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Because quarks carry electric charge, they can radiate light when they change energy levels, which is exactly
what happens when they hadronize. This is true not only in jets but also in heavy-ion collisions, where a
thermalized plasma of quarks and gluons cools into a gas of hadrons. First, direct emission of photons from
two quarks coalescing from the continuum into pions is calculated using the quark-meson model. The yield of
final-state photons to pions is found to be about e2/g2

πqq , which is on the order of a percent. Second, the yield
of photons from the decay of highly excited color singlets, which may exist ephemerally during hadronizaton, is
estimated. Because these contributions occur late in the reaction, they should carry significant elliptic flow, which
may help explain the large observed flow of direct photons by the PHENIX Collaboration at the BNL Relativistic
Heavy Ion Collider. The enhanced emission also helps explain the PHENIX Collaboration’s surprisingly large
observed γ /π ratio.
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I. INTRODUCTION

Electromagnetic radiation is produced from multiple
sources in heavy-ion collisions. Of particular interest is
the radiation produced during the deconfined phase by the
scattering and annihilation of quarks. This thermal radiation is
not that of a blackbody yet nevertheless provides a reasonable
measurement of the temperature reached in these collisions
[1,2]. The first predictions of thermal photon production had
relatively small elliptic flow, thanks to a large component of
the photons coming from the earliest times in the collision.
However, measurements by the PHENIX Collaboration at the
BNL Relativistic Heavy Ion Collider (RHIC) show the v2(pT )
of photons approaching that of hadrons [3], which suggests
underestimation of photons emitted later in the reaction. The
PHENIX Collaboration’s observed yield of direct photons is
also larger than what was first predicted using thermal rates
of production [2]. This discrepancy was confirmed to exist
by the ALICE Collaboration, who found a similar excess in
the yields as well as in the direct photon elliptic flow when
compared with theoretical calculations [4]. Calculations using
ideal hydrodynamics do not find this “photon puzzle” [5],
while all of the theory groups examining photon elliptic flow
using viscous hydrodynamics find this discrepancy between
experiment and theory. One possible explanation is that the
calculations that better explain data ignore viscous corrections
to the photon spectrum, first described in Ref. [6]. Recently,
considerable work in examining both thermal photon rates
and viscous corrections has demonstrated the dependence
of observables on the various hydrodynamical parameters
and has also shown by how much the results from viscous
hydrodynamics disagree with measurements [7]. Finally, the
elliptic flow of the radiated photons gives some measure of
when these photons were created: the elliptic flow during the
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plasma phase starts small and then builds up to the measured
values, and the photons produced at the various times have flow
similar to that of the matter from which they were radiated [8].

Possible explanations for the large elliptic flow include the
initial flow, incomplete thermalization in the quark sector at
early times, and the enhancement of quark degrees of freedom
in the Polyakov Nambu-Jona-Lasinio and the “semi-quark-
gluon plasma” models [9–11]. In this article, we consider a
neglected source of photons sure to exist: the production of
photons at the point of recombination of quarks and gluons
into hadrons. This source is analogous to the recombination
spectra studied in plasma physics and in cosmology, which
were created as the early universe cooled and the plasma
of protons and neutrons cooled into unionized gas [12];
in heavy-ion collisions, this calculation is dramatically
simplified by the fact that reabsorption is negligible. The
production of photons at the point of hadronization was also
considered by Campbell [13]; this current work differs from
Campbell’s in that we are primarily interested in how the
electromagnetically charged quarks and antiquarks radiate as
they hadronize, as opposed to how gluonic degrees of freedom
might create light as they disappear. In parton-hadron string
dynamics (PHSD), various processes that lead to photon
production are also considered, including the coalescence of
quarks into mesons; however, the effect of this process on
photon production has not yet been examined [14].

Figure 1 illustrates three contributions to direct photon
production from deconfined quarks. In general, quarks also can
radiate as they undergo a transition from continuum states to
bound color singlets, and given an ensemble of such quarks, a
fraction (which we determine) will undergo an electromagnetic
transition and radiate light. Finally, some of these bound states
are initially excited and must undergo transitions (sometimes
electromagnetic) to ground states. This cartoon emphasizes
how large the acceleration of quarks is at the end of the
heavy-ion collision, but work in quantifying this is necessary.

Figure 2 displays the direct photon spectra as measured
by the PHENIX Collaboration [15] along with the ratio of
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FIG. 1. An illustration of different sources of photons. Emission
from the plasma stage (A) is induced by collisions and annihilations
of quarks. In (B), the transition to a bound state is electromagnetic,
leading to photon emission. If loose color singlets are first formed,
photons are also emitted during the spontaneous emission of excited
states (C).

the direct photon spectra to that of positive pions [16]. If a
contribution to the photons is to explain the large elliptic flow,
it must come after the first few fm/c of the collision so that the
elliptic flow will have built up. By considering emission related
to hadronization, which should occur for times 3–6 fm/c
into the collision, this criterion is met. For the remainder of
this article, we focus on seeing whether contributions from
emission at hadronization could have sufficient strength to
give a non-negligible contribution to photon production in
heavy-ion collisions. The ratio of the yields of direct photons to
π+ at pT = 2 GeV/c is roughly 3%, and thermal production of
photons has already been shown to be significant; the emission
at hadronization should be on the order of half of the yields to
be significant and to help explain the photon puzzles.

The unifying theme of this current work is that the transition
from unbound to bound states and ultimately to ground states
represents a source of electromagnetic radiation in heavy-ion

collisions. This article is broken up as follows. In Sec. II
we use the quark-meson model at leading order to describe
electromagnetic radiation from quarks coalescing directly into
pions. This model is similar to Polyakov loop-inspired models
in that the gluonic degrees of freedom are suppressed. The
diagram of interest involves an incoming quark-antiquark pair
evolving into a final-state pion and a photon, qq̄ → γπ .
Because the outgoing state has only two particles, the photon
can carry approximately half the center of mass energy, which
suggests the process might be a good candidate for photons in
the GeV range. In Sec. III we examine whether the transition
to hadrons might lead to yields of excited states beyond the
thermal expectation values, using a simple scalar potential
model to confine the quarks into bound states and two different
models for how this transition might occur. Finally, in Sec. IV,
we calculate the electromagnetic transitions in these models to
determine rates for photon production from both a thermal gas
of bound quarks and a gas with elevated populations of excited
states. In Sec. V, we summarize the main points of the article as
well as suggest where a great deal of future work is necessary.

The work in this article is only the first exploration of
this effect, with a few comparisons with data to confirm its
significance. Any real explanation of the photon v2 puzzle will
necessarily involve the calculation of photon production from
multiple sources (perturbative QCD, the fragmentation of jets,
and thermal photon production) and viscous hydrodynamical
simulations to quantify all contributions accurately. In a
follow-up to this article, we will integrate the photon produc-
tion rate at hadronization that is calculated in this article over
a three-dimensional hypersurface that approximates where the
plasma recombinates into hadrons. This will give a new source
of photons. Only the total production of photons, produced
from multiple sources, will be compared with experimental
results.

II. PHOTON PRODUCTION
IN THE QUARK-MESON MODEL

In the quark-meson model (which ultimately evolved from
descriptions of meson-nucleon couplings in Ref. [17]), both
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FIG. 2. (a) The yields of π+ and direct photons in the 10%–20% centrality class of Au + Au
√

s = 200 GeV collisions from the PHENIX
Collaboration [15,16], together with fits to these yields. (b) The ratio of the yields in panel (a).
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FIG. 3. (a) An example of a diagram contributing to the process of
quarks annihilating into a pion and a photon. (b) A diagram describing
the annihilation of quarks into two pions that competes with the
photon production in panel (a).

quarks and mesons are treated as fundamental pointlike de-
grees of freedom, and gluonic degrees of freedom are ignored.
The Lagrangian, without the electromagnetic coupling, is of
the form

L = ψ̄(i /∂ + igqqπ (σ + τ · πγ5) − m)ψ + 1
2 |∂μπ |2

+ 1
2 |∂μσ |2 − 1

2m2
i |πi |2 − 1

2m2
i |σ |2 − V (π,σ ). (1)

We use conventions similar to those used in [17]; ψ represents
the quark field including Nc = 3 and Nf = 2 degrees of
freedom,while σ and π represent scalar and isoscalar fields.
Here,V (φ) is the potential that remains after spontaneously
breaking the original symmetry in the mesonic sector and
explicit chiral symmetry breaking gives masses mi to the
Goldstone bosons of the mesonic sector’s symmetry breaking.
For our purposes, V (φ) is ignored: we are concerned with
tree-level diagrams where quarks and antiquarks annihilate
into color-neutral particles.

When plasmas of quarks at temperatures near 180 MeV
cool, they eventually must combine to form the color singlets
observed at low temperatures. The quark-meson model can
describe this process at these high but not asymptotically high
temperatures, because one needs to be in the transition range
where both hadrons and quarks coexist. For simplicity, we
consider only those diagrams where the outgoing hadrons
are pions (examples of which are shown in Fig. 3). Later,
we discuss how rates might grow if additional hadronic states
are included. Additionally, we consider only 2 → 2 diagrams.
The neglected 2 → 3 processes include processes at a higher

order in the coupling of the quark-meson model. The coupling
in the quark-meson model is large, making it unclear how
negligible the processes at higher order are until they are
calculated. Such a calculation would have to be accompanied
with some thought put into what momentum ranges this
model should be used. At these temperatures, the coupling
in the quark-meson model is small enough so that perturbative
approaches are valid but not so small that the processes at a
higher order in gqqπ should never be examined. For now, we
neglect these diagrams, knowing that at low-photon momenta,
they should not be ignored.

At tree level this leaves only five leading-order channels
where the outgoing states are pions or photons: qq̄ → π0γ ,
qq̄ → π±γ , qq̄ → π0π0, qq̄ → π+π−, and qq̄ → π±π0.
At the point of hadronization, there exist two processes of
the ones above which lead to the production of photons. If
these were the only two processes, then our work would be
finished: we would only have to count the numbers of quarks to
determine the number of photons produced. However, there are
two competing (indeed, significantly more frequent) processes
above which lead only to the production of pions.

This situation is encountered frequently in atomic physics,
where excited states deexcitate radiatively at a rate of 	rad as
well as deexcitate collisionally at a rate of 	coll. The quantum
efficiency

Q = 	rad

	rad + 	coll
(2)

gives the fraction of states that deexcitate radiatively; equiv-
alently, if there are N excited atomic states in a given gas,
and these excited states only decay once, then there are
QN photons radiated once all excited states decay. We are
interested in the same quantity, the quantum efficiency of
photon production at hadronization.

The first step in calculating this efficiency is to determine
the matrix elements for photon production at hadronization.
First, we consider qq̄ → π0γ : the quarks are coupled to the
mesons through the ψ̄τ · πψ in the quark-meson model. The
spin-summed matrix element squared is

∑
|Mγπ0 |2 = 1/2(5e2/9)g2

qq̄π

{
16[p · k(p′ · k) − m2p · p′ + m2(p · k + p′ · k) − m4]/(4(p · k)2)

+ 2 × 16
[
(p · k − p · p′)(p′ · k − p · p′) + m4

q

]
/(4(p · k)(p′ · k))

+ 16[p · k(p′ · k) − m2p · p′ + m2(p · k + p′ · k) − m4]/(4(p′ · k)2)
}
. (3)

The factor of 1/2 in the front of this expression comes from the π0 being a superposition of up and down quarks; it can be
determined more carefully by examining the isospin matrices in the quark-meson model, but this will provide no great insight
compared with the previous statement. Here and in the following work, we ignore the degeneracy factors related to the colors
of the quarks, because they multiply all rates by the same factor and therefore will cancel out in ratios such as the quantum
efficiency.
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Similarly, the production of a single charged pion and a photon qq̄ → π±γ leads to the following matrix element squared:

∑
|Mγπ±|2 =

(
4e2g2

qq̄π/9

(2p · k)2
+ e2g2

qq̄π/9

(2p′ · k)2

)
16

[
(p′ · k)(p · k) + m2

q(p · k + p′ · k) − m2
qp

′ · p − m4
q

]

− e2gqq̄π(
2m2

q − m2
π + 2p · p′)2 16

(
p · p′ + m2

q

)(
2m2

q + 2p · p′ − p · k − p′ · k
)

− 2
2e2gqq̄π/9

(2p · k)(2p′ · k)
16

[
(p · k − p · p′)(p′ · k − p · p′) + m2

qp · p′]

+ 2
2e2gqq̄π/3(

2m2
q − m2

π + 2p · p′)(2p · k)
8
(
m2

q + p · p′)(2m2
q + 2p · p′ − p · k − 2p′ · k

)

+ 2
e2gqq̄π/3(

2m2
q − m2

π + 2p · p′)(2p′ · k)
8
(
m2

q + p · p′)(2m2
q + 2p · p′ − p′ · k − 2p · k

)
. (4)

Finally, as emphasized earlier, the matrix elements squared
for pion production without photons must be determined if we
are to estimate quantum efficiency. We approximate∑

|M2π0 |2 =
∑

|Mπ0π+|2 =
∑

|Mπ0π−||2,
which is exactly the approximation of isospin symmetry. The
matrix element squared and summed over quark spins is

∑
|M2π0 |2 = 2g4

qq̄π

[
(p · k − p′ · k)2

p · kp′ · k

+ 1 + m2(p · p′ − m2)

p · kp′ · k

]
. (5)

Thermal rates of production at T = 175 MeV

The matrix elements calculated in the previous section
are used in this section to determine the thermal production
rates of photons and pions. Using these rates, we make one
additional approximation: that at the point of hadronization,
the quarks coalesce once and only once to form hadrons. With
this assumption, the ratio of the thermal rates are effectively
branching ratios and can be compared directly to the ratios of
yields. If we did not make this approximation and instead as-
sumed that the quarks and hadrons coexisted for some extended
temperature range, then it would only be appropriate to inte-
grate the photon rates over some extended space-time volume.

Thermal rates at T = 175 MeV are used to determine
the quantum efficiency of photon production as the plasma
thermalizes. The rate integrated over quark and mesonic states
is, in general,

Ef

d	f

dk3
f

=
∫

d3p1

(2π )3(2E1)

d3p2

(2π )3(2E2)

d3kπ

(2π )3(2Eπ )

× f (E1)f (E2)|Mp1p2→f π |2[1 + f (Eπ )]

× (2π )4δ4(p1 + p2 − kf − kπ ). (6)

The factors of 2E come from the normalization of field
operators used to define the states in the matrix elements and,
when written in combination with the integral measures, make
Lorentz-invariant combinations. If the final-state photons and
pions were produced at a stage where their numbers were
roughly thermal, it would be appropriate to include Bose
enhancement in the determination of these rates. It is not clear
if it is appropriate to do this even for pions, but it is also
easy to check, using our methods, what effect including the
enhancement has. The effect of the enhancement becomes very
small with increasing momentum of final-state particles.

Integration over kπ and over one of the initial particle’s
azimuthal angle simplifies the integral into a four-dimensional
integral:

Ef

d3	

dk3
f

=
∫

d3kπ

(2π )32E3

d3p1

(2π )32E1

d3p2

(2π )32E2
fFD(E1)fFD(E2)

∑
|M|2(2π )4δ4(p1 + p2 − kf − kπ )

= 1

8(2π )4

∫
p1dp1√
m2

q + p2
1

p2dp2√
m2

q + p2
2

dθ1dθ2dφfFD(E1)fFD(E2)
∑

|M|2 δ(φ − φr ) + δ(φ + φr )

| sin(φr )| . (7)

In the final line of Eq. (7), the angle φ is the difference in the azimuthal angle between initial states 1 and 2, and φr is one of the
solutions to

cos(φr ) = 2m2
q + (

E2
f − m2

π − |k|2) + 2(E1E2 − E1Ef − E2Ef ) + 2(p1 · k + p2 · k)

2p1p2 sin(θ1) sin(θ2)
+ cot(θ1) cot(θ2).
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FIG. 4. The ratio of rates for two different choices of the effective
quark masses.

This formula is used to calculate numerically the rates of
both photon and pion production, near thermal freeze-out, in
the quark-meson model. With what should these results be
compared? The PHENIX Collaboration has measured both
the photon yields [15] and the π+ yields [16] in the 10%–20%
centrality class. The plot of these yields is shown in Fig. 2(a).
Here lies the utility of using rates as opposed to lifetimes: if
photons and pions were made exclusively by the processes in
Sec. II, then the ratio of these two experimental yields would be
equal to the ratio of the respective differential thermal rates. A
fit to the ratio of the experimentally measured yields is shown
in Fig. 2(b).

Using Eq. (7), the thermal rates can be easily calculated
after making the proper substitutions for the matrix element
squared. For photon production, this term is∑

|Mi→f γ |2 =
∑

|Mqq̄→π0γ |2 + 2
∑

|Mqq̄→π+γ |2.
The factor of 2 in the above equation comes from the matrix
element squared with a π− in the final state being identical to
the matrix element squared with a π+ in the final state. For
pion production, isospin symmetry is useful for simplifying
the following expression:∑

|Mi→f π0 |2 = 2
∑

|Mqq̄→2π0 |2 +
∑

|Mqq̄→π0π+|2

≈ 4
∑

|Mqq̄→2π0 |2.
The factor of 2 in front of the first process comes simply from
there being two neutral pions in the final state.

The ratio of the thermal production rates is shown in
Fig. 4. Here, the temperature is set to 175 MeV, every pion
mass is set to 139.57 MeV/c2, and two dramatically different
quark masses have been chosen, 140 and 40 MeV/c2. Near
the freeze-out temperature, the effective mass of quarks in
any effective description of nuclear physics is expected to
change rapidly, becaise the quarks are bad quasiparticles below
the transition and good quasiparticles at sufficiently high
temperatures. Both masses give similar results at high k, but
are different at low k where the radically different kinematical
cuts have a significant effect. We note that the simplest estimate
of this ratio, e2/g2

qq̄π ≈ 0.7%, is approximately one third
of the experimentally determined ratio near pT = 2 GeV/c.
The dotted curve shows the ratio of yields as discussed

in the Introduction (the fit is slightly different to be more
accurate near pT = 2.5 GeV). The production of photons at
hadronization does not dominate, but our results indicate that,
near pT = 2.5 GeV, it might be a contribution which should not
be left out by theorists seeking to explain experimental data.

Taking into account various effects will modify this calcu-
lation of the γ /π ratio: first, the ratio would increase if the
coexisting phase lasts long enough that mesons are created
and destroyed numerous times. Second, if processes such as
qq̄ → ρ → ππ were taken into account, the denominator
would increase and the estimate for the ratio would decrease.
Finally, the value of gqqπ might be lower than the value of 3.63
used here, which was motivated by the Goldberger-Treiman
relation [18]. In fact, the value of gqq̄π (T ) found in Ref. [19]
from fits to data for the decay of ρ mesons to dielectrons
is 2.97, significantly lower than the estimate used in this
article. This would lead to a significant enhancement of
the quantum efficiency of photon production, by a factor of
(3.63/2.97)2 = 1.5.

III. ENHANCED PRODUCTION OF EXCITED STATES

All deconfined quarks must eventually disappear and form
hadrons and other color singlets. At this transition to bound
states, one might imagine a quark and an antiquark beginning a
spiral around each other. The quark’s momenta and separation
determine the angular momentum and radial quantum number
of the bound state. At a temperature of 175 MeV, the density
of the plasma is such that a quark will on average form a
color singlet with an antiquark at a distance of 1.3 fm. This
is somewhat larger than a typical hadron. This suggests an
enhanced production of mesonlike bound states with J > 0.

To estimate the production of these states, we now must go
beyond the pointlike descriptions of mesons in the previous
section and use valence quark models for mesons. This will
require finding solutions to the Dirac equation in spherical
coordinates. A pedagogical review of these solutions is found
in Appendix A. For the following discussion, we call the vector
potential V (r), the scalar potential U (r), and we emphasize
that the a states have parity (−1)j−1/2 while the b states have
parity (−1)j+1/2.1 A good set of quantum numbers for these
states contains the radial number n, the angular momentum
quantum number j , the azimuthal quantum number m, and
parity. Our choice of the bag model in this instance is rather
arbitrary; we also try linear confining potentials and find results
which could differ by a factor of 2. Unfortunately, lattice
QCD calculations are not in a state where they can provide
detailed microscopic descriptions of excited states, let alone
transitions between these states, so valence quark models for
these transitions remain the best we can do. One weakness of
the valence quark model used here is the lack of magnetism,

1To be clear, the quantum numbers we use here are angular
momentum, the radial quantum number, and parity. Splitting the
eigenstates of these operators into sets of a and b states is done only
because the expressions for these eigenstates as spinors and functions
of x have the same form within these sets, not when looking at all the
states with the same parity.
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which should be a very important effect for nearly massless
quarks and antiquarks.

We treat the transition from quark to bound states as
adiabatic: here, time-dependent potentials change slowly
enough that the quantum numbers of a state are conserved.
The adiabatic limit suffers from an important flaw: it ignores
the collisions between quarks which may also change the
angular momentum states. Rather than attempt to estimate
this, we suggest that the yields of the hadrons described
with the cocktail be independently verified, partly for the
sake of understanding photon production. We estimate the
structure of the plasma near the transition: at the threshold
of hadronization, we approximate the quarks as massless
and free within some range, but also confined to form a
color singlet with an antiquark in a spherical volume. To
confine a particle in a spherical volume of radius R, U (r)
is needed (the temporal component of a vector field does
not confine massless particles). For massless Dirac particles
confined in an infinite spherical well where U (r) is zero
below R and infinite above R, the solutions to the radial
wave functions are A(r) = NJj−1/2(kr), a(r) = NJj+1/2(kr)
and B(r) = NJj+1/2(kr), b(r) = −NJj−1/2(kr), where Jj (x)
is the j th spherical Bessel function. The momentum k is
determined by requiring the current normal to the spherical
boundary of the well to be zero [interestingly, this is different
from requiring ψ(x) to be zero]: Jj+1/2(kr) − Jj−1/2(kr) = 0
for a states and Jj−1/2(kr) + Jj+1/2(kr) = 0 for b states. The
energy spectrum is listed in Bhaduri in units of 1/R [18].
This relativistic generalization of the infinite square well is
often called the “bag model,’ and is useful for describing some
aspects of the hadronic spectrum [20]. For the rest of the
article, we simply imagine hadronization as the shrinking of
this bag from a large size to approximately the radius of a
meson, ≈0.8 fm.

Using this, the energy spectrum of quarks confined to
a spherical volume can be calculated as a function of R,
the radius of the confining sphere, and thermal expectation
values can be calculated using this spectrum. We work at
T = 175 MeV. The average number of particles 〈N (R)〉 =∑

i
gi exp[−Ei (R)/T ]
1+exp[−Ei (R)/T ] approaches n∞ × 4

3πR3, the number den-
sity in the infinite limit times the volume, fairly quickly;
by R = 2 fm, these numbers are nearly the same. We find
the radius where there is on average one quark for each
antiquark of the opposite color to be very nearly 1.3 fm at this
temperature. In other words, the spatial structure of the plasma
can be approximated with confining spheres of radius R = 1.3
fm containing on average nine quarks and nine antiquarks,
which form nine color singlets (ignoring baryons).

We may now ask the following: what is the probability that
these nearly free quarks and antiquarks form bound states with
various quantum numbers? In the adiabatic transition, this is
estimated by looking at the quantum numbers of the quarks
and antiquarks before the transition. The thermal expectation
value for a quark to be in a given state is given by

〈Ni(R)〉 = gi

(
exp(−Ei/T )

1 + exp(−Ei/T )

)/ ∑
j

exp(−Ej/T )

1 + exp(−Ej/T )
.

(8)

TABLE I. The energies of various eigenstates of the quarks
confined to a sphere of radius 1.3 fm and the probability of a quark
to be found in that state at T = 175 MeV.

A(B) j n E (fm−1) 〈N〉
A 1/2 0 2.043 0.288
B 1/2 0 3.812 0.070
A 3/2 0 3.204 0.231
B 3/2 0 5.123 0.046
A 5/2 0 4.327 0.136
B 5/2 0 6.371 0.024
A 7/2 0 5.430 0.071
B 7/2 0 7.581 0.012
A 1/2 1 5.396 0.018
B 1/2 1 7.002 0.005
A 3/2 1 6.758 0.011

This is shown in Table I for some of the lowest energy states
and at T = 175 MeV. The adiabatic transition has led to
a significant enhancement of excited states compared with
the thermal expectation values associated with the various
mesons. This strongly suggests that the hadronic cocktail used
to determine the direct contribution to photon yields might be
significantly underestimating the component coming from the
decays of an hadrons.

Finally, the adiabatic limit is only one extreme limit for
time-dependent perturbation theory. The other limit is the
“sudden approximation,” where free quarks and antiquarks
are immediately subjected to a confining potential. This is
a very interesting limit theoretically for relativistic wave
equations: the vacuum of the field theory becomes nontrivial to
define. A universal feature of all relativistic field theories with
acceleration is the production of particle-antiparticle pairs; for
a pedagogical review of this see Ref. [21]. We considered this
extreme limit as well, for the case of massless quarks subjected
suddenly to a confining potential; the results are summarized
in Appendix B.

IV. ELECTROMAGNETIC TRANSITIONS
OF THE EXCITED STATES

These excited states must ultimately decay. Electromag-
netic transitions are possible and will contribute to the
production of photons at freeze-out. Ideally, one would
estimate the enhancement of excited states at freeze-out, map
the quantum numbers of these excited states to measured
hadronic states, and use this result to modify the cocktail
contribution to inclusive photon production. However, the lack
of measurements of the electromagnetic decays of these states
and in some cases, the masses of these states, makes such
a calculation difficult at the moment. We end this work by
estimating the rates for spontaneous emission, using the same
models for mesons used in Sec. III.

The decay rate for a given transition, 	i→f,k, is found using
perturbation theory,

	i→f,k = k

3π
|〈f |	αeik·r |i〉|2. (9)
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Here 	α are the α matrices used in the Dirac representation of
the Dirac equation,

	α =
(

0 	σ
	σ 0

)
. (10)

This equation was simplified by applying the dipole ap-
proximation, eik·r = 1, which unlike the case for atomic or
nuclear transitions, is not a particularly good approximation for
massless quarks. With this approximation decays are confined
to final states with j within one unit of the decaying state,
and the new state must have opposite parity. If the dipole

approximation were relaxed, the allowed matrix elements
would be reduced by the phase factor, but transitions to other
states would then be possible. It should also be emphasized
that this picture ignores the fact that the initial and final
states are complex many-body states and that the true matrix
element might be significantly lower (as is represented by
spectroscopic factors). Nonetheless this provides a start-
ing point for understanding the potential impact of these
decays.

Using the wave functions in Appendix A, the matrix
elements can be significantly simplified. Summing over final-
state polarizations mf ,

	i→f = ke2

3π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2jf +1
ji

[∫ ∞
0 r2draf (r)Ai(r)

]2
, jf = ji − 1,a → a,

2jf +1
ji

[∫ ∞
0 r2drBf (r)bi(r)

]2
, jf = ji − 1,b → b,

1
ji (ji+1)

{∫ ∞
0 r2dr[(ji + 1)Af (r)bi(r) − jiaf (r)Bi(r)]

}2
, jf = ji,b → a,

1
ji (ji+1)

{∫ ∞
0 r2dr[(ji + 1)bf (r)Ai(r) − jiBf (r)ai(r)]

}2
, jf = ji,a → b,

2jf +1
jf

[∫ ∞
0 r2drAf (r)ai(r)

]2
, jf = ji + 1,a → a,

2jf +1
jf

[∫ ∞
0 r2drbf (r)Bi(r)

]2
, jf = ji + 1,b → b.

(11)

The charge, e needs to be altered to fit the charge of the
given quark that is undergoing the transition.

The rates for these transitions can now be determined with
these approximations. Table II shows the numerical results for
some of the transitions among the energy eigenstates when the
potential is the Cornell potential. When �n = 0, they are on
the order of 0.001 fm−1. Because the total rate of decay of
each of these states is similar to 1 fm−1, the branching fraction
into inclusive photons is roughly one-tenth of a percent.

If the population of states is given, one can then calculate
the rate to emit photons of a given energy per excited state.
Combined with an estimate of the density of states per unit
volume, one can find d	/dEd4x. The density of quarks would
be ≈2.1 per cubic fm for light free quarks, which suggests
the density of proto-hadrons is ≈1 fm−3. The photon yield per
volume binned by energy can then be generated if one assumes
that the rate roughly exists for a given time, which here we will
assume that time is 3 fm/c. Finally, one can estimate the γ /π+
ratio from entropy arguments. Lattice calculations [22] show

TABLE II. The rates for a representative sample of transitions
from (n1,j1) → (n2,j2). The factor of 1/q2 represents the fractional
charge of the quark or antiquark.

j1 n1 j2 n2 	/q2

3/2 0 1/2 0 0.003 178
3/2 1 1/2 0 7.553e-05
3/2 1 1/2 1 0.001 413
3/2 2 1/2 2 0.001 010
3/2 3 1/2 3 0.000 821 5
3/2 4 1/2 4 0.000 708 7
3/2 4 7/2 3 2.259e-06
9/2 4 7/2 4 0.000 759 1

the entropy is 8/fm3 when T = 175 MeV. In the final state,
there are approximately 4.5 units of entropy per particle and
about 20% of the particles are positive pions. This suggests
that 1 fm3 of this matter should be responsible ≈0.3 positive
pions per cubic fm.

We consider an adiabatic transition where the radius of the
confining bag R slowly changes from 1.3 to 0.8 fm. In Fig. 5,
the rates for photon production in two different scenarios are
compared. In the curve marked “adiabatic,” the populations
of excited states are determined by thermal expectation values
before the phase transition where the bag shrinks, when R =
1.3 fm, with the energy levels determined by this large radius.
In the curve marked “thermal,” the populations of excited states
are determined by the energy levels after the bag shrinks, when
R = 0.8 fm.

FIG. 5. The photon production rates for two different populations
of excited bound states.
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Two facts emerge from examining these curves. First of all,
the adiabatic transition to hadrons has led to an enhancement of
photon yields, exactly as described intuitively at the beginning
of Sec. III. Second, there is some production of photons
predicted in our valence quark model just coming from the
excitations of hadrons, in a thermal, equilibrated hadron gas,
as shown by the curve marked “thermal.” Depending on the
(temperature-dependent) masses of heavy mesons in hadron
gas, it might be necessary to include their decay through
photon emission when considering photon production at the
late stage of the collision. The ratio of the photon yields in
Fig. 2(a) to the rate per unit volume in Fig. 5 at pT = 2.5
GeV is ≈(10 fm)4, suggesting that the decays of excited states
enhanced at freeze-out might constitute a few tenths of the
production of “direct photons” near this momentum.

V. CONCLUSIONS

Photons must be created during the recombination stage of
heavy-ion collisions. In this article, we used a simplified model
to show roughly the magnitude of this production. The yield
falls short of dominating in any range of transverse momentum;
however, it is nevertheless significant enough in the 2-3 GeV
range so that further investigation is necessary. Significant
uncertainty exists in our estimation, owing to the nature of the
physics in the problem: we are estimating photon production
in a thermal quark-meson model exactly where the parameters
of the model should be changing rapidly, reflecting the change
in the degrees of freedom from quarks to hadrons.

There is also theoretical evidence for enhancement of J > 0
and radially excited mesonic states above thermal expectations
at the point of hadronization. These will decay, also possibly
by electromagnetic transitions which produce light at energies
of approximately 1 GeV.

Finally, we exploited the valence quark model we used
to describe mesons to examine the electromagnetic radiation
of hadronic gas. The model had the strength of including
all excited states, and the weakness shared by all simplified
models for hadrons where the states do not exactly match the
hadronic spectrum.

The photons produced at the point of recombination will
have an elliptic flow similar to that of the hadrons detected
in heavy-ion collisions. While the yield of these photons is
not enough immediately to explain the large measured v2 of
photons, it is large enough that it might be part of the eventual
explanation of this effect.

We tried to be comprehensive by describing all the possible
effects of the medium on this production of radiation. Signif-
icant areas for improvement of these calculations exist. First,
the time scales over which quarks form bound states need to be
examined carefully. Second, the models for mesons should be
improved, perhaps with the inclusion of chromomagnetism.
Next, because these calculations have implications not just
for photons but also for the yields of heavy mesons, the
calculations in Sec. III should be checked against and perhaps
superseded simply by experimental measurements of the
production of these states in heavy-ion collisions. Finally, the
radiated photon’s momentum is large compared with the bind-

ing energy of mesons, making the inclusion of electromagnetic
form factors an important and relatively easy next step.
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APPENDIX A: THE DIRAC EQUATION IN SPHERICAL
COORDINATES

The solutions to the Dirac equation in spherically symmet-
ric potentials have been worked out pedagogically in a number
of references [18,23]. It is possible to make simultaneous
eigenstates of energy, J 2, Jz, and parity. In the Dirac rep-
resentation, the four-component wave functions have the form

ψa,n,j (r) =
⎛
⎝ An,j (r)Yj,m

j− 1
2

−ian,j (r)Yj,m

j+ 1
2

⎞
⎠, (A1)

where ψa,n,j (r) has parity (−1)j− 1
2 , and

ψb,n,j (r) =
⎛
⎝ Bn,j (r)Yj,m

j+ 1
2

−ibn,j (r)Yj,m

j− 1
2

⎞
⎠, (A2)

where ψb,J (r) has parity (−1)j+ 1
2 , and YJ

� are two-component
spinors,

Y l± 1
2 ,m

� ≡ 1√
2l + 1

( √
l ± m + 1/2Y

m− 1
2

�

±√
l ∓ m + 1/2Y

m+ 1
2

�

)
.

As usual, the eigenvalue of Ĵ 2 is j (j + 1)�2 and of Ĵz is m�.
However, the orbital and intrinsic angular momentum quantum
numbers cannot form a set of commuting observables, not
even in the case of Dirac particles without electric charge,
which is not the case for the Dirac equation’s nonrelativistic
limit, the Schrödinger equation.

The radial functions An,j (r) and an,j (r) are solutions to the
following equations:

[E − V (r) − m − U (r)]An,j (r)

= a′
n,j (r) + (j + 3/2)an,j (r)

r
, (A3)

[E − V (r) + m + U (r)]an,j (r)

= −A′
n,j (r) + (j − 1/2)An,j (r)

r
. (A4)

The equations for Bn,j (r) and bn,j (r) yield solutions with the
same n, j, and m quantum numbers but opposite parity:

[E − V (r) − m − U (r)]Bn,j (r)

= b′
n,j (r) − (j − 1/2)bn,j (r)

r
,

[E − V (r) + m + U (r)]bn,j (r)

= −B ′
n,j (r) − (j + 3/2)Bn,j (r)

r
.
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Here, there are two possible spherically symmetric potentials:
the scalar potential U (r), which acts very much like a position-
dependent mass for the particles and antiparticles, and the
vector potential V (r), which is one component of the potential
coming from a gauge interaction.

For a particle with energy E, the antiparticle solution of
energy −E is found by solving the equations with the sign of
the vector potential V (r) reversed but without changing the
sign of the scalar potential U (r) nor the mass.

In the bag model for hadrons, quarks are confined to
spherical volumes where the probability of finding a quark
outside of some radius R vanishes. Some work with the
equations above shows that this is impossible simultaneously
for particle and antiparticle solutions using a vector potential,
but can be done with the scalar potential U (r) (note how
this matches the intuition of the scalar potential being a
position-dependent mass, which can make both particles and
antiparticles heavy, while Coulomb potentials affect particles
with different charges differently). For the bag model used in
this work, the scalar potential is infinite for r > R, zero inside,
and there is no vector potential. At the boundary, the solutions
obey the boundary condition

iγ μnμψ(R) = ψ(R), (A5)

which comes from forcing the Dirac field’s probability current
ψ̄γ μψ to be zero at the boundary. Note how the lack of a
derivative term in the probability current for a Dirac particle
potentially leads to discontinuities at boundaries.

Given that there is zero potential inside, the solutions are
given in terms of spherical Bessel functions,

An,j (r) = Jj−1/2(Enr), an,j (r) = Jj+1/2(Enr),

Bn,j (r) = −Jj+1/2(Enr), bn,j (r) = Jj−1/2(Enr). (A6)

For each J and parity (A,a solutions vs B,b solutions) there are
numerous values of En that satisfy the boundary conditions;
they are indexed by n, which increases by one with each
additional node. We emphasize one more time that these
quantum numbers vary from the usual nonrelativistic problem
in that the orbital angular momentum is not a good quantum
number, and the upper and lower components of the wave
function behave as � = J − 1/2 or � = J + 1/2 for the A,a
solutions and as � = J + 1/2 or � = J − 1/2 for the B,b
solutions.

APPENDIX B: THE “SUDDEN APPROXIMATION” AND
PARTICLE PRODUCTION IN QUANTUM FIELD

THEORIES WITH TIME-DEPENDENT POTENTIALS

Hadronization is, in the most abstract sense, a problem
of time-dependent potentials: deconfined quark states are
subjected to a confining potential, leading to the production
of hadrons and, in this article, photons. The formalism
most familiar to physicists for dealing with time-dependent
potentials is the Dyson series in time-dependent perturbation
theory. However, when starting work on a given problem,
consideration of the extreme limits is helpful and, occasionally,
all that is needed.

In the main narrative of this article, we considered
hadronization to be an adiabatic process: the potential changes
from negligible to confining slowly enough so that the
quantum numbers of the various quark states are conserved.
The opposite limit is the “sudden approximation,” where the
potential turns on instantaneously. In this limit, the wave
function is conserved (the intuition is that not enough time
has passed for the probability distribution to change). In
nonrelativistic quantum mechanics, this approximation is very
useful. One simply takes the wave function right before the
potential turns on and determines the expression for this wave
function in terms of the new eigenfunctions of the system once
the potential has turned on; one then knows the dynamics of
the system into the future. In relativistic field theories, the
situation is richer physically, as we now demonstrate.

We examined the particle production in the sudden approx-
imation using central potentials which phenomenologically
describe quarks in mesons. The massless Dirac equation
was solved numerically for the lowest energy (−1)j− 1

2 -parity
eigenstates when j = 1

2 , 3
2 , 5

2 , 7
2 , and 9

2 . To be physically
relevant to quarks forming hadrons, the central potentials
were set as V (r) = −0.383/r and U (r) = 5.73r/fm2; the
potential U (r) confines all solutions to this equation while
V (r) is the Coulomb potential appropriate for weakly coupled
gauge theories. These are the solutions appropriate for quarks
suddenly forced into bound states by a rapid transition to low
temperatures. Meanwhile, massless quarks above deconfine-
ment have, in the Dirac representation of the 	 matrices, the
normalized solution for a left-handed particle (not antiparticle)
moving freely in the z direction:

ψk(z,t) = 1√
2(2π )3/2

exp(−i|k|t + ikz)

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠. (B1)

If the potentials suddenly change from zero to the
Coulombic and confining potential terms described above,
one encounters a problem that is common when working with
quantum fields in curved space time: it becomes impossible to
choose a vacuum which is “empty” both when the potential is
zero and when it is the confining Cornell potential. What was
the vacuum state for free massless Dirac particles is now an
excited state with particles and antiparticles described by the
ψa and ψb wave functions. Very abstractly, where the subscript
“1” indicates the free theory and the subscript “2” the confined
theory, the expectation for the number of particles of type “2”
after the vacuum of type “1” is subjected to the confining
potential given by

〈0|1b̂i†
2 bi

2|0〉1 =
∑
j,k

〈0|1
(
αij b

j
1 + βij b

j
1

)†(
αikb

k
1 + βij b

k
1

)|0〉1

=
∑

j

βijβ
†
ji ,

where αij and βij are the Bogoliubov coefficients, the index j
represents labels for both momentum and spin and the index
i represents the quantum numbers of the a and b states, and
no sum over i is represented by the repeated index. When the
initial state is not the vacuum but instead contains a free Dirac
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particle, the expectation for the number of particles becomes

〈0|1bl
1(k)b̂i†

2 bi
2b

l†
1 (k)|0〉1 = |βil|2 +

∑
j

βijβ
†
ji .

In nonrelativistic quantum mechanics (where there is no
particle production by potentials breaking Poincare symme-
try), the quantity |βil|2 would simply be the probability that
a plane wave would be measured in the energy eigenstate
described by the ψa(b) wave functions:

Pk→n,J,M,a(b) =
∣∣∣∣
∫

d3xψ
†
k (z)ψn,J,M

a(b) (x)

∣∣∣∣
2

. (B2)

More explicitly, for the a states,

Pk→n,J,M,a =
∣∣∣∣
∫ ∞

0
r2dr

∫ π

0
sin(θ )dθ

∫ 2π

0
dφ

1√
2

1

(2π )3/2

× exp(−ikz)

[√
J + M

2j
A(r)YM−1/2

J−1/2 (θ,φ)

− i

√
J − M + 1

2(J + 1)
a(r)YM−1/2

J+1/2 (θ,φ)

]∣∣∣∣
2

.

Here, the z direction was chosen to coincide with the
plane wave’s momentum k. This probability should then
be convolved with the thermal distribution of quarks at

 0.01

 0.1

 1

 2.5  3  3.5  4  4.5  5  5.5  6  6.5  7  7.5
E [1/fm]

exp(-(E-E0)/T)
Γ/Γ0

FIG. 6. The ratio exp(−Ej/T )/ exp(−E1/2/T ) of Boltzmann
factors for the lowest energy a state of a given j , compared with
the ratio of thermal rates of production of these states.

T = 175 MeV and summed over m states:

	n,J =
∫

d3p exp(−p/T )
∑
m

∣∣∣∣
∫

d3xψ
†
k (x)ψn,J,M

a (x)

∣∣∣∣
2

.

(B3)

In Fig. 6, the ratio of the thermal average of the probability
of a massless quark with momentum 2 fm−1 to the probability
of being found in the j = 1/2 lowest a state is compared
with the ratio of the Boltzmann factor at T = 175 MeV to
the Boltzmann factor of this ground state. Comparing these
ratios, instead of just comparing the quantum-mechanical and
thermal probabilities, spares us from having to calculate the
partition function for a particle in these potentials. The ratios
by definition agree for the ground state, while the J > 1/2
states show significant enhancement above the thermal value.
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