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We present an event generator based on the three-fluid hydrodynamics approach for the early stage of the
collision, followed by a particlization at the hydrodynamic decoupling surface to join to a microscopic transport
model, ultrarelativistic quantum molecular dynamics, to account for hadronic final-state interactions. We present
first results for nuclear collisions of the Facility for Antiproton and Ion Research–Nuclotron-based Ion Collider
Facility energy scan program (Au+Au collisions,

√
sNN = 4−11 GeV). We address the directed flow of protons

and pions as well as the proton rapidity distribution for two model equations of state, one with a first-order phase
transition and the other with a crossover-type softening at high densities. The new simulation program has the
unique feature that it can describe a hadron-to-quark matter transition which proceeds in the baryon stopping
regime that is not accessible to previous simulation programs designed for higher energies.

DOI: 10.1103/PhysRevC.94.044917

I. INTRODUCTION

The onset of deconfinement in relativistic heavy-ion colli-
sions and the search for a critical end point is now the focus
of theoretical and experimental studies of the equation of state
(EoS) and the phase diagram of strongly interacting matter.
This challenge is one of the main motivations for the currently
running beam-energy scan at the Relativistic Heavy-Ion
Collider (RHIC) at Brookhaven National Laboratory (BNL)
[1] and at the CERN Super-Proton-Synchrotron (SPS) [2] as
well as for constructing the Facility for Antiproton and Ion
Research (FAIR) in Darmstadt [3] and the Nuclotron-based
Ion Collider fAcility (NICA) in Dubna [4].

Three-fluid hydrodynamics (3FH) [5] was derived to sim-
ulate heavy-ion collisions at moderately relativistic energies,
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i.e., precisely in the energy range of the expected onset of
deconfinement. In recent years, applications of 3FH demon-
strated a strong preference of deconfinement scenarios for the
explanation of available experimental data [6–13]. However,
until now, 3FH has been facing certain problems. From the
theoretical side, the concrete models lacked an afterburner
stage that can play an important role for some observables.
From the practical point of view, the models were not well
suited for data simulations in terms of experimental events,
because the model output consisted of fluid characteristics
rather than of a set of observable particles.

In this paper, we present first results obtained with the new
Three-fluid Hydrodynamics-based Event Simulator Extended
by ultrarelativistic quantum molecular dynamics (UrQMD)
final State interactions (THESEUS) and apply it to the
description of heavy-ion collisions in the NICA-FAIR energy
range. This simulator provides a solution to both the above-
mentioned problems. It presents the 3FH output in terms of
a set of observed particles and the afterburner can be run
starting from this output by means of the UrQMD model
[14]. Thus THESEUS as a new tool allows us to discuss the
multifaceted physics challenges at FAIR and NICA energies.
The new simulation program has the unique feature that
it can describe a hadron-to-quark matter transition of first
order which proceeds in the baryon stopping regime that
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is not accessible to previous simulation programs designed
for higher energies, like Quark-Gluon String Model (QGSM)
or Parton-Hadron-String Dynamics (PHSD). Besides this,
with THESEUS, one can address practical questions like the
influence of hadronic final-state interactions and of the detector
acceptance, which are necessary to understand better such that
the focus can lie on important physics questions. These deal
with a potential discovery and investigation of the first-order
phase transition line, where during a heavy-ion collision the
EoS reaches its softest point [15]. It remains an open question
how this characteristic feature of the EoS manifests itself in
observables such as flow, proton rapidity distributions, and
femtoscopic radii. Particular emphasis is on the robustness
of the “wiggle” [16] in the energy scan of the midrapidity
curvature of the proton rapidity distribution that has been
suggested as a possible signal for a first-order phase transition,
expected just in the range of energies at NICA and FAIR
experiments.

At present, THESEUS is not an integrated approach.
The simulation proceeds in two steps: First, a numerical
solution of the three-fluid hydrodynamics is computed with the
corresponding code. Based on the output of the hydrodynamic
part, a Monte Carlo procedure is used to sample the ensemble
of hadron distributions and the UrQMD code is engaged
to calculate final-state hadronic rescatterings, as will be
explained below. Another present limitation which we leave
for future work is the absence of event-by-event hydrodynamic
evolution. Therefore, by an event we mean a Monte Carlo
sampled set of final hadrons which correspond to the same
(average) hydrodynamic evolution.

Beyond the scope of this paper but of interest for future
research are nonequilibrium effects at the first-order phase
transition due to nucleation and spinodal decomposition
[17–20]. It is expected to observe large density inhomo-
geneities, droplet formation, and an amplification of low-
momentum modes [21–29] as a consequence. In order to be
able to deal with these higher-order effects it is of greatest
importance to correctly treat effects on the level of the EoS
and sources of fluctuations like the initial and the final state,
as well as experimental constraints like finite acceptance.

This paper is organized as follows. In Sec. II, a brief survey
of the components of the event generator is presented: the 3FH
model in Sec. II A, the particlization procedure in Sec. II B,
and the UrQMD model used for afterburner simulations in
Sec. II C. In Sec. III some applications of the event generator
are presented whereby detailed plots for the energy scans
of directed flow for protons and pions, of proton rapidity
distributions, and of the influence of detector acceptance and
collision centrality on the baryon stopping signal are given in
Appendices A, B, and C, respectively. Conclusions are drawn
in Sec. IV.

II. DESCRIPTION OF THE EVENT GENERATOR
THESEUS

A. The 3FH model

The 3FH model treats the collision process from the
very beginning, i.e., from the stage of cold nuclei, up to

the particlization from the fluid dynamics. This model is a
straightforward extension of the two-fluid model with radiation
of direct pions [30,31] and of the (2 + 1)-fluid model of
Refs. [32,33]. The three-fluid approximation is a minimal way
to simulate the finite stopping power at the initial stage of
the collision. Within the three-fluid approximation a generally
nonequilibrium distribution of baryon-rich matter is simulated
by counterstreaming baryon-rich fluids initially associated
with constituent nucleons of the projectile (p) and target (t)
nuclei. Therefore, the initial conditions for the fluid evolution
are two Lorentz-contracted spheres with radii of corresponding
nuclei and zero diffuseness, baryon density nB = 0.15 fm−3,
and energy density mNnB � 0.14 GeV/fm3. In addition,
newly produced particles, populating the midrapidity region,
are associated with a fireball (f) fluid. Each of these fluids
is governed by conventional hydrodynamic equations. The
continuity equations for the baryon charge read

∂μJμ
α (x) = 0, (1)

for α = p and t, where Jμ
α = nαuμ

α is the baryon current defined
in terms of proper (i.e., in the local rest frame) net-baryon
density nα and hydrodynamic 4-velocity uμ

α normalized as
uαμuμ

α = 1. Equation (1) implies that there is no baryon-charge
exchange among p-, t-, and f-fluids, as well as that the baryon
current of the fireball fluid is identically zero, J

μ
f = 0, by

construction. Equations of the energy-momentum exchange
between fluids are formulated in terms of energy-momentum
tensors T μν

α of the fluids

∂μT μν
p (x) = −Fν

p (x) + Fν
fp(x), (2)

∂μT
μν
t (x) = −Fν

t (x) + Fν
ft (x), (3)

∂μT
μν
f (x) = −Fν

fp(x) − Fν
ft (x)

+
∫

d4x ′δ4[x − x ′ − UF (x ′)τf ]

×[
Fν

p (x ′) + Fν
t (x ′)

]
, (4)

where the Fν
α are friction forces originating from interfluid

interactions. Fν
p and Fν

t in Eqs. (2) and (3) describe energy–
momentum loss of the baryon-rich fluids due to their mutual
friction. A part of this loss |Fν

p − Fν
t | is transformed into

thermal excitation of these fluids, while another part (Fν
p +

Fν
t ) gives rise to particle production into the fireball fluid

[see Eq. (4)]. Fν
fp and Fν

ft are associated with friction of the
fireball fluid with the p- and t-fluids, respectively. Here τf is
the formation time, and

Uν
F (x ′) = uν

p(x ′) + uν
t (x ′)

|up(x ′) + ut (x ′)| (5)

is the 4-velocity of the free propagation of the produced fireball
matter. In fact, this is the velocity of the fireball matter at the
moment of its production. According to Eq. (4), this matter
gets formed only after the time span U 0

F τf on the production,
and in a different space point x′ − UF (x ′) τf , as compared to
the production point x′. The friction between fluids was fitted
to reproduce the stopping power observed in proton rapidity
distributions for each EoS, as it is described in Refs. [5,6] in
detail.
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FIG. 1. Pressure scaled by the product of normal nuclear density
(n0 = 0.15 fm−3) and nucleon mass (mN ) versus baryon density
scaled by the normal nuclear density for three considered equations of
state. Results are presented for three different temperatures T = 10,
100, and 200 MeV (from bottom upwards for corresponding curves).

Different EoS can be applied within the 3FH model. The
recent series of simulations [6–13] was performed employing
three different types of EoS: a purely hadronic EoS [34] (hadr.
EoS) and two versions of the EoS involving deconfinement
[35]. The latter two versions are an EoS with a first-order
phase transition (two-phase EoS) and one with a smooth
crossover transition (crossover EoS). The hadronic EoS is
well in agreement with known constraints [36], in particular
the flow constraint by Danielewicz et al. [37], see Ref. [38]
for an explicit comparison. Figure 1 illustrates the differences
between the three considered EoS.

The numerical scheme of the code is based on the modified
particle-in-cell method [39], which is an extension of the
scheme first applied in Los Alamos [40]. In the particle-
in-cell method, the matter is represented by an ensemble of
Lagrangian test particles. They are used for calculation of the
drift transfer of the baryonic charge, energy, and momentum.

In the present scheme, the test particle has the size of the cell.
Therefore, when a single test particle is moved on the grid, it
changes quantities in eight cells, with which it overlaps. These
spatially extended particles make the scheme smoother and
hence more stable. The transfer because of pressure gradients,
friction between fluids, and production of the fireball fluid
is computed on the fixed grid (so-called Euler step of the
scheme). Simulations are performed in the frame of equal
velocities of colliding nuclei. The numerical-scheme input of
the present 3FH calculations is described in detail in Ref. [5].

An application of the 3FH model is illustrated in Fig. 2
where the evolution of the proper (i.e., in the local rest frame
obtained by diagonalization of the energy-momentum tensor,
see the next subsection) baryon density in the reaction plane
is presented for a semicentral (impact parameter b = 6 fm)
Au+Au collision at

√
sNN = 6.4 GeV (Elab = 20A GeV).

The simulation was performed with the crossover EoS
without freeze-out. As can be seen from that figure, very
high baryon densities are reached in the central region of the
colliding system.

The freeze-out criterion used in the 3FH model is ε < εfrz,
where ε is the total energy density of all three fluids in their
common rest frame. More details can be found in Refs. [41,42].
The freeze-out energy density εfrz = 0.4 GeV/fm3 was chosen
mostly on the condition of the best reproduction of secondary
particle yields for all considered scenarios, see Ref. [5]. An
important feature of the 3FH freeze-out is an antibubble
prescription, preventing the formation of bubbles of frozen-out
matter inside the dense matter while it is still hydrodynamically
evolving. The matter is allowed to be frozen out only if it is
located near the border with the vacuum (this piece of matter
gets locally frozen out). The thermodynamic quantities of the
frozen-out matter are recalculated from the in-matter EoS,
with which the hydrodynamic calculation runs, to the hadronic
gas EoS.1 This is done because a part of the energy is still
accumulated in collective mean fields at the freeze-out instant.
This mean-field energy needs to be released before entering
the hadronic cascade in order to facilitate energy conservation.

1In this gas EoS 48 different hadronic species are taken into account.
Each hadronic species includes all the relevant isospin states; e.g., the
nucleon species includes protons and neutrons.

FIG. 2. Evolution of the proper baryon density (nB/n0) scaled by the the normal nuclear density (n0 = 0.15 fm−3) in the reaction plane for
a semicentral (b = 6 fm) Au+Au collision at

√
sNN = 6.4 GeV.
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TABLE I. Center-of-mass energies
√

sNN for the NICA-MPD
energy scan with Au+Au collisions (upper row) and their equivalent
fixed target energies in the laboratory system (lower row).

√
sNN (GeV) 4.3 4.7 5.6 6.4 7.7 9.2 11.6

Elab (A GeV) 8 10 15 20 30 43 70

The output of the model is recorded in terms of Lagrangian
test particles (i.e., fluid droplets) for each fluid α (=p, t, or f).
Each particle contains information on space-time coordinates
(t,x) of the frozen-out matter, proper volume of the test particle
of the α fluid (V pr

α ), hydrodynamic velocity (uμ
α ) in the frame

of computation, temperature (Tα), baryonic (μBα), and strange
(μSα) chemical potentials.

B. Particlization

In the multifluid approach, one simulates the heavy ion
collision from its very first moment using fluid dynamics.
However, once the system becomes too dilute, the fluid
approximation loses its applicability and individual particles
are the relevant degrees of freedom. The process of changing
from a fluid to a particle description is called “particlization”
[43]. Since we supplement the 3FH with a hadronic cascade,
the particlization is not freeze-out, anymore. By definition,
there are only resonance decays after freeze-out, whereas in the
present generator final-state hadronic rescattering processes
are simulated as well using the UrQMD code.

The particlization criterion is chosen to be the same as
freeze-out criterion in Ref. [5], e.g.,

εtot < εfrz,

where εtot is defined as:

εtot = T ∗00
p + T ∗00

t + T ∗00
f

and the asterisk denotes a reference frame where the nondi-
agonal components of the total energy momentum tensor are
zero. This choice allows to study the influence of hadronic

rescatterings to the observables by comparing them with the
ones calculated in previous three-fluid hydrodynamic models.

For the details of fluid to particle conversion, the reader
is referred to Ref. [5], whereas here we repeat the details
important for the construction of the Monte Carlo sampling
procedure. Both the baryon-rich projectile and target fluids as
well as the fireball fluid are being frozen out in small portions,
and therefore the output of the particlization procedure is a set
of droplets (or surface elements). Each droplet is characterized
by its proper volume V pr, temperature T , baryon, μB , strange
chemical potentials μS , and the collective flow velocity uμ.

The thermodynamic parameters of the droplets correspond
to a free hadron resonance gas. Therefore, we proceed
with sampling the hadrons according to their phase-space
distributions (see Eq. (33) in Ref. [5]), which are expressed
in the rest frame of the fluid element (FRF) as

p∗0 d3Ni

d3p∗ =
∑

α

giV
pr
α

(2π )3

p∗0

exp[(p∗0 − μαi)/Tα] ± 1
, (6)

where the asterisk denotes momentum in the fluid rest frame,
where u∗μ

α = (1,0,0,0), μαi = BiμαB + SiμαS is the chemical
potential of hadron i with baryon number Bi , strangeness Si ,
degeneracy factor gi , and the α summation runs over droplets
from all (p, t, and f) fluids.

The use of temperature and chemical potentials implies a
grand-canonical ensemble for each surface element. The sam-
pling is therefore organized as a loop over all droplets, every
iteration of which consists of the following steps [44,45]:

(i) average multiplicities of all hadron species are calcu-
lated according to

	Ni,α = V pr
α ni,th(T ,μi), (7)

together with their sum 	Ntot,α = ∑
i 	Ni,α;

(ii) total (integer) number of hadrons from each surface
element is sampled according to Poisson distribution
with mean 	Ntot,α . If the number is greater than zero,
then the type of hadron is randomly chosen based on
probabilities 	Ni,α/	Ntot,α;
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FIG. 3. Transverse-momentum spectrum for pions (a) and kaons (b) for central Au+Au collisions (b = 2 fm) at Elab = 30A GeV for the
two-phase EoS. Comparison between results from the 3FH model (black solid lines) and THESEUS without UrQMD (red dashed lines) show
excellent agreement. Comparing these results with the full THESEUS result (green dashed line) shows that the UrQMD hadronic rescattering
leads to a slight steepening of the pion pT spectrum.
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FIG. 4. Rapidity distribution for pions (a) and kaons (b) for central Au+Au collisions (b = 2 fm) at Elab = 30A GeV for the two-phase
EoS. Comparison between results from the 3FH model (black solid lines) and THESEUS without UrQMD (red dashed lines) show excellent
agreement. Comparing these results with the full THESEUS result (green dashed line) shows that the UrQMD hadronic rescattering smears
out the double-peak structure in the kaon rapidity spectrum.
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FIG. 5. Energy scan of the slope of the directed flow (dv1/dy) of
protons for semicentral (b = 6 fm) Au+Au collisions. We compare
results for 3FH (black solid line), THESEUS (blue short-dashed
line), and THESEUS without UrQMD hadronic rescattering (red
long-dashed line) for the two-phase EoS (a) and the crossover EoS
(b). Data from the AGS experiment E895 [48] are shown by filled
squares, data from the STAR beam energy scan [49] are given by star
symbols, and data point data from NA49 [50] by a filled triangle.

(iii) hadron’s momentum in FRF p∗ is sampled according
to (6), which is isotropic in momentum space; and

(iv) momentum vector is Lorentz boosted to the global
frame of the collision.

In the present version of the generator, also from the
arguments of consistency with preceding hydrodynamic evo-
lution, we do not apply any corrections over the grand-
canonical procedure to account for effects of charge or energy
conservation. Therefore, particle multiplicities fluctuate from
event to event according to the composition of grand-canonical
ensembles given by the individual droplets.

C. UrQMD simulation of final-state interactions

The UrQMD approach [14] treats hadrons and resonances
up to a mass of ∼2.2 GeV. All binary interactions are treated
via the excitation and decay of resonances or string excitation
and decay and elastic scatterings. It is crucial for a state-of-
the-art event generator to treat the interactions during the late
nonequilibrium hadronic stage of heavy ion reactions properly.
At RHIC and LHC notable differences in the proton yields
have been observed and the identified particle spectra and flow
observables show an effect of the hadronic rescattering (for a
review of hybrid approaches see Ref. [46]). At lower beam
energies as they are investigated in this work, the hadronic
stage of the reaction is of utmost importance. In Ref. [47]
it has been shown that the excitation function of elliptic and
triangular flow can only be understood within a combined
hydrodynamics+transport approach. UrQMD constitutes an
effective solution of the relativistic Boltzmann equation and
therefore provides access to the full phase-space distribution
of all individual particles at all times. In this work the effect
of hadronic rescattering in the final state on the identified
particle spectra and the rapidity-dependent directed flow is
demonstrated in detail.

III. RESULTS

In this section we present a selection of first results
from THESEUS for the energy scan (

√
sNN = 4–11 GeV)

planned at the NICA-multi-purpose detector (MPD) collider
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FIG. 6. Energy scan of the slope of the directed flow (dv1/dy) of
pions for semicentral (b = 6 fm) Au+Au collisions. We compare
results for 3FH (black solid line), THESEUS (blue short-dashed
line), and THESEUS without UrQMD hadronic rescattering (red
long-dashed line) for the two-phase EoS (a) and the crossover EoS
(b). Data from the STAR beam energy scan [49] are shown by star
symbols.

experiment, which has overlap with the energy range that will
become accessible in the FAIR compressed baryon matter
(CBM) experiment, see Table I.

A. Tests of the particlization routine: Spectra of pions,
kaons, and protons

We start by showing the transverse momentum distributions
of pions [(π+ + π0 + π−)/3] and kaons [(K+ + K0)/2] in
Fig. 3. They are calculated from a sample of 30 000 events
generated according to the Monte Carlo procedure described
above and are compared in the plot to 3FH and THESEUS
w/o UrQMD, where “3FH” corresponds to the model in

FIG. 7. Energy scan for the curvature Cy of the net proton rapidity
distribution at midrapidity for central Au+Au collisions with impact
parameter b = 2 fm. We compare the 3FH model result (black solid
lines) with THESEUS (blue short-dashed lines) and THESEUS w/o
UrQMD (red long-dashed lines). The results for the two-phase EoS
(a) are compared to those for the crossover EoS (b). The “wiggle” as
a characteristic feature for the EoS with a first-order phase transition
is rather robust against hadronic final-state interactions. Data from
AGS experiments are shown by filled squares and data from NA49
by filled triangles.

which particle spectra are obtained from direct integration of
Eq. (6), and “THESEUS w/o UrQMD” means that particles
are obtained from Monte Carlo sampling of Eq. (6). The 3FH
evolution simulates Au+Au collisions at Elab = 30A GeV
with the two-phase EoS. We observe excellent agreement up
to pT = 2.2 GeV, which is limited by the generated event
statistics. In Fig. 4 we show the rapidity distributions for the
same setup. The rapidity distributions reveal a small difference
in kaon yields, and an even smaller one for pions, which
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FIG. 8. Mean standard deviation (“error”) for the curvature as a
function of the event statistics for central (b = 2 fm), semicentral
(b = 6 fm), and peripheral (b = 11 fm) Au+Au collisions at Elab =
30A GeV for the two-phase EoS model.

is attributed to differences in the large mass sector of the
resonance tables and branching ratios. Nevertheless, the shapes
of rapidity distributions agree beautifully. In Figs. 3 and 4
we show also the effect of the UrQMD hadronic final-state
interactions which are included in THESEUS. They lead to
a slight steepening of the pT spactrum for pions and to a
reduction of the double-peak structure in the kaon rapidity
spectrum. Both are sufficiently gentle effects to not spoil our
conclusion. The tests demonstrate that both the procedure of
particle sampling at particlization and the resonance decay
kinematics are implemented correctly.

B. Directed flow of protons and pions

Next we test whether more subtle features of particle
distributions are preserved by the particlization procedure
and how they are affected by the hadronic cascade. First we
calculate the directed flow coefficient v1 for pions and protons
as a function of rapidity using the reaction plane method,

v1(y) = 〈cos(φ − �RP)〉 = 〈
px/

√
p2

x + p2
y

〉
,

where �RP = 0 in the model, since the impact parameter is
always directed along x axis. Although the generator makes
it possible to apply different methods of flow analysis over
generated events, we use the reaction plane method in order
to perform a one-to-one comparison between results from
THESEUS with and without UrQMD and the corresponding
ones from the basic 3FH model.

The rapidity-dependent directed flow v1(y) of protons and
pions for different collision energies, impact parameters, and
EoS can be found in Appendix A, while the net proton rapidity
distributions for different collision energies and EoS are given
in Appendix B. In Figs. 5 and 6 we present the distributions
in a condensed form using the slope of the directed flow
at midrapidity dv1/dy calculated in the interval |	y| < 0.5
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FIG. 9. Energy scan for the particle ratio K+/π+ in the NICA
energy range for central Au+Au collisions (impact parameter b =
2 fm) with (blue lines) and without (red lines) the UrQMD hadronic
rescattering. The calculation with a first-order phase transition in
the EoS (a) is compared to that with the crossover EoS (b). For
comparison, we show the results without particlization and UrQMD
rescattering and experimental data, taken from Fig. 11 of Ref. [8].
Data from AGS experiments are shown by filled squares and data
from NA49 by filled triangles.

around midrapidity. Dashed lines show the results from
THESEUS without hadronic cascade, where we quantitatively
reproduce the results from basic 3FH model, including the dip
in the dv1/dy of (net-)protons in semicentral events for the
EoS with a first-order phase transition denoted as “two-phase
EoS.” We would like to note that a similar flow pattern appears
also for the light nuclear clusters such as deuterons [51].

Turning the UrQMD hadronic cascade on for the final state
(dotted lines in Figs. 5 and 6), we observe that the cascade
has only a small effect on the excitation function of the proton
dv1/dy.
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However, for the pions the hadronic cascade changes flow
to antiflow at low energies. This behavior can be understood
as follows. If there is only hydrodynamics, then the pions are
emitted along the fluid flow, while when there is rescattering
they are blocked by the baryonic matter in the projectile and
target region, and therefore the anti-flow appears. This was first
demonstrated in Ref. [52]. This effect of the pion shadowing
is more spectacular in Fig. w10 where the directed flow of
protons and pions at Elab = 8A GeV is presented. As seen, the
proton v1 is practically insensitive to the UrQMD afterburner,
while the pion v1 is strongly affected by this afterburner. The
afterburner even changes the pion v1 flow to an antiflow. The
effect of the pion shadowing becomes weaker with the collision
energy rise, as it is seen from Fig. 12, because the midrapidity
region becomes less baryon abundant. Although, at larger
collision energies and peripheral rapidities, this shadowing is
still noticeable. As can be seen from Fig. 6, the most dramatic
effect of the UrQMD hadronic rescattering is the prediction
that pion antiflow persists for energies below the present limit
of the STAR beam energy scan data [49] at

√
sNN = 7.7 GeV

for both EoS cases: first-order and crossover phase transition.

C. Baryon stopping signal for a first-order phase transition

In Fig. 7 we show the reduced curvature of the net proton
rapidity distribution (see Appendix B for the simulation

of the energy scan of the net proton rapidity distribution
itself) Cy = y2

cm(d3Nnet−p/dy3)/(dNnet−p/dy), where ycm is
the rapidity of the center of mass of the colliding system in the
frame of the target [16,53,54]. Because of a narrower collision
energy range chosen here, we observe only the peak-dip part
of the so-called “peak-dip-peak-dip” structure reported in
Refs. [16,53,54]. The reduced curvature is calculated by fitting
the rapidity distribution with a second-order polynomial of
the form P2(y) = ay2 + by + c for which then Cy = y2

beam2a/c
results.

Contrary to the basic 3FH model which can calculate Cy

with any given precision, in the Monte Carlo procedure the
accuracy depends on the event statistics and binning. The error
for Cy can be expressed as

	Cy = 2y2
beam

c

√
(	a)2 + a2

c2
(	c)2,

where 	a and 	c denote the statistical errors of the parameters
a and b from the fit to the generator output. The dependence
of 	Cy on the number of events is shown in Fig. 8. Given
that Cy itself has a values no larger than several units in the
collision energy range under consideration, one can conclude
that a reliable determination of Cy requires not less than 104

events for central and semicentral collisions and 105 events for
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FIG. 10. Directed flow (v1) of protons (full symbols) and pions (open symbols) for central (b = 2 fm), semicentral (b = 6 fm) and peripheral
(b = 11 fm) Au+Au collisions at Elab = 8A GeV. The upper row [panels (a)–(c)] is for the two-phase EoS while the lower row [panels (d)–(f)]
shows results for the crossover EoS. In each panel we show the direct comparison of THESEUS with (blue symbols) and without (red symbols)
UrQMD afterburner. Remarkable is the effect of turning pion flow to antiflow due to hadronic rescattering in the dense baryonic medium.
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FIG. 11. Same as in Fig. 10 for Elab = 10A GeV (upper two rows) and Elab = 15A GeV (lower two rows).

peripheral collisions. Larger required statistics for peripheral
events is a consequence of the lower average event multiplicity.

The robustness of the baryon stopping signal for a first-order
phase transition against experimental cuts in the pT acceptance

has been discussed in Ref. [16]. In Appendix C we provide
results for these cuts with and without the UrQMD hadronic
cascade for three centralities. We demonstrate that the baryon
stopping signal is robust against hadronic rescattering.
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FIG. 12. Same as in Fig. 10 for Elab = 20A GeV (upper two rows) and Elab = 30A GeV (lower two rows).

D. The “horn” effect?

In Fig. 9 we show the K+/π+ ratio. The comparison
between basic 3FH calculations (black solid lines) and
THESEUS with UrQMD switched off shows satisfactory

correspondence. Some differences between the curves,
especially at lower energies, can be traced back to smaller
differences in kaon and pion yields, which we observed in
Fig. 4. However, we find that turning the hadronic cascade on
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FIG. 13. Same as in Fig. 10 for Elab = 43A GeV (upper two rows) and Elab = 70A GeV (lower two rows).

does not influence the kaon-to-pion ratio. As the 3FH model
itself, also THESEUS in its present version is not yet capable
of describing the “horn” effect discovered in the NA49 data
for the K+/π+ ratio. It is interesting to note that aspects of the

“horn” effect could be attributed to the hydrodynamical stage
and the core-corona separation within the UrQMD hybrid
model [55]. Most recently, as further aspects of the “horn”
effect, the chiral symmetry restoration [56] and an anomalous
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FIG. 14. Proton rapidity distributions for central (b = 2 fm), semicentral (b = 6 fm), and peripheral (b = 11 fm) Au+Au collisions for the
two-phase EoS [panels (a)–(c)] and for the crossover EoS [panels (d)–(f)]. Each panel shows the results of THESEUS with (solid lines) and
without (dashed lines) for the NICA energy scan with

√
sNN = 4.3, 4.7, 5.6, 6.4, 7.7, 9.3, and 11.6 GeV (different colors from black to light

blue, respectively).

K+ bound-state mode [57] in dense matter have been pointed
out.

IV. CONCLUSIONS

We have assembled the new event generator THESEUS that
is based on a three-fluid hydrodynamics description of the early
and dense stage of the collision, followed by a particlization
as input to the UrQMD “afterburner” accounting for hadronic
final-state interactions.

We presented first results from THESEUS for the
FAIR/NICA energy scan addressing the directed flow of
protons and pions as well as the proton rapidity distribution
for a two-model EoS, one with a first-order phase transition
and the other with a crossover type softening at high densities.
The new simulation program has the unique feature that it can
describe a hadron-to-quark matter transition which proceeds
in the baryon stopping regime that is not accessible to previous
simulation programs that are designed for higher energies.

We have found that the hadronic cascade which is switched
on after the particlization has little effect on the proton flow
observables. In particular, the hadronic final-state interactions
preserve the characteristic nonmonotonic behavior of the

rapidity slope of the directed flow of protons and the character-
istic collision energy dependence of the wiggle in the curvature
of the rapidity distribution of net protons. However, for pions in
noncentral collisions at lower energies, the hadronic cascade
leads to a qualitative change of the emission pattern (from
flow to antiflow). The present analysis in the improved 3FH
model THESEUS has demonstrated that the predicted baryon
stopping signal for a first-order phase transition in heavy-ion
collisions at NICA-FAIR energies is a robust feature.

The next steps planned in the development of THESEUS
include making it an integrated approach and to explore
possible mechanisms that could explain the observed “horn”
effect for the K+/π+ ratio. Another very interesting direction
concerns the production and flow of light nuclear clusters for
which first results look very promising [51].
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FIG. 15. Energy scan for the curvature Cy of the net proton rapidity distribution at midrapidity for central Au+Au collisions with impact
parameter b = 2 fm in different acceptance windows for the transverse momentum pT . We show results of THESEUS (blue short-dashed lines)
and THESEUS without UrQMD (red long-dashed lines) together with presently available data [symbols in the panels (a) and (e)]. The results
for the two-phase EoS panels [(a)–(d)] are compared to those for the crossover EoS [panels (e)–(h)]. The “wiggle” as a characteristic feature
for the EoS with a first-order phase transition is rather robust against different acceptance cuts (see also Ref. [16]) and hadronic final-state
interactions.
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APPENDIX A: DIRECTED FLOW

In this Appendix, we show the results of THESEUS with
and without UrQMD afterburner for the directed flow v1

of protons and pions at Elab = 8A GeV (Fig. 10), 10 and
15A GeV (Fig. 11), 20 and 30A GeV (Fig. 12), as well as 43
and 70A GeV (Fig. 13), comparing the case of the two-phase

EoS (first-order phase transition, upper panels) with that of
the crossover EoS (lower panels) at central (left panels),
semicentral (middle panels), and peripheral (right panels)
Au+Au collisions.

These figures show the influence of hadronic final-state
interactions on the patterns of directed flow of protons and
pions in the the broad rapidity range −1.5 < y < 1.5 and
how it evolves from low energies in Fig. 10 to high energies in
Fig. 13. At Elab = 8A GeV in Fig. 10 we observe that hadronic
rescattering causes the transition from flow to antiflow for
pions due to the shadowing by a dense baryonic medium. The
flow of protons is not affected by the hadronic rescattering,
which remains so for all energies. The shadowing effect on the
pion directed flow becomes less important at higher energies.
At and above 30A GeV hadronic rescattering has no effect on
the directed flow of pions in the central rapidity region.

There is hardly any difference to be noticed in the pion-
directed flow patterns between the case of a two-phase EoS
and a crossover EoS.

The energy dependence of the slope of the proton directed
flow exhibits a change of sign in the central rapidity region
for semicentral collisions, which is most pronounced at
20–30A GeV for the two-phase EoS. Since this pattern is
absent for the crossover EoS, it may be linked to the first-order
phase transition.

These features are displayed in a more compact manner in
Figs. 5 and 6 showing the energy scan of the slope of v1 at
midrapidity in semicentral Au+Au collisions for protons and
pions, respectively.
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FIG. 16. Energy scan for the curvature Cy of the net proton rapidity distribution at midrapidity for central Au+Au collisions with impact
parameter b = 2 fm [panels (a) and (d)], b = 6 fm [panels (b) and (e)] and b = 11 fm [panels (c) and (f)]. We compare the 3FH model result
(black solid lines) with THESEUS (blue short-dashed lines) and THESEUS without UrQMD (red long-dashed lines). The results for the
two-phase EoS [panels (a)–(c)] are compared to those for the crossover EoS [panels (d)–(f)]. For noncentral collisions the curvature pattern
is shifted towards positive values while the “wiggle” as a characteristic feature for the EoS with a first-order phase transition remains rather
robust.

APPENDIX B: PROTON RAPIDITY DISTRIBUTION

In this Appendix we display the full proton rapidity
distribution for seven energies of the NICA MPD energy
scan (see Table I) in Fig. 14 where for central collisions
(left panels) a qualitative difference between the first-order
transition scenario of the two-phase EoS (upper row) and the
crossover transition scenario (lower row) can be observed. The
hadronic final-state interactions have only a minor effect on
the “wiggle” in the energy scan of the curvature of the proton
rapidity distribution at midrapidity as a signal of the first-order
phase transition, see also Figs. 15 and 16 in Appendix C. For
comparison the patterns at semicentral (middle panels) and
peripheral collisions (right panels) are also shown.

APPENDIX C: INFLUENCE OF DETECTOR ACCEPTANCE
ON THE BARYON STOPPING SIGNAL

This Appendix is devoted to the illustration of the robust-
ness of the baryon stopping signal for the first-order phase
transition. For this purpose, we show the response of the
energy scan of the midrapidity curvature of the proton ra-
pidity distribution to cuts in the proton transverse-momentum
spectrum in Fig. 15 and to changes in centrality of the collision

in Fig. 16 for both cases, the two-phase EoS (upper panels)
and the crossover EoS (lower panels). Comparing results of
THESEUS (blue short-dashed lines) with those of THESEUS
without final-state interactions (red long-dashed lines), we
confirm that the account for hadronic rescattering with the
UrQMD afterburner has a minor, negligible effect which does
not at all change the pattern: The two-phase EoS produces a
“wiggle” structure while the crossover EoS results in a flat
energy scan. The comparison with the existing sparse data is
so far not conclusive.

From Fig. 15 one learns that a restriction to high-pT

events would reduce the peak-dip difference of the wiggle
structure of the two-phase EoS and make it more similar
to the flat pattern of the crossover EoS. The acceptance
windows of the NICA MPD experiment [58] (second-to-left
column) and of the STAR experiment at RHIC [59] (rightmost
column) are suitable to disentangle both cases. In the case
of the STAR experiment, the upgrade to lower energies
would be required to cover the whole energy range of the
wiggle.

From Fig. 16 we learn that triggering on central collisions is
beneficial for the search for the wiggle signal of the first-order
phase transition. In this case, the peak-dip structure includes a
sign change of the midrapidity curvature of the proton rapidity
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distribution for the two-phase EoS. While the wiggle structure
remains basically intact also for noncentral collisions, it gets

shifted towards positive curvatures only which would make its
identification less unambiguous.
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[3] B. Friman, C. Höhne, J. Knoll, S. Leupold, J. Randrup, R. Rapp,
and P. Senger (eds.), Lect. Notes Phys. 814, 1 (2011).

[4] A. N. Sissakian, A. S. Sorin, and V. D. Toneev, in Proceedings
of the 33rd International Conference on High Energy Physics
ICHEP’06, edited by A. Sissakian, G. Kozlov, and E. Kolganova
(World Scientific, Moscow, Russia, 2007), pp. 421–427.

[5] Y. B. Ivanov, V. N. Russkikh, and V. D. Toneev, Phys. Rev. C
73, 044904 (2006).

[6] Yu. B. Ivanov, Phys. Rev. C 87, 064904 (2013).
[7] Y. B. Ivanov, Phys. Lett. B 721, 123 (2013).
[8] Y. B. Ivanov, Phys. Rev. C 87, 064905 (2013).
[9] Y. B. Ivanov, Phys. Rev. C 89, 024903 (2014).

[10] V. P. Konchakovski, W. Cassing, Y. B. Ivanov, and V. D. Toneev,
Phys. Rev. C 90, 014903 (2014).

[11] Y. B. Ivanov and A. A. Soldatov, Phys. Rev. C 91, 024914
(2015).

[12] Y. B. Ivanov and A. A. Soldatov, Phys. Rev. C 91, 024915
(2015).

[13] Y. B. Ivanov and A. A. Soldatov, Eur. Phys. J. A 52, 10 (2016).
[14] S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998).
[15] C. M. Hung and E. V. Shuryak, Phys. Rev. C 57, 1891 (1998).
[16] Y. B. Ivanov and D. Blaschke, Phys. Rev. C 92, 024916 (2015).
[17] L. P. Csernai and I. N. Mishustin, Phys. Rev. Lett. 74, 5005

(1995).
[18] E. E. Zabrodin, L. V. Bravina, L. P. Csernai, H. Stoecker, and

W. Greiner, Phys. Lett. B 423, 373 (1998).
[19] A. Keranen, L. P. Csernai, V. Magas, and J. Manninen, Phys.

Rev. C 67, 034905 (2003).
[20] M. Nahrgang, C. Herold, S. Leupold, I. Mishustin, and M.

Bleicher, J. Phys. G 40, 055108 (2013).
[21] I. N. Mishustin, Phys. Rev. Lett. 82, 4779 (1999).
[22] J. Randrup, Phys. Rev. C 79, 054911 (2009).
[23] J. Randrup, Phys. Rev. C 82, 034902 (2010).
[24] J. Steinheimer and J. Randrup, Phys. Rev. Lett. 109, 212301

(2012).
[25] C. Herold, M. Nahrgang, I. Mishustin, and M. Bleicher, Phys.

Rev. C 87, 014907 (2013).
[26] J. Steinheimer and J. Randrup, Phys. Rev. C 87, 054903 (2013).
[27] C. Herold, M. Nahrgang, I. Mishustin, and M. Bleicher, Nucl.

Phys. A 925, 14 (2014).
[28] J. Steinheimer, J. Randrup, and V. Koch, Phys. Rev. C 89, 034901

(2014).
[29] M. Nahrgang and C. Herold, Eur. Phys. J. A 52, 240 (2016).
[30] I. N. Mishustin, V. N. Russkikh, and L. M. Satarov, Sov. J. Nucl.

Phys. 48, 454 (1988) [Yad. Fiz. 48, 711 (1988)].

[31] I. N. Mishustin, V. N. Russkikh, and L. M. Satarov, Sov. J. Nucl.
Phys. 54, 260 (1991) [Yad. Fiz. 54, 429 (1991)].

[32] U. Katscher, D. H. Rischke, J. A. Maruhn, W. Greiner, I. N.
Mishustin, and L. M. Satarov, Z. Phys. A 346, 209 (1993).

[33] J. Brachmann, A. Dumitru, J. A. Maruhn, H. Stoecker, W.
Greiner, and D. H. Rischke, Nucl. Phys. A 619, 391 (1997).

[34] V. M. Galitsky and I. N. Mishustin, Yad. Fiz. 29, 363 (1979).
[35] A. S. Khvorostukin, V. V. Skokov, V. D. Toneev, and K. Redlich,

Eur. Phys. J. C 48, 531 (2006).
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