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Chiral symmetry restoration in heavy-ion collisions at intermediate energies

A. Palmese,1 W. Cassing,1 E. Seifert,1 T. Steinert,1 P. Moreau,2 and E. L. Bratkovskaya2,3

1Institut für Theoretische Physik, Universität Giessen, Germany
2Institute for Theoretical Physics, Johann Wolfgang Goethe Universität, Frankfurt am Main, Germany

3GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
(Received 14 July 2016; revised manuscript received 15 September 2016; published 24 October 2016)

We study the effect of the chiral symmetry restoration (CSR) on heavy-ion collisions observables in the energy
range

√
sNN = 3–20 GeV within the parton-hadron-string dynamics (PHSD) transport approach. The PHSD

includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic
medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt
different parametrizations of the nuclear equation of state from the nonlinear σ -ω model, which enter in the
computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our
calculations. For the pion-nucleon � term we adopt �π ≈ 45 MeV, which corresponds to some world average.
Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion
collisions at

√
sNN = 3–20 GeV, realizing an increase of the hadronic particle production in the strangeness

sector with respect to the nonstrange one. We identify particle abundances and rapidity spectra to be suitable
probes in order to extract information about CSR, while transverse mass spectra are less sensitive. Our results
provide a microscopic explanation for the so-called horn structure in the excitation function of the K+/π+ ratio:
The CSR in the hadronic phase produces the steep increase of this particle ratio up to

√
sNN ≈ 7 GeV, while

the drop at higher energies is associated to the appearance of a deconfined partonic medium. Furthermore, the
appearance and disappearance of the horn-structure are investigated as functions of the system size and collision
centrality. We close this work by an analysis of strangeness production in the (T ,μB ) plane (as extracted from
the PHSD for central Au+Au collisions) and discuss the possibilities to identify a possible critical point in the
phase diagram.

DOI: 10.1103/PhysRevC.94.044912

I. INTRODUCTION

The main goal of heavy-ion collision (HIC) physics is the
study of the behavior of nuclear matter at high temperatures
and/or high densities. In particular, the major interest is the
investigation of the nuclear-matter phase diagram as a function
of temperature and baryon chemical potential. According to
quantum-chromodynamics (QCD), at large temperatures and
densities the hadrons cannot survive anymore as bound states
and they dissolve, forming the so-called quark-gluon plasma
(QGP). At Relativistic Heavy-Ion Collider (RHIC) energies
the creation of a QGP, identified as an almost perfect fluid [1]
has been proven experimentally for the first time. Actually, the
properties of this deconfined state of matter are still debated,
as well as the phase boundaries to the hadronic phase. In order
to shed some light on this issue, many heavy-ion experiments
have been performed at the Super-Proton Synchrotron (SPS),
RHIC, and the Large Hadron Collider (LHC) and will be
performed in the future at the Facility for Antiproton and Ion
Research (FAIR) as well as the Nuclotron-Based Ion Collider
Facility (NICA). The crucial challenge is to identify in the
final particle distributions those signatures which allow us
to disentangle the QGP contribution, which is impossible to
observe directly or independently.

The strange particle production has always been suggested
as one of the most sensitive observables that could indicate
the creation of a QGP during the early stages of a HIC. The
earliest suggested signature is the strangeness enhancement in
A + A collisions with respect to elementary p + p collisions
[2,3]. Gazdzicki and Gorenstein [4] proposed that a sharp

rise and drop in the excitation function of the K+/π+ ratio
(so-called horn) should show up due to the appearance of
a QGP phase at a center-of-mass energy

√
sNN ∼ 7 GeV.1

Several statistical models [5–7] have succeeded in reproducing
the trend of the experimental observation of the K+/π+
ratio and other strange to nonstrange particle ratios, but they
can provide only a statistical description of the heavy-ion
collision process. On the other hand there was no conclusive
interpretation of the horn from dynamical approaches for HIC,
like microscopic transport models [8–10]. Only recently, the
parton-hadron-string dynamics (PHSD), a transport approach
describing HIC on the basis of partonic, hadronic, and string
degrees of freedom, obtained a striking improvement on this
issue when including chiral symmetry restoration (CSR) in the
string decay for hadronic particle production [11]. Within the
PHSD approach it has been suggested that the horn feature
emerges in the energy dependence of the K+/π+ ratio, both
due to CSR, which is responsible for the rise at low energies,
and to the appearance of a deconfined partonic medium at
higher energies, which is responsible for the drop at top SPS
energies.

Apart from deconfinement, the chiral symmetry restoration
addresses another aspect of the QCD phase diagram in the
(T ,μB) plane as an additional transition between a phase
with broken and a phase with restored chiral symmetry.
As in case of the QCD deconfinement phase transition, the

1In this work we adopt natural units; hence � = c = 1.
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boundaries of the CSR phase transition line are not well known.
Lattice QCD (lQCD) calculations show that at vanishing
baryon chemical potential μB = 0 the CSR takes place at
roughly the same critical temperature and energy density as
the deconfinement phase transition, which is a crossover. At
finite baryon chemical potential lQCD calculations cannot be
performed due to the sign problem and one must rely on
effective models (or extrapolations) in order to study the QCD
phase transitions [12–16]. Different models support the idea
that at finite chemical potential a partially restored phase is
achieved before the deconfinement occurs [17–19]. In order to
distinguish the two phases of such a transition, effective models
use the scalar quark condensate 〈q̄q〉 as an order parameter. As
the baryon density and temperature increase, the scalar quark
condensate 〈q̄q〉 is expected to decrease from a nonvanishing
value in the vacuum to 〈q̄q〉 ≈ 0 which corresponds to CSR.
Since 〈q̄q〉 is not a measurable quantity, it is crucial to
determine experimental observables which are sensitive to this
feature. Dilepton spectroscopy has been in the focus in this
respect since in a chirally restored phase the spectral functions
of the ρ and a1 mesons should become identical. However, no
clear evidence has been achieved so far [20]. On the other hand,
the strangeness production at alternating-gradient synchrotron
(AGS) and lower SPS energies was suggested to be a signature
of CSR [11].

In this work we will extend the analysis in Ref. [11] and
perform a systematic study within the PHSD approach on
effects of the CSR on final particle distributions in HICs in the
energy range

√
sNN = 3–20 GeV. The PHSD is particularly

suited to this aim since it includes both hadronic and partonic
degrees of freedom [21] and has been extensively used to
describe HIC observables from SPS to LHC energies [22–24].

This study is organized as follows: In Sec. II we briefly
recall the basic ingredients of the PHSD approach, while
in Sec. III we illustrate the string fragmentation included in
PHSD and the most recent extension of this particle production
mechanism to incorporate essential aspects of chiral symmetry
restoration. Whereas in Ref. [11] the focus has been on the
effects of CSR and in particular of the partonic phase, we here
also discuss the sensitivity of our results on different parameter
settings for the nuclear equation of state (EoS) within the
nonlinear σ -ω model and examine the role of three-meson
channels for strangeness production (3M ↔ BB̄). In Sec. IV
we present the calculated results from PHSD—with and
without the inclusion of CSR—for the particle rapidity spectra
incorporating different nuclear equations of state in order to
investigate the uncertainties of our approach. In addition to
Ref. [11] we evaluate the transverse mass spectra for protons,
pions, kaons, and antikaons from central collisions of heavy
systems in the energy range from 2 to 158 A GeV with a
special focus on the strange particle production. The excitation
functions for the ratios K+/π+, K−/π−, and (� + �0)/π ,
together with their uncertainties, complete Sec. IV, where a
comparison with experimental data is performed wherever
possible. In Sec. V we explore further new aspects of CSR
in heavy-ion collisions, i.e., the system size and the centrality
dependence of strange particle yields and ratios. In Sec. VI we
focus on the equilibrium stages of the time evolution of central
Au+Au collisions in connection to strangeness production in

the (T ,μB) plane and discuss the perspectives to identify a
critical point in the phase diagram. We conclude this work
with a summary in Sec. VII.

II. REMINDER OF THE PHSD TRANSPORT APPROACH

The parton-hadron-string dynamics (PHSD) is a micro-
scopic covariant dynamical approach for strongly interacting
systems in and out of equilibrium [21,22]. It is a transport
approach which goes beyond the quasiparticle approximation,
since it is based on Kadanoff-Baym equations for the Green’s
functions in phase-space representation in the first-order gradi-
ent expansion [25,26]. Including both a hadronic and a partonic
phase as well as a transition between the effective degrees
of freedom, PHSD is capable of describing the full time
evolution of a relativistic heavy-ion collision. The theoretical
description of the partonic degrees of freedom (quarks and
gluons) is realized in line with the dynamical-quasiparticle
model (DQPM) [26], which reproduces lQCD results in
thermodynamical equilibrium and provides the properties of
the partons, i.e., masses and widths in their spectral functions.
In equilibrium the PHSD reproduces the partonic transport
coefficients such as shear and bulk viscosities or the electric
conductivity from lQCD calculations as well [27].

An actual nucleus-nucleus collision in PHSD follows the
following steps:

(1) Primary hard scatterings between nucleons take place
and produce excited color-singlet states, denoted by
so-called strings (as described within the FRITIOF Lund
model [28] and realized also in PYTHIA6.4 [29]). These
strings decay into prehadrons with a formation time
τf ∼ 0.8 fm/c and leading hadrons, which originate
from the string ends and can reinteract with hadrons
almost instantly with reduced cross sections (according
to the constituent quark number).

(2) In the case in which the local energy density is above the
critical value of εc ∼ 0.5 GeV/fm3, the deconfinement
is implemented by dissolving the newly produced
hadrons into the massive colored quarks and antiquarks
and mean-field energy from the DQPM.

(3) Within the QGP phase, the partons (quarks, antiquarks,
and gluons) scatter and propagate in a self-generated
mean-field potential. They are described as off-shell
quasiparticles with temperature-dependent masses and
widths, which are given by the DQPM.

(4) The expansion of the system is associated to a decrease
of the local energy density and, once the local energy
density becomes close to or lower than εc, the massive
colored off-shell quarks and antiquarks hadronize to
colorless off-shell mesons and baryons. The hadroniza-
tion process is defined by covariant transition rates and
fulfills the energy momentum and quantum number
conservation in each event.

(5) In the hadronic corona as well as in the late hadronic
phase, the particles are still interacting and propagating.
Elastic and inelastic collisions among baryons, mesons,
and resonances are implemented in PHSD and the
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corresponding backward reactions are included
through detailed balance for all channels.

We further note that the pure hadronic phase in PHSD
is equivalent to the hadron-strings dynamics (HSD) model
[30]. Accordingly, the comparison between PHSD and HSD
calculations allows us to disentangle the role of the QGP phase
in heavy-ion collisions. Even at low center-of-mass energies
(
√

sNN ∼ 3 GeV) the PHSD and the HSD results slightly differ
due to the appearance of QGP droplets in central cells of the
system, which are characterized by high baryon and energy
densities.

The PHSD approach has been tested for different colliding
systems (p + p, p + A, A + A) in a wide range of bombarding
energy, from AGS to LHC energies, and has been able to
describe a large number of experimental observables, such as
charged particle spectra, collective flow coefficients vn, and
electromagnetic probes such as photons and dileptons [27].
More recently, in Ref. [11], it has been also shown to provide a
microscopic description of the maximum in the K+/π+ ratio
in central nucleus-nucleus collisions. In the latter work we
also found that the inclusion of CSR in the hadronic sector via
string decay is crucial in order to reproduce the strangeness
enhancement at AGS and lower SPS energies.

III. STRING FRAGMENTATION IN PHSD

A. Basic concepts

The string formation and decay represents the dominant
particle-production mechanism in nucleus-nucleus collisions
for bombarding energies from 2 to 160 A GeV. In PHSD, the
primary hard scatterings between nucleons are described by
string formation and decay in the FRITIOF Lund model [28]. A
string is an excited color-singlet state, which is composed of
two string ends corresponding to the leading constituent quarks
of the colliding hadrons and a color flux tube in between. As
the string ends recede, virtual qq̄ or qqq̄q̄ pairs are produced in
the uniform color field, breaking the string. Finally, the string
decays into mesons or baryon-antibaryon pairs with formation
time τf ∼ 0.8 fm/c (in the rest frame of the string).

In the string decay, the flavor of the produced quarks is
determined via the Schwinger formula [29,31], which defines
the production probability of massive ss̄ pairs with respect to
light flavor production (uū,dd̄) pairs:

P (ss̄)

P (uū)
= P (ss̄)

P (dd̄)
= γs = exp

(
−π

m2
s − m2

u,d

2κ

)
, (1)

with κ ≈ 0.176 GeV2 representing the string tension and
mu,d,s denoting the constituent quark masses for strange and
light quarks. For the constituent quark masses mu ≈ 0.35 GeV
and ms ≈ 0.5 GeV in the vacuum, the production of strange
quarks is suppressed by a factor of γs ≈ 0.3 with respect to
the light quarks, which is the default setting in the FRITIOF

routines. The relative production factors in PHSD/HSD have
been readjusted in 1998 as follows [8]:

u : d : s : uu =
{

1 : 1 : 0.3 : 0.07 at SPS to RHIC;
1 : 1 : 0.4 : 0.07 at AGS energies. (2)

The probability ratio γs has been increased to 0.4 at AGS
energies in order to correctly reproduce the strangeness yield
for p + Be collisions at AGS energies [8]. A smooth transition
between the two values of γs is ensured by a linear interpolation
as a function of the center-of-mass energy

√
s.

A further ingredient to fix the rapidity distribution for
the newly produced hadrons is the fraction of energy and
momentum that they acquire from the decaying string. This
is defined by the fragmentation function f (x,mT ), which is
the probability distribution for a hadron with transverse mass
mT to be produced with an energy-momentum fraction x from
the fragmenting string:

f (x,mT ) ≈ 1

x
(1 − xa) exp

(−b m2
T /x

)
, (3)

where a = 0.23 and b = 0.34 GeV−2 as reliable settings for
p + p and p + A collisions. As becomes evident from Eq. (3)
the meson mT scaling from string decay is included by default.

B. Modeling of the chiral symmetry restoration

In Ref. [11] the PHSD has been extended to include
CSR in the string decay in a hadronic environment of finite
baryon and meson density. Here we recall the main aspect
of this extension which is based on the Hellman-Feynman
theorem for the scalar quark condensate [32]. Accordingly, a
linear decrease of the scalar quark condensate 〈q̄q〉—which is
nonvanishing in the vacuum due to a spontaneous breaking of
chiral symmetry—is expected with baryon density ρB towards
a chiral symmetric phase characterized by 〈q̄q〉 ≈ 0 [33,34].
This decrease of the scalar quark condensate is expected also
to lead to a change of the hadron properties with density
and temperature, i.e., in a chirally restored phase the vector
and axial vector currents should become equal [35–39]; the
latter implies that, e.g., the ρ and a1 spectral functions should
become identical (as addressed above in the context of dilepton
production). Since the scalar quark condensate 〈q̄q〉 is not
a direct observable, its manifestations should also be found
indirectly in different hadronic abundances and spectra or
particle ratios like K+/π+,(� + �0)/π−, etc., as advocated
in Ref. [11].

In leading order the scalar quark condensate 〈q̄q〉 can be
evaluated in a dynamical calculation as follows [40]:

〈q̄q〉
〈q̄q〉V = 1 − �π

f 2
π m2

π

ρS −
∑

h

σhρ
h
S

f 2
π m2

π

, (4)

where σh stands for the σ commutator of the relevant mesons
h, 〈q̄q〉V represents the vacuum condensate, �π ≈ 45 MeV
is the pion-nucleon � term, and fπ and mπ are the pion
decay constant and pion mass, respectively. Note, however,
that the value of �π is not so accurately known; a recent
analysis points towards a larger value of �π ≈ 59 MeV
[41,42] while actual lQCD results [43] suggest a substantially
lower value. Accordingly, our following calculations—based
on �π = 45 MeV—have to be taken with some care, although
in some sense it represents a world average (cf. Fig. 3 in
Ref. [44]). According to the light quark content, the � term for
hyperons is decreased by a factor of 2/3 for � and � hyperons
and by a factor of 1/3 for � baryons. Furthermore, for mesons
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made out of light quarks and antiquarks, we use σh = mπ/2,
whereas for mesons with a strange (antistrange) quark we
consider σh = mπ/4. We mention here that improved results
for the σ commutator for kaons can be obtained from chiral
perturbation theory as in Ref. [45] and alternative assumptions
for nonpseudoscalar mesons can be employed as suggested,
e.g., by Cohen et al. in Ref. [32]. In view of the subleading
contributions of these mesons to the ratio in Eq. (4) we keep
the simple estimates noted above for our present study and
look forward to a clarification of the present tension between
the results from lQCD and dispersive approaches [46].

In Eq. (4), the quantities ρS and ρh
S denote the nucleon

scalar density and the scalar density for a meson of type h,
respectively. The scalar density of mesons h is evaluated in the
independent-particle approximation as

ρh
S (x) = (2s + 1)(2τ + 1)

(2π )3

∫
d3p

mh√
p2 + m2

h

fh(x,p) , (5)

where fh(x,p) denotes the meson phase-space distribution
[x = (r,t)] and s,τ refer to the discrete spin and isospin
quantum numbers, respectively. Moreover, the vacuum scalar
condensate 〈q̄q〉V = 〈ūu〉V + 〈d̄d〉V ≈ 2〈ūu〉V can be com-
puted according to the Gell-Mann-Oakes-Renner (GOR)
relation [47,48],

f 2
π m2

π = − 1
2

(
m0

u + m0
d

)〈q̄q〉V , (6)

and gives 〈q̄q〉V ≈ −3.2 fm−3 for the bare quark masses m0
u =

m0
d ≈ 7 MeV. Finally, in Eq. (4) the nucleon scalar density

ρS has to be determined in a suitable model with interacting
degrees of freedom in order to match our knowledge on the
nuclear EoS at low temperature and finite density. A proper
(and widely used) approach is the nonlinear σ -ω model for
nuclear matter, where ρS is defined as

ρS(x) = gn

(2π )3

∫
d3p

m∗
N√

p∗2
N + m∗2

N

fN (x,p), (7)

where m∗
N and p∗

N denote the effective mass and momentum,
respectively, and fN (x,p) is the phase-space occupation of a
nucleon while the degeneracy factor is gn = 4. In fact, in the
nonlinear σ -ω model the nucleon mass is modified due to the
scalar interaction with the medium:

m∗
N (x) = mV

N − gsσ (x), (8)

where mV
N denotes the nucleon mass in vacuum and σ (x) is

the scalar field which mediates the interaction between the
nucleons and the medium with the coupling gs . In order to
calculate ρS , we need to determine the value of the scalar field
σ (x) at each space-time point x. This is done via the nonlinear
gap equation [49,50]:

m2
σ σ (x) + Bσ 2(x) + Cσ 3(x) = gsρS(x)

= gsgn

∫
d3p

(2π )3

m∗
N (x)√

p2 + m∗2
N

fN (x,p) , (9)

since for matter at rest we have p∗ = p. In Eq. (9) the
self-interaction of the σ field is included up to the fourth order.
The parameters gs,mσ ,B,C are fixed in order to reproduce

the values of the nuclear matter quantities at saturation,
i.e., the saturation density, the binding energy per nucleon,
the compression modulus, and the effective nucleon mass.
Actually, there are different sets for these quantities that lead
to slightly different saturation properties. We defer a discussion
on the uncertainties of our results to Sec. III C.

The main idea in Ref. [11] is to consider effective masses
for the dressed quarks in the Schwinger formula (1) for the
string decay in a hot and dense medium. The effective quark
masses can be expressed in terms of a scalar coupling to the
quark condensate 〈q̄q〉 in first order as follows:

m∗
s = m0

s + (
mV

s − m0
s

) 〈q̄q〉
〈q̄q〉V , (10)

m∗
q = m0

q + (
mV

q − m0
q

) 〈q̄q〉
〈q̄q〉V , (11)

with m0
s ≈ 100 MeV and m0

q ≈ 7 MeV for the bare quark
masses. In Eq. (10) the effective masses decrease from the
vacuum values with decreasing scalar condensate 〈q̄q〉 to the
constituent masses. This adaptation of the Schwinger formula
in case of a hot and dense medium implies a modification
of the flavor production factors in Eq. (2). In an actual
nucleus-nucleus collision, PHSD incorporates a dynamical
calculation of all these features for each cell in space-time:

(1) the scalar density ρS is determined by solving the gap
equation (9) for the σ field;

(2) the scalar condensate 〈q̄q〉 is then computed via Eq. (4);
(3) the effective masses m∗

q,m
∗
s are calculated according

to Eqs. (10) and (11) and plugged in the Schwinger
formula (1) in order to compute the flavor production
ratios for the string decay.

We stress that, once the nucleon scalar density ρS and �π

are fixed, there is no additional parameter in the PHSD3.3
compared to the previous version PHSD3.2 that has been
employed for a couple years for the analysis of relativistic
heavy-ion reactions [27].

C. Dependence on the nuclear equation of state

In this section we analyze in more detail the flavor produc-
tion ratios from the Schwinger formula in the presence of a
hot and dense nuclear medium. As mentioned in the previous
section there are different sets for the parameters gs,mσ ,B,C
in the gap equation (9). In fact, these parameters are fixed
within the nonlinear σ -ω model in order to reproduce empirical
values of nuclear matter quantities at saturation (i.e., saturation
density, binding energy per nucleon, compression modulus,
effective nucleon mass, etc.), but sizable uncertainties remain
with respect to the high density properties. In Table I we display
the values of gs,ms,B,C together with the vector coupling
gv , the vector meson mass mv , the compression modulus K ,
and the ratio between the effective and the bare nucleon mass
m∗/m at saturation density for three sets commonly indicated
as NL1, NL2, and NL3. The sets NL1 and NL3 have the same
compression modulus K but differ in the effective mass m∗/m
at saturation density whereas NL1 and NL2 have the same
effective mass but differ in the compression modulus K . By
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TABLE I. Parameter sets NL1, NL2, and NL3 for the nonlinear
σ -ω model employed in the transport calculations from Ref. [50].

NL1 NL2 NL3

gs 6.91 8.50 9.50
gv 7.54 7.54 10.95
B (1/fm) −40.6 50.57 1.589
C 384.4 −6.26 34.23
ms (1/fm) 2.79 2.79 2.79
mv (1/fm) 3.97 3.97 3.97
K (MeV) 380 210 380
m∗/m 0.83 0.83 0.70

comparing the results from NL1, NL2, and NL3 we will be
able to explore separately the effects from the effective mass
and compression modulus. In the context of the string decay,
the most important parameter to focus on is the scalar coupling
gs , which is lower for the NL1 and NL2 set with respect to the
corresponding values in the NL3 set. We show the dependence
of the nucleon scalar density ρS on energy density ε in Fig. 1(a),
the ratio between the scalar quark condensate and its value in
the vacuum 〈q̄q〉/〈q̄q〉V in Fig. 1(b), the light and strange
quark effective masses m∗

q,m
∗
s in Fig. 1(c), and the production

probability of massive ss̄ relative to light flavor production γs

in Fig. 1(d). Note that an analogous dependence is observed
with respect to the baryon density ρB since the energy density
ε in leading order is just the nucleon mass times the baryon
density. We find that all quantities plotted in Fig. 1 show
practically identical results for NL1 (green dashed lines) and
NL2 (thin orange lines) since the scalar density ρS essentially
depends on the effective nucleon mass, which is very similar
for NL1 and NL2 when plotted as a function of the energy
density ε. The results shown in Fig. 1 are obtained at vanishing
temperature T = 0, but all the following considerations can
be extended to a more realistic picture at finite temperature
(meson density) and illustrate the consequences of CSR in the
PHSD results for heavy-ion collisions. The energy density ε
here is calculated within the nonlinear σ -ω model by

ε = U (σ ) + g2
v

2m2
v

ρ2
N + d

∫
d3p

(2π )3
E∗(p)[Nf (p) + Nf̄ (p)],

(12)

with

E∗(p) =
√

p2 + m∗2
N ,

U (σ ) = m2
s

2
σ 2 + B

3
σ 3 + C

4
σ 4 ,

where ρN represents the nucleon density and Nf (p) and Nf̄ (p)
are the particle and antiparticle occupation numbers at fixed
momentum p, respectively.

The scalar density ρS increases with increasing energy
density ε as displayed in Fig. 1(a). We find a moderate
sensitivity to the nuclear equation of state up to energy
densities of ∼0.5 GeV/fm3 that are of relevance for the
hadronic phase. In fact, the lines referring to the parameter sets
NL1/NL2 and NL3 show very similar behavior as a function

FIG. 1. The nucleon scalar density ρS (a), the ratio between the
scalar quark condensate and its value in the vacuum 〈q̄q〉/〈q̄q〉V

(b), the light and strange quark effective masses m∗
q ,m

∗
s (c), and the

production probability of massive ss̄ relative to light flavor production
γs (d) as a function of the energy density ε for the parameter sets NL3
(red solid lines), NL2 (thin orange lines), and NL1 (dashed green
lines) at T = 0 and with �π = 45 MeV.

of ε, but the NL3 (solid line) set is always characterized by
lower values of the scalar density ρS relative to the NL1
or NL2 parametrization (dashed line). This is due to the
larger value of the effective nucleon mass m∗

N in case of
the NL1 and NL2 parameter sets. In Fig. 1(b), the ratio
〈q̄q〉/〈q̄q〉V is presented as a function of ε. At ε = 0 the
scalar condensate corresponds to the vacuum value 〈q̄q〉V and
for fixed �π = 45 MeV it decreases almost linearly with
increasing energy density and almost vanishes for the critical
energy density εc ≈ 0.5 GeV/fm3. In this case, the order
between NL1/NL2 and NL3 results is reversed: The NL3
parametrization for the nuclear EoS is associated to higher
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values of the scalar quark condensate with respect to the NL1
or NL2 sets. This feature can be easily explained looking at
the definition of the ratio 〈q̄q〉/〈q̄q〉V (4): At T = 0, there
are no thermal mesons, and thus the last term of the relation
vanishes and the ratio is entirely fixed by the scalar density
ρS ; hence, higher values of ρS correspond to lower values of
〈q̄q〉/〈q̄q〉V . Therefore, the NL1 and NL2 parametrizations are
characterized by lower values of the scalar quark condensate
with respect to the NL3 parameter set. It follows that the light
and strange quark effective masses m∗

q,m
∗
s in of Fig. 1(c) show

a very similar dependence on the energy density. At vanishing
energy density ε, the quark effective masses are equal to
their vacuum values, mq ≈ 0.33 GeV and ms ≈ 0.5 GeV; with
increasing ε the quark masses decrease in line with the scalar
quark condensate up to their bare values m0

s ≈ 100 MeV and
m0

q ≈ 7 MeV for vanishing 〈q̄q〉/〈q̄q〉V . The decrease of both
mq and ms is approximately linear in energy density where the
slope associated to the light quark is flatter in comparison to
the strange quark mass. Concerning the comparison between
the different choices for the nuclear equation of state, we
find also for these masses a non-negligible sensitivity and the
same hierarchy as for the scalar quark condensate (the results
associated to NL1/NL2 are always below the corresponding
results for NL3).

We recall that the effective masses of the quarks enter the
Schwinger formula (1) for the hadronic particle production
via the string decays. In Fig. 1(d) the strangeness ratio γs is
shown as a function of energy density for the two parameter
sets. The factor γs increases from the vacuum case (γs ≈
0.3) with increasing energy density up to values of 0.8–0.9
for ε ≈ εc. Thus the production of a ss̄ pair relative to a
light quark pair is no longer suppressed close to the phase
boundary for CSR as it is in vacuum. The reason for this
increase is the steeper decrease of the effective strange quark
mass (with energy density) in comparison to the effective light
quark mass as mentioned above. Furthermore, the NL1 and
NL2 parametrizations give larger values of γs than the NL3
parametrization due to a faster change of the masses with ε
[cf. Fig. 1(c)].

We note in extension of Ref. [11] that this scheme for CSR
in the string decay mechanism can be applied not only to the
light and strange quarks, but also to diquark combinations that
are additionally produced in the fragmentation of the string
and lead finally to baryon-antibaryon pairs. Here the default
JETSET ratios fix the diquark mass in the vacuum; e.g., a
light diquark mass in vacuum of mV

uu = 0.65 GeV leads to a
suppression of a light diquark pair relative to a light quark-
antiquark pair of

P (uuūū)

P (uū)
≈ 0.07 . (13)

For the creation of a diquark (su) one employs mV
su ≈

0.725 GeV, which leads to the ratio for a (su)-diquark pair
relative to a light (uu)-diquark pair of

P (sus̄ū)

P (uuūū)
≈ 0.4 . (14)

Within the same line the vacuum mass of a ss diquark can
be determined from JETSET. The Schwinger mechanism of

FIG. 2. The quark and diquark ratios in the string decay (hadronic
environment) as a function of the energy density ε as evaluated within
the nonlinear σ -ω model for the parameter set NL3 for T = 0.

string decay in vacuum thus requires the following dressed
vacuum masses: mV

u ≈ 0.35 GeV, mV
s ≈ 0.5 GeV, mV

uu ≈
0.65 GeV, mV

su ≈ 0.725 GeV, and mV
ss ≈ 0.87 GeV to comply

with experimental observation in nucleon-nucleon collisions.
The production probability of diquarks (su) relative to uu
diquarks (14) and (ss) relative to uu diquarks does not change
very much in the dense medium—in line with (indirect)
experimental observation—and since m0

su − m0
uu ≈ m0

s − m0
u,

the bare diquark masses m0
uu can be fixed and give m0

uu ≈
0.5 GeV, m0

su ≈ 0.593 GeV, and m0
ss ≈ 0.763 GeV. The explicit

variations of the flavor ratios with the energy density are
displayed in Fig. 2 and show that the diquark ratios only very
moderately change with the energy density whereas the s/u
ratio steeply rises with ε. We specify once more that these
results have been obtained within a pure hadronic system at
vanishing temperature, but the conclusions are valid also for
finite temperatures (meson densities).

The variations of the ratios in Fig. 2, however, are limited
to the hadronic phase with energy densities below εc. Above
εc ≈ 0.5 GeV/fm3 strings cannot be formed anymore due to a
vanishing string tension κ in the QGP and the hadrons dissolve
to partonic degrees of freedom (and mean-field energy).
Consequently, the s/u factor finally shows an increase for
ε < εc (associated to CSR) and in correspondence of ε � εc

it drops to the value ∼1/3 (fixed by comparison with the
strangeness production at RHIC and LHC energies observed
experimentally). The energy dependence of the s/u ratio
including the QGP phase has been shown already in Fig. 2
of Ref. [11]. We recall that in the partonic phase the s/u ratio
remains constant as a function of the energy density. As a result
we can identify a so-called horn structure in the s/u ratio as
a function of ε, where the initial increase is related to chiral
symmetry restoration in the hadronic phase and the subsequent
sharp decrease is associated to the formation of the QGP.
We thus expect that CSR modifies the particle abundances
and spectra (especially in the strange particle sector) from
heavy-ion collisions, where increasing energy densities ε in the
overlap region can be achieved with increasing bombardment
energy (at the same centrality of the collision).
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D. Impact of 3M ↔ BB̄ collisions on the strangeness production

For a solid study of the differential spectra of strange and
nonstrange particles it is essential that both are treated on the
same level in many-body theory. Whereas in earlier PHSD
studies the three-body channels incorporating three mesons
in the production of baryon-antibaryon pairs in line with
Ref. [51] (e.g., ρ + ρ + π ↔ N + N̄ ) have been incorporated
by default in the nonstrange sector, the corresponding channels
in the strangeness sector (e.g., ρ + K∗ + π ↔ N̄ + Y , etc.)
had been discarded in PHSD3.2. Nevertheless, the possible
impact of such channels on the observables of interest in this
study has to be examined in order to control the consistency of
the approach. Accordingly, in this subsection we present the
influence of an extended description of 3M ↔ BB̄ reactions
to the strange sector on the rapidity spectra from central
heavy-ion collisions with and without CSR.

To this aim we have generalized the quark rearrangement
model, first presented in Ref. [51] for the light (u,d) sector
to the strange sector. The details of the extended model will
be given in an upcoming study where also the explicit tests of
detailed balance relations on a channel-by-channel basis are
demonstrated as well as the particular impact on multistrange
antibaryon production and annihilation. By including the
strangeness sector the number of individual three-body (mass
channels) amounts to more than 2500, including also the
fusion of three kaons (or K∗’s) to the N + ̄ channel. We
also consider the hidden strangeness of the η and the �
mesons with proper weights for channels where either the
light quarks or ss̄ are rearranged. As in Ref. [51] the matrix
elements for the transitions are provided by experimental data
on baryon-antibaryon annihilation.

Without going into further details we show in Fig. 3—
exemplary for other particles—the rapidity spectra of � + �0

baryons at 8, 30, and 158 A GeV in central Au + Au collisions
with (solid lines) and without (dashed lines) chiral symmetry
restoration as well as with (blue lines) and without (red lines)
the extended strangeness 3M ↔ BB̄ reactions. In general, the
inclusion of chiral symmetry restoration enhances the number
of produced � + �0 baryons at all energies. This is most
pronounced for the lower energies of 8 and 30 A GeV (cf. the
detailed studies in the next section). In particular for the lower
energies there is no visible difference in the rapidity spectra for
the extended 3M ↔ BB̄ reactions. Only at 158 A GeV does
one find a slight difference (∼1%) in the central rapidity region.
The reason for these findings is related to the low abundance of
mesons carrying a strange quark at low bombarding energies
and additionally in the heavier masses of the hyperons, which
induces a lower phase space for production, since the transition
probability is directly proportional to the available phase space
in the flavor rearrangement model of Ref. [51]. We conclude
that the extended three-body reactions with strangeness have
no crucial impact at AGS and SPS energies.

IV. APPLICATION TO NUCLEUS-NUCLEUS COLLISIONS

In this section we study observables from heavy-ion
collisions with respect to different aspects that had not been
considered in Ref. [11]. In this respect we present results for

 0

 2

 4

 6

 8

 10

 12

 14

dN
/d

y

Au+Au @8AGeV, b=2fm

(a)

Λ+Σ0 s,w/  CSR
s,w/o CSR

w/ CSR
w/o CSR

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

dN
/d

y

Au+Au @30AGeV, b=2fm

(b)

 0

 2

 4

 6

 8

 10

 12

-4 -3 -2 -1 0 1 2 3 4

dN
/d

y

y

Au+Au @158AGeV, b=2fm

(c)

FIG. 3. Rapidity spectra for � + �0 baryons in 5% central
Au+Au collisions for the energies of 8 (a), 30 (b), and 158 A GeV (c)
with (solid lines) and without CSR (dashed lines). The blue lines
stand for the results that include the new three-meson reactions
with strangeness content while the red lines display results when
incorporating only nonstrange three-meson channels.

the rapidity distribution of the most abundant particles at AGS
and SPS energies for different nuclear equations of state in
order to estimate the uncertainties of our approach. In addition
we also explore the impact of CSR on the transverse dynamics
by calculating the transverse mass spectra for protons, pions,
kaons, and antikaons in comparison to available data. We recall
that in particular the transverse slopes of the kaon spectra
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FIG. 4. The strange particle number Ns as a function of time in
5% central Au+Au collision at 30 A GeV. The solid lines show the
results from PHSD including CSR with NL1 parameters, while the
dashed lines show the results from PHSD without CSR. The green
lines refer to the total number of strange particles, while the blue
and red lines refer to the hadronic and partonic contributions of the
strangeness content, respectively.

had been clearly underestimated in the earlier HSD studies
(without a partonic phase) [9]. As a survey we present the
excitation functions of particle yields and ratios together with
the uncertainty due to the nuclear EoS. Moreover, we show
the time evolution of the number of strange particles and the
corresponding production rates from the different production
channels. The following scenarios will be explored:

(1) default PHSD calculations without CSR;
(2) PHSD calculations including CSR with NL3 as param-

eter set for the nuclear EoS;
(3) PHSD calculations including CSR with NL2 as param-

eter set for the nuclear EoS;
(4) PHSD calculations including CSR with NL1 as param-

eter set for the nuclear EoS.

A. Time evolution of the strange particle multiplicities

At AGS and SPS energies the strange particle production
takes place at the early stages of the collision process, as
seen from Fig. 4, where the number of particles containing
s quarks Ns is plotted (green solid and dashed lines) as a
function of time in central Au+Au collision at a bombardment
energy of 30 A GeV for the 5% most central collisions.
More than ≈90% of the strange content of the system is
created in the time interval between 0 and 4 fm/c after the
collision and already at about 8 fm/c strange particles are
not produced anymore. In Fig. 4 the total number of strange
particles has also been separated in the corresponding hadronic
and partonic contributions, represented by the blue and red
lines, respectively. At the energy of 30 A GeV, the hadronic
strangeness content is dominant relative to the partonic one,
which can reach ∼25% of the total strangeness content in
correspondence with the maximum value of the partonic

contribution. The strange quarks in the partonic phase appear
in the system not immediately after the collision but after
about 1.5 fm/c. In fact, the primary interactions within the
PHSD are realized via string excitation, and after that in the
cells with energy density ε > 0.5 GeV/fm3 the hadrons are
dissolved into partons and mean field energy. The partonic Ns

distribution initially increases as a function of time, reaching a
maximum at about 3 fm/c. Then at larger times the energy
density of the system decreases; as a result the partons
hadronize by dynamical coalescence which lasts up to about
8 fm/c, when the strange hadron number is basically fixed. We
can conclude that at 30 A GeV the steep increase of the number
of strange particles as a function of time has to be attributed
dominantly to the hadronic production, which occurs in PHSD
via string formation and decay. The other hadronic scattering
processes, which are not negligible at this bombarding energy,
do not create further strangeness in the system, but they are
only responsible for strange flavor exchanges.

It is, furthermore, interesting to compare the strange particle
amount computed in PHSD including and excluding CSR in
the string dynamics. In Fig. 4 we show PHSD calculations
only in the limits: without CSR (dashed lines) and including
CSR with NL1 as parameter set (solid lines). The restoration
of chiral symmetry causes a sizable increase (≈30%) of the
total strangeness content. We notice that CSR does not modify
the time evolution of Ns(t), but it only affects the hadronic
contribution to the strange particle production. There is a
slight difference between the partonic results with and without
CSR since the strange particle number in the partonic phase
is slightly higher when including CSR. This is, however, not
due to a higher strangeness production in the QGP, but stems
from particles, which are produced by string decay in the
hadronic corona and travel to cells with energy density above
εc during their propagation. Thus such strange particles, even
if produced by the string decay, dissolve into partonic degrees
of freedom. In this respect the enhancement of the strange
particle number in the hadronic phase drives a small increase
also in the partonic contribution of Ns .

To provide a more complete illustration of the time evolu-
tion of the strangeness content in a heavy-ion collision we show
in Fig. 5 the rate dNs/dt of strange particles at 8 [Fig. 5(a)],
30 [Fig. 5(b)], and 158 A GeV [Fig. 5(c)] in central collisions.
We show again the total strange particle rate in green, the
hadronic contribution in blue, and the partonic contribution in
red, comparing in all cases the calculations with and without
CSR by the solid and dashed lines, respectively. We mention
that these rates include production as well as losses either due
to dissolution of hadrons in the QGP or due to hadronization
of strange partons. Accordingly these rates become negative
when dissolution or hadronization dominates. As already seen
in Fig. 4, the strange particle production occurs at the first
stages of the collisions and the strangeness production rate
increases with increasing bombarding energy. The hadronic
contribution is dominant at the collision energies ELab = 8
and 30 A GeV, while the partonic production rate is larger
than the hadronic one at ELab = 158 A GeV. The strangeness
enhancement associated to CSR is most clearly visible at
lower energies while at 158 A GeV it is very moderate. We
will find the same result on the final particle rapidity spectra
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FIG. 5. The strangeness rate dNs/dt as a function of the time in
5% central Au+Au collisions at 8 (a), 30 (b), and 158 A GeV (c).
The coding of the lines is the same as in Fig. 4. Note that these rates
become negative when strange hadron dissolution or strange parton
hadronization dominate, respectively.

(see next subsection). The total strange particle rate remains
positive during the entire time evolution in Figs. 5(a) and 5(b)
and shows a small negative rate only for ELab = 158 A GeV
due to the dissolution of strange hadrons in the QGP; on the
other hand the partonic rate becomes negative at larger times
since the hadronization (loss) dominates the strange quark
production. The negative rate on the partonic side is balanced
by the positive rate on the hadronic side due to strangeness
conservation.

Comparing the rates at the different energies, we can see
that the strangeness production is slower at lower energies.
In fact, the peak of the total dNs/dt shifts to smaller times
with increasing energies, and for ELab = 158 A GeV the whole
strangeness production occurs within 2 fm/c. On the other
hand the duration of the hadronization process becomes longer
at higher bombarding energies, where a larger volume of
the systems turns into the QGP phase. In general, after
≈12 fm/c the strangeness content is fixed and within PHSD
the creation of strange particles ceases. Equilibrium aspects of
the strangeness production will be discussed in Sec.VI.

B. Rapidity spectra at AGS and SPS energies

We present in Figs. 6 to 8 the PHSD results for the rapidity
distribution of protons, (� + �0)’s, pions, and kaons for
central nucleus-nucleus collisions at different energies (from
AGS to top SPS energies) in comparison to the experimental
data from Refs. [52–58]. The following scenarios will be
explored at different energies:

(1) default PHSD calculations without CSR, represented
by the dotted blue lines;

(2) PHSD calculations including CSR with NL3 as param-
eter set for the nuclear EoS, represented by the solid
red lines;

(3) PHSD calculations including CSR with NL1 as param-
eter set for the nuclear EoS, represented by the dashed
green lines.

We note that PHSD calculations for the parameter set NL2
are not shown explicitly since the results are in between
those for NL1 and NL3. We will come back to an explicit
comparison below. The results of the first two scenarios
are almost equivalent to the PHSD calculations shown in
the previous study [11], with a slight difference regarding
the proton and meson spectra. This is due to a few recent
upgrades in PHSD: The first concerns the extension of inelastic
meson-meson scattering above 1.3 GeV of invariant energy

√
s

to string formation and decay with a cross section of ∼10 mb;
the second improvement is related to p-wave scattering in
the reaction channel π + N ↔ �, which had been treated
isotropically before. Note, however, that the study in Ref. [11]
had a focus on the comparison of HSD and PHSD calculations
in order to examine also the role of partonic degrees of
freedom, whereas here we concentrate on the variation of the
spectra with respect to the nuclear EoS employing only the
updated PHSD3.3 calculations.

First, we compare the results with and without CSR at
ELab = 10.7 A GeV (Fig. 6), to point out the general effect of
this mechanism on the final particle rapidity distributions and
in particular show the dependence on the parameter sets NL1
and NL3 for the nonlinear σ -ω model for the nuclear EoS in
extension to Ref. [11]. The restoration of chiral symmetry gives
an enhancement of the strange particle yields both for mesons
and baryons. On the other hand, it produces a slight decrease
in the number of pions at midrapidity due to the suppression
of pions in the string decays in favor of strange hadrons. The
proton rapidity spectra do not present any sensible variation;
in fact the CSR as implemented in PHSD modifies essentially
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FIG. 6. The rapidity distribution of protons, (� + �0)’s, pions,
and kaons for 5% central Au+Au collisions at 10.7 A GeV in
comparison to the experimental data from Refs. [52,53]. The solid
(red) lines show the results from PHSD including CSR with NL3
parameters, the dashed green lines show the results from PHSD
including CSR with NL1 parameters, and the blue dotted lines show
the result from PHSD without CSR.

the chemistry of the newly produced particles in the string
decay and has a minor impact the dynamics of the nucleons,
which in the string picture are associated to the string ends of

FIG. 7. The rapidity distribution of protons, (� + �0)’s, pions,
and kaons for 5% central Au+Au collisions at 30 A GeV in
comparison to the experimental data from Ref. [54–56]. The coding
of the lines is the same as in Fig. 6.

the primary interactions in the system. The inclusion of the
CSR is essential in order to correctly reproduce the strange
particle rapidity spectra, as we can see especially for (� +
�0) hyperons and K+ mesons. Furthermore, our calculations
for the proton rapidity spectra are in good agreement with
experimental observation.
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FIG. 8. The rapidity distribution of protons, (� + �0)’s, pions,
and kaons for 5% central Au+Au collisions at 158 A GeV in
comparison to the experimental data from Ref. [57,58]. The coding
of the lines is the same as in Fig. 6.

Next, we discuss the results from PHSD with CSR using
two different parametrizations for the nuclear equation of state,
i.e., NL3 and NL1. The general features of the strangeness
enhancement hold for both parametrizations; in particular the
NL1 set provides larger values for all strange particle rapidity
spectra at midrapidity in line with the discussion of Fig. 1.

TABLE II. Particle abundances and strange to nonstrange particle
ratios at midrapidity (|y| � 0.5) from 5% central Pb+Pb collisions
at 30 A GeV.

NL1 NL2 NL3

p 47.6 48.2 48.5
π+ 91.1 91.7 92.5
π− 102.7 103.3 104.2
K+ 18.6 18.1 17.6
K− 7.58 7.45 7.34
� + �0 15.6 15.1 14.7
K+/π+ 0.204 0.197 0.190
K−/π− 0.0738 0.0721 0.0704
(� + �0)/π 0.0537 0.0516 0.0498

The difference between the two parametrizations represents
the uncertainty of our results related to CSR as implemented
in PHSD. We stress that we do not tune the parameters of the
equation of state to fit the data, but we employ different nuclear
EoS to compute the scalar density (as explained in Sec. III C)
in order to explore the uncertainties of our approach.

In Fig. 7 the rapidity spectra of various hadrons at
ELab = 30 A GeV are shown. We find the same features as for
ELab = 10.7 A GeV concerning the strangeness enhancement
and the comparison between the two parameter sets for
the equation of state; the differences are slightly smaller
at this energy. At midrapidity, both protons and pions are
very slightly overestimated in all explored scenarios, which
suggests that the nuclear stopping is still a bit overestimated.
Finally, at the top SPS energy ELab = 158 A GeV (Fig. 8) the
CSR does not play a significant role, since the dynamics is
dominated by the QGP phase. Thus, there is no appreciable
difference between the results with and without CSR for the
two different EoS. Our results for π− and K+ are lower
with respect to the experimental data; however, the (� + �0)
and K− as well as the protons are correctly reproduced. It
is presently unclear where these final differences stem from,
since strangeness conservation is exactly fulfilled in the PHSD
calculations.

As we have seen in Fig. 1 the results for the strangeness
ratio γs(ε) are very similar for the parameter sets NL1 and
NL2 for nuclear matter at T = 0. In heavy-ion collisions,
however, the different compression modulus leads to a slightly
different baryon dynamics, which also has an impact on the
meson abundances and spectra. In order to quantify the effect
of the different nuclear EoS on the particle abundances we
provide in Table II the midrapidity densities for protons, pions,
K+,K−, and � + �0 as well as their ratios for the parameter
sets NL1, NL2, and NL3 in case of a central Pb+Pb collision at
30 A GeV, where the effect from CSR is most pronounced. As
one can extract from the table, the proton and pion densities
at midrapidity are correlated: a higher stopping goes along
with a higher pion density with the order NL3 > NL2 > NL1.
On the other hand the strangeness densities at midrapidity are
anticorrelated with the proton density; we obtain the order
NL1 > NL2 > NL3. Although the hadron densities differ,
not so dramatically, it gives an enhanced effect in ratios
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FIG. 9. The transverse mass spectra of protons for 5% central
Au+Au collisions at 4, 6, and 8 A GeV in comparison to the exper-
imental data from Ref. [59]. The solid (red) lines show the results
from PHSD including CSR with NL3 parameters; the dotted (blue)
lines show the results from PHSD without CSR.

K+/π+, K−/π−, and (� + �0)/π in the order NL1 > NL2
> NL3. Since any realistic nuclear EoS is expected to provide
results within the limits of these parameter sets we expect to
obtain reliable bounds on the uncertainties with respect to the
nuclear EoS.

C. Transverse mass spectra at AGS and SPS energies

We recall that in earlier HSD calculations (without a
partonic phase) the slopes of the transverse mass distributions
have been severely underestimated [9]. In an extension of
Ref. [11] we show in this section the PHSD results for the
transverse mass spectra of protons, pions, and kaons for
different energies in central Au+Au collisions in Figs. 9 and 10
and Pb+Pb collisions in Figs. 11 and 12 in comparison with
AGS and SPS data, respectively. We do not show the further
scenarios (PHSD calculations including CSR with NL1 or
NL2) since the differences with respect to the parameter set
NL3 for CSR are practically not visible.

At AGS energies (Fig. 9), i.e., ELab = 4, 6, and 8 A GeV,
our calculations for the proton spectra show the same trend as
the experimental data. However, we observe that the computed
spectra are softer than the experimental data in this energy
regime. In fact, our results overestimate the data at low
transverse mass mT and underestimate the data at larger
mT . Note, however, that in our present calculations hadronic
potentials have not been included. We leave the study of
explicit hadronic potentials in the propagation of the degrees
of freedom to a future work. We notice that CSR produces
no change in the transverse mass spectra of the protons, both

FIG. 10. The transverse mass spectra of pions and kaons for
5% central Au+Au collisions at 2, 4, 6, 8, and 10.7 A GeV in
comparison to the experimental data from Refs. [60,61]. We show
the results from PHSD including CSR with NL3 parameters by solid
(red) lines and those from PHSD without CSR by dotted (blue) lines.

at AGS energies (Fig. 9) and at SPS energies (Fig. 11). At
larger energies, i.e., ELab = 20, 30, 158 A GeV (Fig. 11), the
PHSD results are in a good agreement with the experimental
data for protons. In the latter cases, a sizable volume of
the system performs a phase transition to the QGP and the
final particle spectra are not sensitive to hadronic potentials
anymore because the baryon densities in the final hadronic
phase are rather low.

In Figs. 10 and 12 we display the transverse mass spectra for
pions and kaons in central Au+Au collisions at AGS energies
and in Pb+Pb collisions at SPS energies, respectively. We
focus on the role played by the CSR on the mesons transverse
mass spectra. At the lower energies, ELab = 2 A GeV, there
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FIG. 11. The transverse mass spectra of protons for 5% and 7%
central Pb+Pb collisions at 20, 30, and 158 A GeV in comparison
to the experimental data from Ref. [62]. The coding of the lines is the
same as in Fig. 9.

is no appreciable difference between the calculation with
and without CSR, since the energy density reached by the
system is not high enough to produce a vanishing scalar quark
condensate. Instead, in the energy range ELab = 4–40 A GeV,
we notice a small difference between the scenarios with and
without CSR. As already mentioned, the CSR acts directly
on the chemistry and not so much on the dynamics of the
Schwinger mechanism; thus the effect of the partial restoration
of chiral symmetry is rather small on the transverse mass
spectra. The kaon spectra are harder when CSR is included,
while the pion spectra remain essentially unchanged. At the
higher SPS energies, ELab = 80,158 A GeV, the dynamics of
the system is ruled dominantly by the QGP phase and our
calculations do not show any sensitivity on the inclusion of
CSR. The agreement of our PHSD calculations with the data
in Figs. 10 and 12 is good in all cases studied. Even if the focus
of this work is the study of CSR, we point out that additional
kaon potentials might modify this picture at low energies.
In particular, the attractive potential for K− in the hadronic
phase should improve our calculations at ELab = 8 A GeV,
producing a softening of the spectra. We will report on the
effect of hadronic potentials in a forthcoming study.

D. Strange particle abundances and ratios

In this subsection we study the excitation function of
the particle ratios K+/π+, K−/π−, and (� + �0)/π at
midrapidity from 5% central Au+Au collisions. In Fig. 13
we show the calculations for the following three scenarios:
the default PHSD without CSR (blue dotted line) and PHSD
including CSR with NL3 and NL1 as parameter sets for the

FIG. 12. The transverse mass spectra of pions and kaons for 5%
and 7% central Pb+Pb collisions at 20, 30, 40, 80, and 158 A GeV
in comparison to the experimental data from Refs. [54,57,63]. The
coding of the lines is the same as in Fig. 10.

nuclear EoS from the nonlinear σ -ω model (red solid and
green dashed lines, respectively). The shaded area displays the
uncertainties of our calculations from the two scenarios for the
nuclear EoS since the results from the parameter set NL2 are
always in between those from NL1 and NL3 (cf. Table II).
As already described in Ref. [11], the inclusion of CSR in
PHSD is responsible for the strong strangeness enhancement
at AGS and low SPS energies. The experimental observations
of the ratios K+/π+ and (� + �0)/π show the well-known
horn structure, which is reproduced by the PHSD calculations
with CSR. In fact, CSR gives rise to a steep increase of these
ratios at energies lower than

√
sNN ≈ 7 GeV, while the drop at

larger energies is associated to the appearance of a deconfined
partonic medium. As anticipated by the considerations in
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FIG. 13. The ratios K+/π+, K−/π−, and (� + �0)/π at midra-
pidity from 5% central Au+Au collisions as a function of the
invariant energy

√
sNN up to the top SPS energy in comparison to

the experimental data from Refs. [56,61,64]. The coding of the lines
is the same as in Fig. 8. The gray-shaded area represents the results
from PHSD including CSR, taking into account the uncertainty from
the parameters of the σ -ω model for the EoS.

Sec. III C, the NL1 parameter set produces a sharper peak both
in the K+/π+ and in the (� + �0)/π excitation functions
with a ≈10% maximum increase with respect to the NL3
result that had been reported in Ref. [11]. We point out that
even when adopting different parametrizations for the σ -ω
model, we recover the same horn feature. This supports the
reliability of the CSR mechanism as implemented in the PHSD
model.

At AGS energies, the energy dependencies of the ratios
K+/π+ and (� + �0)/π are closely connected, since K+
and � (or �0) are mostly produced in pairs due to strangeness
conservation. On the other hand, the excitation function of
the K−/π− ratio does not show any peak, but it smoothly
increases as a function of

√
sNN . In fact, especially at AGS

energies, the antikaon production differs substantially from

FIG. 14. The yields of (� + �0) and �− at midrapidity from 5%
central Au+Au collisions as a function of the invariant energy

√
sNN

up to the top SPS energy in comparison to the experimental data from
Refs. [53,56]. The coding of the lines is the same as in Fig. 13.

the production of K+ and �, which occurs dominantly via
string formation. In fact, the antikaons are produced mainly via
secondary meson-baryon interactions by flavor exchange and
their production is suppressed with respect to the � hyperons
that carry most of the strange quarks. This is the reason
why the inclusion of chiral symmetry restoration provides
a substantial enhancement of the K+/π+ and (� + �0)/π
excitation functions and a smaller change on the K−/π− ratio.
We also notice that there is no sizable difference between
the NL1 and NL3 results for the K−/π− ratio. At top SPS
energies the strangeness is produced predominantly by the
hadronization of partonic degrees of freedom; thus our results
for all the ratios do not show an appreciable sensitivity to the
nuclear EoS and the calculations with and without CSR tend
to merge at

√
sNN ≈ 20 GeV.

Finally, in Fig. 14 we present the yields of (� + �0) and
�− at midrapidity from 5% central Au+Au collisions as a
function of the invariant energy

√
sNN in comparison to the

available data from Refs. [53–56]. We recover a horn structure,
similar to that shown in Fig. 13 for the energy dependence
of the strange to nonstrange particle ratios. A sensitivity on
the nuclear model parametrizations persists at low energy,
while in the top SPS energy regime the results corresponding
to the different scenarios merge. The comparison with the
available data at

√
sNN < 8 GeV supports the validity of the

CSR picture, while at larger energies we underestimate the
experimental observations. We mention that this discrepancy
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FIG. 15. The ratios K+/π+, K−/π−, and (� + �0)/π at midra-
pidity from 5% central symmetric A + A collisions as a function of
the invariant energy

√
sNN . The solid lines show the results from

PHSD including CSR with NL1 parameters; the dashed lines show
the result from PHSD without CSR. The blue lines refer to Au+Au
collisions, the green lines to Ca+Ca collisions, and the red lines to
C+C collisions.

is not due to the CSR mechanism, since it does not play an
essential role in the high-energy regime as pointed out above.

V. SYSTEM SIZE AND CENTRALITY DEPENDENCE
OF STRANGENESS PRODUCTION

In this section we explore new aspects of CSR in heavy-ion
collisions. First, we analyze the dependence of the strange to
nonstrange particle ratios on the size of the colliding system
(cf. also Ref. [65]). Second, we investigate the effects of
CSR on the strange particle yields for different centralities
of Au+Au collision. In Fig. 15 we present the particle ratios
K+/π+, K−/π−, and (� + �0)/π from PHSD for three
types of collision systems. The aim here is to explore how the
variation of the system size modifies the excitation functions

shown in the previous section. In Fig. 15 we display the
calculations for 197Au +197Au in blue, for 40Ca +40Ca in green,
and for 12C +12C in red. The scenarios considered are the
default PHSD without CSR (dashed lines) and PHSD including
CSR with NL1 as parameter set for the nuclear equation of
state from the nonlinear σ -ω model (solid lines). The inclusion
of CSR gives a strangeness enhancement also in the case of
smaller system size with respect to Au+Au collisions and this
holds for all three particle ratios. In fact, when considering
central collisions, a sizable volume of the system is affected
by the partial restoration of chiral symmetry even in case of
light ions. We notice that for the K+/π+, K−/π− ratios, the
discrepancy between the calculations with and without CSR
remains sizable even at high SPS energies for Ca+Ca and
C+C collisions. In particular the spread between the scenarios
with and without CSR is larger when the size of the system
is smaller. This can be explained by the fact that in Ca+Ca
and C+C collisions the fraction of the system which performs
the phase transition to the QGP is smaller with respect to
Au+Au collisions, and the string excitations and decays
still have a large strangeness production rate even at larger
energies.

These characteristics are evident also in the observation that
at large energies the ratio K+/π+ is smaller for the Au+Au
collisions and larger in C+C collisions. In fact, we recall that
the drop of the K+/π+ ratio in Fig. 13 is due to the appearance
of the QGP, since the strangeness production in the QGP
phase is suppressed with respect to the hadronic production
at fixed energy density. Concerning the horn structure in
the K+/π+ ratio, we notice that the peak of the excitation
function becomes less pronounced in the case of Ca+Ca and
it disappears completely in the case of C+C collisions. With
decreasing system size the low-energy rise of the excitation
functions becomes less pronounced. We can see also that the
peak for Ca+Ca is shifted to larger energies with respect to the
Au+Au case. Unlike K+/π+, the (� + �0)/π ratio preserves
the same structure for all three colliding systems. In order to
produce �’s the threshold energy of

√
sth = 2.55 GeV (for

�0√sth = 2.62 GeV) must be reached, so the (� + �0)/π
ratio increases when the system easily exceeds this value. The
peak of the � production is not exactly in correspondence
with the threshold energy, since we are considering A + A
collisions where the available collision energy is distributed
among participants and where secondary and even higher
order interactions take place. However, it is interesting to
notice that the peak position in this excitation function does
not move for different systems, unlike the K+/π+ ratios. At
large energies the (� + �0)/π ratio decreases as a function
of the energy, since the pion production is enhanced in the
hadronic rescattering. Finally, we observe no peak structure
in the energy dependence of the K−/π− ratio in any of the
scenarios studied. We notice that the results for the different
sizes of the system present an opposite hierarchy with respect
to the K+/π+ and the (� + �0)/π ratios. In fact, for C+C
and Ca+Ca collisions the pion production is suppressed, since
in the small systems the hadronic rescattering cannot develop
as in Au+Au collisions.

Furthermore, in Fig. 16 the abundances of pions, kaons,
and the most abundant hyperons are plotted as a function
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FIG. 16. The particle yields of π+, K+, K−, � + �0, and �−

at midrapidity from Au+Au collisions at 30 A GeV as a function
of the number of participants. The solid (red) lines show the results
from PHSD including CSR with NL3 parameters, and the dotted
(blue) lines result from PHSD without CSR.

of the number of participants 〈Npart〉 at midrapidity from
Au+Au collisions at 30 A GeV and in Fig. 17 the ratios
K+/π+, K−/π−, (� + �0)/π−, and �−/π− are shown for
the same collision configuration. In both cases we show the
calculations from PHSD including CSR with NL3 as parameter
set by solid red lines and the calculations from PHSD without
CSR by dotted blue lines.

All particle yields decrease with decreasing number of
participants. On the other hand, the ratios appear to be almost
constant as a function of the centrality for 〈Npart〉 > 50. Only
the �−/π− ratio smoothly decreases with decreasing 〈Npart〉.
The inclusion of CSR produces a strangeness enhancement
in the whole range of centralities investigated. Note, how-
ever, that very peripheral reactions are not considered for
〈Npart〉 > 50. At ELab = 30 A GeV the interaction volume of
the two colliding nuclei reaches high energy densities such
that practically all central cells are influenced by the CSR
mechanism independently of the centrality of the collision.
Future heavy-ion collision experiments are expected to shed
further light on the dynamics of the chiral symmetry restoration
by exploring these kind of additional observables.

VI. THERMODYNAMICAL ASPECTS OF STRANGENESS
PRODUCTION IN CENTRAL HIC

The aim of this section is to study which parts of the
phase diagram in the (T ,μB) plane are probed by heavy-ion
collisions with special focus on the strangeness production.

FIG. 17. The particle ratios of K+/π+, K−/π−, (� + �0)/π−,
and �−/π− (the last one increased by a factor of 10) at midrapidity
from 5% central Au+Au collisions at 30 A GeV as a function of
the number of participants. The coding of the lines is the same as in
Fig. 16.

In general it is not straightforward (or even impossible) to
connect nonequilibrium dynamics from microscopic transport
studies to macroscopic equilibrium properties like temperature
and chemical potentials. For this purpose one needs the exact
QCD equation of state that relates the energy and the conserved
charges to temperature and the chemical potentials of an
equilibrated system. As long as lattice calculations at finite
chemical potential are prevented by the sign problem one has to
rely on effective models, making a study of the phase diagram
model dependent. Another issue is what happens if the system
reaches local equilibrium during the heavy-ion collision. A
common method to decide on kinetic equilibration is the
pressure equilibration of the energy momentum tensor T μν .
In the local rest frame it takes the form

T μν =

⎛
⎜⎝

ε 0 0 0
0 Px 0 0
0 0 Py 0
0 0 0 Pz

⎞
⎟⎠ , (15)

where ε is the energy density and Px, Py , and Pz are the
pressure components in x, y, and z directions. In the center
of the collision they are often labeled as Px = Py = P⊥
and Pz = P‖, when the beam is in the z direction. Due
to the initial asymmetry of the collision the longitudinal
and the transverse pressure differ significantly. A necessary
requirement for kinetic equilibrium is the coincidence of the
pressure components P⊥ ≈ P‖. The behavior of the pressure
components in the central region of the collision zone has been
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studied in Ref. [66] with the UrQMD transport model [67,68].
It was found that the pressure equilibrates at t ∼= 10 fm/c after
the initial impact of central Au+Au collisions at AGS energies.
Additionally, a good agreement between the energy spectra
of different hadron species with the predictions of statistical
models was found at this time. This indicates that one can
indeed find an equilibrated system at AGS energies for times
larger than ∼10 fm/c.

To fix points in the (T ,μB) plane we have to determine
the temperature T and the baryon chemical potential μB of
the medium in the expanding fireball. This is usually done
by comparing the energy density and the conserved charges
in the local cell to the corresponding equation of state [69].
For hadronic matter it is common to use a hadron-resonance
gas equation of state. However, it is unclear which hadronic
resonances should be included in such a model. We will
therefore determine a temperature T and a baryon chemical
potential μB from the energy density and particle density of
nucleons and pions, which are directly accessible within our
transport simulations. Instead of examining the whole fireball
we will focus on local cells where strangeness is produced;
these cells may be close to thermal equilibrium (at late times) or
out of equilibrium (at early times). The focus on local cells with
strangeness production excludes free streaming cells as well as
everything that happens after chemical freeze-out. Whenever
a new ss̄ pair is produced in the hadronic medium we take the
nucleon and pion energy densities εN and επ and determine the
temperature T and the baryon chemical potential μB using the
expressions for a noninteracting hadron gas (in equilibrium):

ρπ = gπ

∫
d3p

(2π )3

1

eωπ /T − 1
, (16)

επ = gπ

∫
d3p

(2π )3

ωπ

eωπ /T − 1
, (17)

ρN = gN

∫
d3p

(2π )3

1

e(ωN −μB )/T + 1
, (18)

εN = gN

∫
d3p

(2π )3

ωN

e(ωN −μB )/T + 1
, (19)

where ωi =
√

p2 + m2
i is the energy of the respective particle

and gπ = 3 and gN = 4 are the degeneracy factors of pions
and nucleons. By additionally evaluating the densities ρπ and
ρN we can check if the local cell is in approximate thermal
equilibrium or not. In practical terms, if the temperatures
obtained from both methods differ by more than 5 MeV or if the
chemical potentials differ by more than 15 MeV we consider
the cell to be out of equilibrium. Within this procedure we
can eliminate further cells from the phase diagram, which are
out of equilibrium; however, it does not change the probed
area if one considers only events that happen 10 fm/c after the
collision.

Figure 18 shows the reconstructed temperatures and chem-
ical potentials for a Au+Au collision at 10.7 A GeV with
an impact parameter b = 2.2 fm. This reaction is clearly
dominated by local cells with partonic content since hadrons
in QGP cells dissolve since the energy density is above
critical. Each point in Fig. 18 stands for a local cell in

FIG. 18. Occupancy of the phase diagram for hadronic matter in
a central Au+Au collision at 10.7 A GeV for different time intervals.
Each point belongs to a cell where strange quarks were produced.
The color of the points indicates the time of the events within some
varying interval. For times >10 fm/c the strangeness production
occurs in cells that are in approximate thermodynamic equilibrium
while the cells in panels (a) and (b) are dominantly out of equilibrium.

which new strange quarks where produced. The color of
the points indicates the time of the production (red points
early, yellow and green points at intermediate times, blue
points at the end of the time interval). Figure 18(a) shows
the events from 5 to 7 fm/c after the initial collision. These
points cover all chemical potentials up to μB = 750 MeV.
The maximum temperature is T = 200 MeV when adopting
only baryons and pions as degrees of freedom. These cells in
Fig. 18(a) are dominantly out of thermodynamic equilibrium
and for low μB and high T correspond to partonic cells
with some pion content. Figure 18(b) shows the events from
7 to 10 fm/c where the majority of the points are located at
baryon chemical potentials larger than μB = 150 MeV. The
blue points in Fig. 18(b) belong to cells that are already in
equilibrium. Figure 18(c) shows the events that happen at times
t > 10 fm/c after the initial collision and are approximately
in equilibrium. They cover an area between 150 MeV <
μB < 650 MeV and 100 MeV < T < 175 MeV. Figure 18(c)
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FIG. 19. Occupancy of the phase diagram for hadronic matter in
Au+Au collisions at different beam energies from 2 to 8 A GeV for
times t > 10 fm/c. Each point belongs to a cell where strange quarks
were produced. The color of the points indicates the time of the events
within some varying interval.

describes indeed a proper phase diagram while Figs. 18(a)
and 18(b) suffer from nonequilibrium effects. We stress again
that the temperatures and baryon chemical potentials that
are shown in Figs. 18(a) and 18(b) cannot be related to any
equilibrium properties. In spite of the restrictions imposed by
thermodynamic equilibrium we find that even central Au+Au
collisions at 10.7 A GeV explore a wide range of points in the
T ,μB plane for μB essentially below 650 MeV.

Figure 19, furthermore, shows the occupation of the phase
diagram extracted from Au+Au collisions at 2 [Fig. 19(a)],
4 [Fig. 19(b)], and 8 A GeV [Fig. 19(c)] with an impact pa-
rameter b = 2.2 fm. All points belong to events that happened
at times t > 10 fm/c after the initial collision. One sees that
the probed region shifts to larger baryon chemical potentials
and smaller temperatures when lowering the beam energy.
The maximum baryon chemical potential in these plots is
μB = 900 MeV and the lowest temperature is T = 65 MeV,
however, with a very large spread in T and μB .

It is important to discuss how these occupancies in the
phase diagram relate to the real QCD phase diagram. Due
to the model-dependent EoS, the extracted temperatures and
chemical potentials do not represent the real ones for QCD.

We recall that the PHSD transport approach uses a critical
energy density of εc = 0.5 GeV/fm3 to distinguish between a
hadronic and a partonic medium. If the local energy density
is above this threshold the hadrons dissolve into quarks. The
critical energy density εc marks the largest energy density a
hadronic system can reach in our simulations. When compared
to recent lattice results from the Wuppertal-Budapest collabo-
ration [70] at μB = 0 this translates to a temperature of around
T ≈ 160 MeV. On the other side the model used to extract the
temperature and chemical potential is based on the hadron
resonance gas with a reduced number of degrees of freedom.
We mention that a hadron resonance gas (HRG), which
contains all the hadronic particles included in PHSD, 2 reaches
the critical energy density at temperature T ≈ 175 MeV. This
indicates that the temperatures shown in Figs. 18 and 19 are
too large compared to full QCD. As a rough guide one should
divide the temperatures in these figures by a factor of ∼1.1
in order to obtain an estimate closer to full QCD. For the
baryon chemical potential we note that the baryon number
susceptibilities χB of the HRG are smaller than the lattice
results [70]. This implies the corresponding baryon densities,
in first order given by nB ≈ χB μB , exceed the HRG densities,
thus overestimating the extracted baryon chemical potentials
μB in comparison to full QCD. Admittedly we cannot give a
definite rescaling for finite chemical potentials; nevertheless,
the general trend should be the same in the whole T -μB plane
shifting the probed area to smaller temperatures and chemical
potentials. Nevertheless, it becomes apparent from Fig. 19 that
it will be very hard to identify a critical point in the (T ,μB)
plane experimentally since the spread in T and μB is very
large at all bombardment energies of interest.

VII. SUMMARY

In this work we have analyzed the effects of chiral symmetry
restoration (CSR) on observables from heavy-ion collisions in
the energy range

√
sNN = 3–20 GeV in extension of the earlier

study in Ref. [11]. Our results have been obtained within
the parton-hadron-string dynamics transport approach [21],
where essential aspects of CSR have been incorporated in the
Schwinger mechanism for the string decay [11]. Since the
PHSD approach includes both hadronic and partonic degrees
of freedom and has been tested in a wide energy regime, it
represents a powerful tool to study nucleus-nucleus collisions
on a microscopic basis. The CSR, as implemented in PHSD,
affects only the hadronic particle production and it does not
imply modifications in the quark-gluon plasma (QGP) phase.
As already found in Ref. [11] the CSR induces an enhancement
of the strange quark fraction γs produced via the string decay,
while there are no sensible changes in the diquark production
and accordingly in baryon-antibaryon production. The s/u
ratio, as defined by the Schwinger formula (1), increases as
a function of the energy density due to CSR and this is
reflected in an enhancement of the strange particle abundances

2The hadronic particles included in PHSD are the 0− and 1− meson
octets, the spin-1/2 and spin-3/2 baryon octets, the N (1440) and
N (1535) resonances, and the a1 meson.
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with respect to the nonstrange ones. This has been observed
explicitly in the particle spectra at AGS and lower SPS energies
(ELab = 10.7 to 30 A GeV). On the other hand, at top SPS
energies (e.g., ELab = 158 A GeV) the results from PHSD with
and without CSR merge, since the dynamics of the system is
dominated by the QGP phase where CSR does not play a
significant role.

In extension to Ref. [11] we have performed calculations
for different nuclear equations of state (NL1, NL2, and NL3)
and thus could quantify the uncertainties in the particle yields
and ratios (cf. Figs. 6–8, 13, and 14 as well as Table II). Since
the sets NL1 and NL2 give a larger scalar nucleon density ρs

at the same energy density as the set NL3, the horn in the
K+/π+ is more pronounced and closer to the experimental
data. Furthermore, we found that the transverse mass spectra
are only slightly modified by the inclusion of the CSR and
are practically insensitive to the nuclear EoS. In fact, the CSR
mechanism acts predominantly on the chemistry and not on
the kinematics of the string decays.

We stress that our PHSD calculations provide a microscopic
interpretation of the horn structure in the excitation function of
the K+/π+ ratio in central Au+Au (or Pb+Pb) collisions. The
steep rise of this ratio at AGS energies is associated to CSR,
while the drop at higher SPS energies is due to the appearance
of the QGP phase in an increasing volume of the interaction
region. We have found an analogous energy dependence for
the (� + �0)/π ratio, while the excitation function of the
K−/π− ratio does not show any explicit peak. In general, the
PHSD results obtained with the inclusion of CSR are in good
agreement with the available data for all observables analyzed,
while calculations without CSR fail substantially.

In extension to Ref. [11] we have investigated also different
sizes of the colliding ions (197Au, 40Ca, and 12C) and
computed the strange to nonstrange particle ratios for these
configurations with and without CSR. It is found that the horn
feature in the K+/π+ ratio appears only for larger system
sizes, i.e., Au+Au and Ca+Ca, while the horn disappears
in the case of C+C collisions. The (� + �0)/π excitation
function maintains the peak structure as we have observed
in case of Au+Au collisions also for smaller sizes of the
system. Furthermore, we have analyzed the strange particle

abundances in Au+Au collisions at 30 A GeV as a function
of the number of participants in the collision. As mentioned
above, when including CSR in the PHSD calculations we
obtain an increase of the strange particle yields with respect
to the results from PHSD without CSR and this feature is
valid in the cases of central collisions as well as moderate
peripheral collisions. More experimental observations are
needed to extract information about the centrality and system
size dependence of the CSR.

We have, furthermore, addressed the question of whether
the strangeness production in HIC occurs in thermodynamical
equilibrium or not and have found that strange particles are
produced dominantly at the early stages of the collisions, when
the system is not in thermal and chemical equilibrium. At AGS
energies only a few percent of the total strangeness production
happens in approximate local thermodynamical equilibrium.
With decreasing bombardment energy, lower temperatures and
higher baryon chemical potentials are reached; however, the
spread in T and μB is very large such that a search for a
critical point in the phase diagram becomes very difficult
experimentally.

In conclusion, our microscopic studies support the idea
that CSR occurs in hadronic systems with high temperatures
and densities before the deconfinement phase transition takes
over. We suggest that the strange particle spectra and yields
are suitable signatures to study the properties of CSR in HICs
in future also as a function of system size and centrality.
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