obtain, in the matrix

notation of Eqs. (25), (26) (e3 denotes the unit vector in the
z-direction),

M(iσ+j ) = σ 0τ 0 �j

2MN

ĒT,sol + (e3 × σ )j τ 3

3
HT,sol

− (� × σ )j τ 3

3(2MN )
ẼT ,sol (j = 1,2). (30)

The result again expresses the spin-flavor symmetry charac-
teristic of the large-Nc limit. The Nc scaling of the chiral-odd
soliton GPDs is found to be

{ĒT ,sol,HT,sol,ẼT ,sol}(x,ξ,t)

∼ {
N3

c ,N2
c ,N3

c

} × function (Ncx,Ncξ,t). (31)

We can thus identify the leading flavor components of the
chiral-odd nucleon GPDs and determine their Nc scaling,{

Ēu+d
T ,Hu−d

T ,Ẽu−d
T

}
(x,ξ,t)

∼ {
N3

c ,N2
c ,N3

c

} × function (Ncx,Ncξ,t). (32)

The respective other flavor components are suppressed by at
least one power of 1/Nc,{

Ēu−d
T ,Hu+d

T ,Ẽu+d
T

}
(x,ξ,t)

∼ {
N2

c ,Nc,N
2
c

} × function (Ncx,Ncξ,t). (33)

These results confirm our earlier intuitive derivation of the Nc

scaling using helicity amplitudes [52].
The large-Nc limit exposes an interesting difference be-

tween the chiral-even and chiral-odd quark correlation func-
tions in the nucleon, regarding the number of independent
nucleon spin structure components, as described by the matri-
ces σ 0 and σ i(i = 1,2,3). It can be exhibited by projecting the
spin matrices σ i(i = 1,2,3) on the orthogonal three-vectors
e3 (the direction defined by the light-ray operator), �T ≡
� − (e3 · �)e3 (the component of � orthogonal to e3), and

nT ≡ e3 × � (34)

(the normal vector of the plane defined by e3 and �T , or the
complement of �T in the transverse plane). In the chiral-even
correlators Eqs. (25) and (26) one finds that all spin structures

σ 0, e3 · σ , �T · σ , nT · σ (35)

are nonzero and occur with four independent coefficient
functions. In the chiral-odd correlators Eq. (30), however, the
transverse nucleon spin structures �T · σ and nT · σ occur
only in the combination

e3 × σ , (36)

which does not depend on the direction of the transverse
momentum �T , and there are only three independent co-
efficient functions. One sees that the reason why there are
only three independent chiral-odd GPDs is that the large-Nc

nucleon does not correlate the direction of the transverse
quark spin (as defined by the light-ray operator with σ+j )
with that of the transverse nucleon spin (as contained in the
spin structures e3 × σ of the matrix element) through the
nucleon’s transverse momentum transfer. The absence of such
spin-orbit interactions is specific to the leading order of the
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⎪  N,1+ξ,λ〉 ⎪  N,1 − ξ,λ′〉

⎪  q,x+ξ,μ〉 ⎪  q,x − ξ,μ′〉

FIG. 1. Representation of GPDs in the region ξ < x < 1 as
nucleon-quark helicity amplitudes. In the nucleon and quark states
(denoted as N,q) the second label denotes the fraction of the
light-cone plus momentum P + carried by the particle, and the third
label denotes the light-cone helicity.

1/Nc expansion, and we expect that higher-order corrections
will remove the degeneracy of the transverse spin structures.

IV. CHIRAL-ODD GPDS AS HELICITY AMPLITUDES

Further insight into the different behavior of chiral-even and
odd GPDs in the large-Nc limit can be gained by considering
the representation of the GPDs as partonic helicity amplitudes
[53]. This representation most naturally appears in the region
ξ < x < 1, where the GPDs describe the amplitude for the
“emission” by the nucleon of a quark with plus momentum
fraction x + ξ and subsequent “absorption” of a quark with
x − ξ (see Fig. 1). In the region −1 < x < −ξ the GPDs
describe the emission and absorption of an antiquark, while in
−ξ < x < ξ they describe the emission of a quark-antiquark
pair by the nucleon. We do not need to consider these regions
separately in the subsequent arguments.

The partonic helicity amplitudes are defined by a correlator
of the form of Eq. (1), in which the nucleon spin states are
described as light-front helicity states and the quark spinor
matrices are chosen as projectors on quark light-front helicity
states:

Aλ′μ′,λμ = P +
∫

dz−

2π
eixP +z−〈N,p′,λ′|ψ(−z/2)�μ′μ

×ψ(z/2)|N,p,λ〉|z+=0,zT =0, (37)

where λ(λ′) are the light-front helicities of the initial (final)
nucleon and μ(μ′) those of the initial (final) quark [53]. It is
convenient to work in a reference frame where the light-cone
direction is chosen as the z axis and the initial and final nucleon
momenta p and p′ lie in the x-z plane. The spinor matrices for
the light-front helicity-conserving (chiral-even) and light-front
helicity-flipping (chiral-odd) amplitudes are then given by [5]

�±± = 1

4
γ +(1 ± γ5), (38)

�±∓ = i

4
σ+1(±1 − γ5) = i

4
(±σ+1 + iσ+2). (39)

Flavor components of the amplitudes can be defined in analogy
to those of the correlator Eq. (1) and will be specified below.
The helicity-conserving amplitudes are related to the chiral-
even GPDs as

A++,++ = 1

2

√
1 − ξ 2

(
H + H̃ − ξ 2

1 − ξ 2
(E + Ẽ)

)
, (40a)

A−+,−+ = 1

2

√
1 − ξ 2

(
H − H̃ − ξ 2

1 − ξ 2
(E − Ẽ)

)
, (40b)

A++,−+ = 1

2
δt (ξẼ − E), (40c)

A−+,++ = 1

2
δt (ξẼ + E), (40d)

while the helicity-flipping amplitudes are related to the chiral-
odd GPDs as

A++,+− = δt

(
H̃T + 1 − ξ

2
(ET + ẼT )

)
, (41a)

A−+,−− = δt

(
H̃T + 1 + ξ

2
(ET − ẼT )

)
, (41b)

A++,−− =
√

1 − ξ 2

(
HT + δ2

t H̃T − ξ 2

1 − ξ 2
ET

+ ξ

1 − ξ 2
ẼT

)
, (41c)

A−+,+− =
√

1 − ξ 2δ2
t H̃T , (41d)

where the “kinematic” prefactor δt is defined as

δt = sign(P +�1 − �+P 1)

√
t0 − t

2MN

, − t0 = 4M2
Nξ 2

1 − ξ 2
,

(42)

in which −t0 is the minimal value of −t for the given value
of ξ . There are four linearly independent amplitudes in each
sector; the other four amplitudes in each sector can be obtained
from those in Eqs. (40a)–(40d) and (41a)–(41d) by the parity
relation [5]

A−λ′−μ′,−λ−μ = (−)λ
′−μ′−λ+μAλ′μ′,λμ. (43)

Altogether, there are eight linearly independent helicity am-
plitudes, corresponding to the total number of chiral-even and
chiral-odd GPDs (or invariant amplitudes).

It is instructive to study the Nc scaling of the partonic
helicity amplitudes. The “natural” scaling of the individual
helicity amplitudes for a given quark flavor (f = u,d) is

A
f
λ′μ′,λμ ∼ N2

c , (44)

which is understood with the arguments x,ξ , and t scaling as in
Eq. (12). One power of Nc originates from the normalization of
the nucleon states in Eq. (14), because P 0 ∼ Nc, and another
power of Nc from the implicit summation over the color
indices in the light-ray operators. Combinations of amplitudes
corresponding to definite isospin transitions (u + d,u − d) can
vanish in leading order of the 1/Nc expansion due to the
symmetries of the mean field solution (cf. Sec. III) and can
have a lower scaling exponent. Using the results of Ref. [1] and
Sec. III for the Nc scaling of the GPDs we can now identify the
leading and subleading helicity amplitudes. For the chiral-even
amplitudes one obtains

Au+d
++,++ = 1

2Hu+d, Au−d
++,++ = 1

2 (H̃ u−d − ξ 2Ẽu−d ),

(45a)
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Au+d
−+,−+ = 1

2Hu+d , Au−d
−+,−+ = 1

2 (−H̃ u−d + ξ 2Ẽu−d ),

(45b)

Au+d
++,−+ = 0, Au−d

++,−+ = 1
2δt (ξẼu−d − Eu−d ), (45c)

Au+d
−+,++ = 0, Au−d

−+,++ = 1
2δt (ξẼu−d + Eu−d ). (45d)

The expressions correspond to the leading order of the 1/Nc

expansion, i.e., they are accurate at the natural order O(N2
c ). It

is understood that all non-zero amplitudes receive corrections
of order O(Nc). The amplitudes that vanish do so at order
O(N2

c ), and generically have corrections of order O(Nc).
Notice that in the specific frame chosen here in the large-Nc

limit the kinematic factors simplify as

δt = �1

2MN

, ξ = − �3

2MN

. (46)

One notices that two pairs of the chiral-even amplitudes are
degenerate (up to an overall sign) at O(N2

c ), and two other
amplitudes vanish at this order. The content of Eqs. (45a)–
(45d) becomes more transparent when considering linear
combinations of the chiral-even amplitudes,

Au+d
++,++ + Au+d

−+,−+ = Hu+d, (47a)

Au−d
++,++ − Au−d

−+,−+ = H̃ u−d − ξ 2Ẽu−d , (47b)

Au−d
−+,++ + Au−d

++,−+ = ξδt Ẽ
u−d , (47c)

Au−d
−+,++ − Au−d

++,−+ = δtE
u−d . (47d)

This representation shows that there are four independent
combinations of helicity amplitudes that appear in leading
order of the 1/Nc expansion, which are unambiguously
associated with the four leading spin-flavor components of
the chiral-even GPDs. As a consequence, each of the four
chiral-even GPDs has a leading flavor component: u + d in
H , and u − d in H̃ ,E, and Ẽ.

The situation is different in the case of chiral-odd helicity
amplitudes. Using the results of the 1/Nc expansion of Sec. III
we obtain the following scaling behavior of the chiral-odd
helicity amplitudes at O(N2

c ):

Au+d
++,+− = 1

2δt Ē
u+d
T , Au−d

++,+− = 1
2δt Ẽ

u−d
T , (48a)

Au+d
−+,−− = 1

2δt Ē
u+d
T , Au−d

−+,−− = − 1
2δt Ẽ

u−d
T , (48b)

Au+d
++,−− = 0, Au−d

++,−− = Hu−d
T + ξẼu−d

T , (48c)

Au+d
−+,+− = 0, Au−d

−+,+− = 0. (48d)

Again, we obtain a more transparent representation by
considering the linear combinations

Au+d
++,+− + Au+d

−+,−− = δt Ē
u+d
T , (49a)

Au−d
++,+− − Au−d

−+,−− = δt Ẽ
u−d
T , (49b)

Au−d
++,−− = Hu−d

T + ξẼu−d
T , (49c)

Au±d
−+,+− = 0. (49d)

One sees that in the chiral-odd case one amplitude vanishes
completely: A−+,+− = 0 for both flavor combinations u + d

and u − d. As a result, there are only three linearly independent
amplitudes that are nonzero in leading order of the 1/Nc

expansion. This reflects the results of Sec. III, where it was
found that only three independent GPDs are present in the
large-Nc nucleon, see Eqs. (29) and the following equations.
Notice that, because A−+,+− is related exclusively to the GPD
H̃T and this amplitude vanishes for any flavor combination, it
is not possible to separate the linear combination of the GPDs
ĒT = ET + 2H̃T in leading order of the 1/Nc expansion.

The amplitude A−+,+− is unique in that it corresponds
to a double-helicity-flip transition with angular momentum
exchange �J = 2 between the active quark and the nucleon,
i.e., the nucleon and quark helicities are flipped in opposite
directions. It is natural that for this amplitude both flavor
combinations vanish in leading order of the 1/Nc expansion.
Because of the spin-flavor symmetry implied by the large-Nc

limit the transition with �J = 2 should be accompanied by
isospin transfer �T = 2, which is impossible with a quark
one-body operator. This could be proved more formally by
expanding the GPDs in powers of the transverse momentum
transfer, such that they can be represented by matrix ele-
ments of local operators (containing total derivatives) at zero
transverse momentum transfer, and classifying the resulting
local operators according to the spin-flavor symmetry implied
by the large-Nc limit. The collective quantization procedure
of Sec. III [1,54] implements this symmetry through the
hedgehog symmetry of the mean field, Eq. (16).

It is interesting to note that the vanishing of the amplitude
A−+,+− in leading order of the 1/Nc expansion can also be
derived from large-Nc consistency arguments. The latter are
analogous to the unitarity requirements imposed on meson-
baryon scattering amplitudes, from which one can derive
specific relations between meson-baryon coupling constants
[42,55]. In fact, a nonvanishing amplitude Au±d

−+,+− ∼ N2
c (for

any of the flavor combinations) would imply that H̃ u±d ∼ N4
c .

Inserting this scaling behavior into A++,+− or A−+,−− would
imply that these amplitudes should scale as ∼ N3

c , which
contradicts the natural scaling Eq. (44).1

In the discussion here we have inferred the Nc scaling of
the helicity amplitudes from that of the GPDs (or invariant
amplitudes). Alternatively one may consider the large-Nc

correlators, Eqs. (25), (26), and (30), directly in the particular
frame � = (�1,0,�3) and determine the helicity amplitudes
from there. For reference we present in the Appendix the
expressions for the correlators in that frame. They show
explicitly the degeneracy of the transverse spin structure of
the chiral-odd correlator noted in Sec. III [cf. Eqs. (35) and
(36)], which is the cause of the reduced number of independent

1Although the partonic helicity amplitudes are not strictly physical,
they enter into the description of cross sections of certain exclusive
processes with quark helicity flip. If some of the amplitudes were
to scale as ∼ N3

c it is plausible that this would violate positivity
constraints for the cross sections of some hypothetical physical
scattering processes. Whether such an argument could be applied
to chiral-odd GPDs remains an interesting question for further study.
Positivity constraints for chiral-odd GPDs were discussed in Ref. [56].

045202-7



P. SCHWEITZER AND C. WEISS PHYSICAL REVIEW C 94, 045202 (2016)

chiral-odd GPDs viz. helicity amplitudes in leading order of
the 1/Nc expansion.

V. FLAVOR STRUCTURE FROM PSEUDOSCALAR
MESON PRODUCTION DATA

It is interesting to compare our results with preliminary
data from the JLab CLAS exclusive pseudoscalar meson
production experiments [19,20] (cf. comments in Sec. I).
Analysis of the azimuthal-angle dependent response functions
shows that |σLT | � |σT T |, which indicates dominance of the
twist-3 amplitudes, involving the chiral-odd GPDs HT and
ĒT = ET + 2H̃T , over the twist-2 amplitudes involving the
chiral-even GPD Ẽ. A preliminary flavor decomposition was
performed assuming dominance of the twist-3 amplitudes and
combining the data on π0 and η production, in which the
u and d quark GPDs enter with different relative weight.
Results show opposite sign of the exclusive amplitudes 〈Hu

T 〉
and 〈Hd

T 〉, which is consistent with the leading appearance
of the flavor-nonsinglet Hu−d

T in the 1/Nc expansion. (Here
〈· · · 〉 denotes the integral over x of the GPD, weighted
with the meson wave function, hard process amplitude, and
Sudakov form factor [16].) The results also suggest same
sign of 〈Ēu

T 〉 and 〈Ēd
T 〉, which is again consistent with the

leading appearance of the flavor-singlets Eu+d
T and H̃ u+d

T in
the 1/Nc expansion. These findings should be interpreted with
two caveats: (a) the errors in the experimental extraction of
〈HT 〉 and 〈ĒT 〉 are substantial; (b) the 1/Nc expansion predicts
only the scaling behavior, not the absolute magnitude of the
individual flavor combinations, cf. Eq. (12).

It is encouraging that the flavor structure of the ampli-
tudes extracted from the π0 and η electroproduction data is
consistent with the pattern predicted by the 1/Nc expansion.
Our findings further support the idea that pseudoscalar meson
production at xB � 0.1 and Q2 ∼ few GeV2 is governed by
the twist-3 mechanism involving the chiral-odd GPDs.

VI. DISCUSSION AND OUTLOOK

The large-Nc limit reveals interesting characteristic differ-
ences between the nucleon matrix elements of chiral-even
and chiral-odd light-ray operators. While in the chiral-even
case four GPDs (or invariant amplitudes) are nonzero in the
leading order of the 1/Nc expansion, in the chiral-odd case
only three independent GPDs appear, due to the absence of
spin-orbit interactions correlating the transverse quark spin
with the transverse momentum transfer to the nucleon. In the
equivalent representation of GPDs as nucleon-quark helicity
amplitudes, the same happens due to the vanishing of the
double helicity-flip amplitude in the leading order of 1/Nc.
These conclusions are model-independent and do not rely on
any assumptions regarding the internal dynamics giving rise
to the partonic structure.

The leading order of the 1/Nc expansion predicts the
scaling behavior of the leading flavor combinations in the
GPDs ĒT = ET + 2H̃T ,HT , and ẼT . Interestingly, the hard
exclusive amplitudes in the twist-3 mechanism involve exactly
these three combinations of GPDs, so that the large-Nc

predictions can be confronted with experimental observables.

The Nc-scaling relations of the chiral-odd GPDs described
here generalize earlier results for the Nc scaling of the
nucleon’s transversity PDFs [47,48], tensor charges [50],
and tensor form factors [51]. We note that the lattice QCD
calculations of Ref. [24] of the tensor form factors AT 10(t) =
HT (t) ≡ ∫

dxHT (x,ξ,t) show opposite sign for u and d
flavors, while those for B̄T 10(t) = ĒT (t) ≡ ∫

dxĒT (x,ξ,t)
show same sign for u and d flavors, in agreement with the
leading-order large-Nc relations Eq. (32). The flavor structure
of ĒT (t) at large Nc was also studied in the bag model
calculation of Ref. [28] and agrees with the general result.

In the present study we have considered the leading
nonvanishing order of the 1/Nc expansion of the chiral-
odd nucleon matrix elements. Extension to subleading order
requires principal considerations and technical improvements.
At subleading order the mean-field approximation to the
large-Nc correlation functions Eq. (18) must include the effects
of the finite velocity of the soliton collective (iso)rotations,
� ∼ N−1

c . At the same time one must reconsider the choice
of nucleon spinors in the invariant decomposition of the
matrix elements, Eqs. (2) and (3), as the apparent size of
“relativistic corrections” to a given invariant amplitude may
depend on the choice of nucleon spinors. The choice should be
guided by the symmetries of the leading-order approximation
and incorporate corrections through a Foldy-Wouthuysen
transformation.

It would be interesting to calculate the chiral-odd GPDs in
dynamical models that consistently implement the Nc scaling,
such as the chiral quark-soliton model. Such calculations
would allow one to calculate also the scaling functions in
the large-Nc relations, Eq. (12), and supplement the scaling
studies with dynamical information. Nc scaling can also be
implemented in calculations of peripheral GPDs (at impact
parameters b ∼ M−1

π ) in chiral effective field theory [57].
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APPENDIX: LARGE-Nc CORRELATORS
IN HELICITY FRAME

In this Appendix we express the nucleon-quark helicity
amplitudes in the large-Nc limit directly in terms of the
large-Nc correlators Eqs. (25), (26), and (30). To this end we
consider the correlators in the specific frame where the nucleon
momenta lie in the x-z plane, � = (�1,0,�3), and with the
momentum components given by Eq. (46). The chiral-even
correlators Eqs. (25), (26) take the form [in the shorthand
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notation of Eq. (23)]

M(γ +) = σ 0τ 0Hsol + iσ 2τ 3

3
δtEsol, (A1)

M(γ +γ5) = −σ 1τ 3

3
δt ξ Ẽsol + σ 3τ 3

3
(ξ 2Ẽsol − H̃sol). (A2)

We now use that (a) the Dirac matrices γ + and γ +γ5 are the
sum and difference of the quark helicity projectors,

γ +
γ +γ5

}
= 2(�++ ± �−−); (A3)

(b) the nucleon light-front helicity can be identified with the
ordinary spin projection on the z-axis in leading order of
the 1/Nc expansion; (c) the helicity amplitudes with quark
helicities −− can be expressed in terms of those with ++ by
the parity relations Eq. (43). In this way we obtain

σ 0τ 0 → 2(Au+d
++,++ + Au+d

−+,−+), (A4a)

σ 3τ 3 → 2(Au−d
++,++ − Au−d

−+,−+), (A4b)

σ 1τ 3 → 2(Au−d
++,−+ + Au−d

−+,++), (A4c)

iσ 2τ 3 → 2(Au−d
++,−+ − Au−d

−+,++), (A4d)

in the sense that the corresponding structures in the large-
Nc correlators Eqs. (A1) and (A2) are to be identified with
the given combination of helicity amplitudes. The content of
the relations Eqs. (A4a)–(A4d) becomes identical to that of
Eqs. (47a)–(47d) if one substitutes the large-Nc expressions for
the nucleon GPDs in terms of the soliton GPDs. The chiral-odd

correlator Eq. (30) in the same representation takes the form

M(iσ+1) = σ 0τ 0δt ĒT ,sol − σ 2τ 3

3
(HT,sol + ξẼT ,sol), (A5)

M(iσ+2) = σ 1τ 3

3
(HT,sol + ξẼT ,sol) − σ 3τ 3

3
2δt ẼT ,sol.

(A6)

We now use that

iσ+1 = 2(�+− − �−+), (A7)

iσ+2 = −2i(�+− + �−+), (A8)

express the amplitudes with quark helicities +− in terms
of those with −+ using the parity relations Eq. (43),
and obtain

σ 0τ 0 → 2(Au+d
++,+− + Au+d

−+,−−), (A9a)

σ 2τ 3 → 2i(Au−d
++,−− − Au−d

−+,+−), (A9b)

σ 1τ 3 → −2i(Au−d
++,−− + Au−d

−+,+−), (A9c)

σ 3τ 3 → −2i(Au−d
++,+− − Au−d

−+,−−), (A9d)

to be understood in the same sense as Eqs. (A4a)–(A4d).
Again, these relations reproduce Eqs. (49a)–(49d) if we
substitute the specific large-Nc expressions of the nucleon
GPDs in terms of the soliton GPDs.

Equations (A4a)–(A4d) exhibit the degeneracy of the large-
Nc correlator noted in Sec. III: the spin structures σ 1 and σ 2

occur with the same coefficient function and thus cannot be
distinguished in the large-Nc nucleon. This illustrates again
that in leading order of the 1/Nc expansion there is no
correlation between the transverse nucleon spin, σ 1 or σ 2,
and the transverse momentum transfer, �T = (�1,0).
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