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3D glasma initial state for relativistic heavy ion collisions
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Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 21 June 2016; revised manuscript received 24 August 2016; published 13 October 2016)

We extend the impact-parameter-dependent Glasma model to three dimensions using explicit small-x evolution
of the two incoming nuclear gluon distributions. We compute rapidity distributions of produced gluons and the
early-time energy momentum tensor as a function of space-time rapidity and transverse coordinates. We study
rapidity correlations and fluctuations of the initial geometry and multiplicity distributions and make comparisons
to existing models for the three-dimensional initial state.
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I. INTRODUCTION

Sophisticated simulations of the space-time evolution of a
heavy-ion collision using relativistic viscous hydrodynamics
have served as a powerful tool to constrain the properties
of the quark-gluon plasma (QGP), a new state of matter
created in high-energy nucleus-nucleus collisions at the BNL
Relativistic Heavy Ion Collider (RHIC) and the CERN Large
Hadron Collider (LHC) [1]. While an improved theoretical
understanding of the initial state geometry has been essential to
this progress [2–4], a significant uncertainty still surrounds our
knowledge of the three-dimensional event-by-event geometry
of the initial state. While it has been popular to assume that
the space-time evolution of high-energy collisions can be
described as approximately boost invariant, even at energies
available at the LHC it is desirable to loosen this constraint
and explore the full three-dimensional dynamics of the system.
Naturally, this is expected to yield novel insights into the
properties of the QGP. For example, it was recently shown
that at energies available at the RHIC the rapidity dependence
of flow harmonics can reveal additional information on the
medium properties such as the temperature dependence of the
shear viscosity to entropy density ratio η/s [5].

The results of hydrodynamic simulations are very sensitive
to the initial condition for the energy momentum tensor.
Yet, our current understanding of the initial conditions for
heavy ion collisions in three spatial dimensions is very
limited. So far calculations within effective field theories of
high-energy QCD only provide boost invariant (effectively
two-dimensional) initial conditions [6,7], while models that do
determine three-dimensional initial conditions either greatly
simplify the rapidity dependence [8–12] or are based on
hadronic degrees of freedom [13] and thus should not directly
apply at high energies. Even though some more recent
models include the notion of “color flux tubes” of variable
length or other fluctuations in rapidity [5,14–16], the rapidity
dependence in these models is generally constrained only from
phenomenological considerations.

In this paper we explore the possibility of characterizing
the rapidity dependence of the initial state directly from high-
energy QCD. Based on the phenomenologically successful
impact-parameter-dependent Glasma model (IP-Glasma)—
which in its original form provides boost-invariant initial
conditions—we develop a new initial state model within
the color glass condensate (CGC) effective field theory of

high-energy QCD [17,18], which extends the properties of
the initial state to three spatial dimensions. We obtain the
longitudinal rapidity profiles of the collision by consistently
including the JIMWLK [19–23] rapidity evolution for both
colliding nuclei up to the measured rapidities. Within this
framework, we extract the distributions of produced gluon
fields and determine the energy momentum tensor in the
transverse plane for discrete values of space-time rapidity,
leading to a fully three-dimensional initial state which can be
employed in hydrodynamic simulations.

Our discussion is organized as follows. In Sec. II we first
introduce the three-dimensional (3D) Glasma model, detailing
in three subsections the calculation of the Wilson lines at the
initial rapidity (Sec. II A), the JIMWLK evolution towards
smaller x (Sec. II B), and the computation of the initial state in
the forward light-cone for each rapidity (Sec. II C). We present
results in Sec. III, separated into the rapidity dependence
and fluctuations of the gluon multiplicity (Sec. III A) and the
rapidity dependence of the geometry of the produced system
(Sec. III B). We conclude and present an outlook in Sec. IV.

II. 3D GLASMA MODEL

Within the color glass condensate effective field theory,
incoming nuclei are described by color currents,

J
μ
1 (x) = δμ+ρa

1 (x−,x⊥) ta or

J
μ
2 (x) = δμ−ρa

2 (x+,x⊥) ta, (1)

(where ta are the generators of SU(Nc) in the fundamental
representation), which determine the gluon fields in the
incoming nuclei (1 and 2) that are moving in the x+ and
x− directions, respectively. While in each event the color
charges ρa

1/2(x±,x⊥) are distributed randomly inside each
nucleus, their statistical properties can be constrained from
independent measurements, e.g., in deep inelastic scattering
(DIS) experiments [24,25].

When the density of color charges becomes nonperturba-
tively large at high energies, ρ ∼ 1/g, it can be shown [26,27]
that the early-time dynamics of the collision is accurately
described by the solutions to the classical Yang-Mills equation

[Dμ,Fμν] = J ν, (2)

to leading order in αS . Before the collision the solution to
the classical Yang-Mills equations (2) in Lorentz gauge
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(∂μAμ = 0) can be immediately inferred as

A±
1,2(x∓,x⊥) = −ρ1,2(x∓,x⊥)

∇2
⊥

, Ai = 0, (3)

which in the limit of infinitely thin sheets of color charges
ρ1/2 ∝ δ(x∓) has support only on the light cones. However,
for practical purposes it is often more convenient to work
in Fock-Schwinger gauge (x−A+ + x+A− = 0), where the
corresponding result is found by a gauge transformation
involving the lightlike Wilson lines:

V 1,2
x = P exp

(
−ig

∫
dx∓ ρ1,2(x∓,x⊥)

∇2
T

)
. (4)

Outside the forward light-cone the solution of Eq. (2) in
Fock-Schwinger gauge is then given by pure gauge solu-
tions [19,28,29]:

A± = 0, Ai
1,2(x⊥) = θ (x∓)

i

g
V 1,2

x ∂iV
† 1,2

x , (5)

where i = 1 and 2 denotes the transverse spatial Lorentz index.
Similarly, the structure of the gauge fields immediately after
the collision (τ = 0+) can also be obtained analytically and
takes the following form [26,30]:

Ai = Ai
1 + Ai

2, (6)

Aη = −Eη

2
= ig

2

[
Ai

1,A
i
2

]
, (7)

associated with boost-invariant flux tubes of longitudinal
color-electric and color-magnetic fields [31].

Starting from the initial conditions at τ = 0+, the early-time
dynamics in the forward light-cone (τ > 0) can be studied
analytically in the small-τ limit [32] or numerically using
lattice gauge theory techniques [33]. However, it turns out that
the boost-invariant nature of the field configurations in Eqs. (6)
and (7) is preserved under the classical Yang-Mills dynamics.
Consequently, to explore the properties of the initial state in all
three dimensions, one has to consider the effect of higher-order
corrections to the classical Yang-Mills dynamics, which can
be of quantitative importance even at the earliest times.

While next-to-leading order (NLO) corrections to the
classical Yang-Mills dynamics are essential to understand,
e.g., the dynamics of the thermalization process at early times
[34–37], a complete understanding of the different effects
of NLO corrections is only slowly emerging. However, it
has been shown [27] that for inclusive observables, such as,
e.g., the energy momentum tensor, an important subset of
the next-to-leading order corrections that are enhanced by
a large rapidity separation 
y1/2, where 
y1/2 denotes the
rapidity difference between the incoming nucleus (1 or 2) and
the rapidity yobs where the measurement is performed, can
be resummed to all orders and absorbed into a redefinition
of the Wilson lines. While any inclusive observable at a
given rapidity yobs is still computed by solving the classical
Yang-Mills equations, the Wilson lines V 1,2

x become explicitly
dependent on the respective rapidity scale 
y1/2, with the
rapidity evolution described by the JIMWLK renormalization
group equation [19–23].

FIG. 1. Computation scheme for single inclusive observables
(left) at midrapidity and (right) forward or backward rapidity. Starting
from the IP-Glasma parametrization of gluon distributions at an initial
rapidity scale, JIMWLK rapidity evolution is applied to both nuclei
to resum leading logarithmic corrections to inclusive observables.
While the same amount of rapidity evolution, 
y1/2 = 
y0, is applied
to both nuclei to compute observables at midrapidity (yobs = 0),
the amount of evolution in the two nuclei is different, 
y1/2 =

y0 ± yobs, when computing observables at forward or backward
rapidities (yobs �= 0).

A compact summary of the computational scheme to
compute single inclusive observables at leading logarithmic
accuracy is depicted in Fig. 1. Starting from a parametrization
of the distributions of color charges at an initial rapidity
scale y0 in the IP-Glasma model [6,7], evolution towards
larger rapidity separations, 
y0 ± yobs, is then performed by
numerically solving the JIMWLK equations [19–23]. Based
on the evolved Wilson line configurations one constructs
the classical Yang-Mills fields in the forward light-cone
at any given rapidity yobs according to Eqs. (6) and (7).
Subsequently, the classical Yang-Mills equations of motion
are solved numerically in the forward light-cone to compute
the observables of interest.

As we pointed out, the above framework of high-energy
factorization has been rigorously derived for single inclusive
observables at different rapidities [27] and shown to hold also
for inclusive multigluon production, as long as the rapidity
separation between the particles is maximally ∼α−1

s [38,39].
This framework has been the basis of CGC-based calculations
of the “ridge effect” in heavy ion [40,41], p + p [42,43], and
p + A [44–47] collisions.

However, some cautionary remarks are in order regarding
its applicability to the typical observables of interest for
the phenomenological description of heavy ion collisions.
The event-by-event hydrodynamic description of heavy ion
collisions requires the knowledge of unequal rapidity corre-
lations over a wide range in rapidity. For example, typical
observables require the energy momentum tensor to be known
simultaneously at two different rapidities, thus one expects
corrections to results obtained within the framework of Fig. 1
as soon as the rapidity separation exceeds α−1

s .
For dilute-dense systems, extended evolution equations

have been derived to incorporate corrections to the above fac-
torization scheme [48]. However, a comprehensive framework
to incorporate these effects in nucleus-nucleus collisions is
yet to be developed and we intend to return to this issue in
a future publication. On the other hand, it is conceivable that
the extension of the above factorization framework to a larger
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class of observables will at least capture the most important
effects correctly. We therefore employ this prescription in
the following as a first important step towards constraining
the longitudinal profiles of high-energy collisions from first
principles.

Details of the implementation of this 3D Glasma model are
described below.

A. Wilson lines at the initial rapidity scale

We now discuss how to numerically determine the gluon
fields in the two incoming nuclei at the initial rapidity scale.
First, we need to determine the color charge densities that
appear in Eq. (1). To do so we follow previous works [6,7]
and use the impact-parameter-dependent saturation (IPSat)
model [24,49] as the starting point. The model provides a
parametrization of the saturation scale Qs as a function of the
Bjorken x and the transverse position x⊥, which is constrained
from DIS data [25].

Using the thickness function of the nucleus, obtained by
sampling individual nucleons from a Woods-Saxon distri-
bution and assigning a Gaussian thickness function to each
nucleon [6,7], the IPSat model provides Qs(x⊥,x) at any given
transverse position x⊥ and the Bjorken x that corresponds
to the initial rapidity at a given collision energy

√
s. The

color charge density distribution g2μ(x⊥,x) is proportional
to Qs(x⊥,x), which can fluctuate in each nucleon following
[50].1 We obtain the Wilson lines at the initial rapidity scale by
discretizing the path-ordered exponential in Eq. (4) according
to [52]

Vx =
Ny∏
k=1

exp

(
−ig

ρk(x⊥)

∇2
⊥ + m2

)
, (8)

where we introduce the infrared regulator m ∼ �QCD to
suppress Coulomb tails. Color charge distributions ρk are
sampled from a Gaussian distribution with width gμ(x⊥,x),

〈
ρa

k (x⊥)ρb
l (y⊥)

〉 = δabδklδ2(x⊥ − y⊥)
g2μ2(x⊥)

Ny

, (9)

where the indices k,l = 1,2, . . . ,Ny represent a discretized x−
(or x+) coordinate, and we use Ny = 50 throughout this work.

B. JIMWLK evolution

Starting from the Wilson line configurations at the initial
rapidity scale, we perform the JIMWLK renormalization
group evolution [19–23] to the largest rapidity separation of
interest as depicted in Fig. 1. For our numerical study it is
particularly useful to express the JIMWLK hierarchy in terms
of a functional Langevin equation for the Wilson lines [53,54].
In Ref. [55] the following simple form of the Langevin step

1While we do not expect such fluctuations to be particularly
important for heavy ion collisions, they are required in p + A and
p + p collisions to describe the multiplicity distributions [51].

was derived:

Vx(Y + dY ) = exp

{
−i

√
αsdY

π

∫
z
Kx−z · (Vzξ zV

†
z )

}

×Vx(Y ) exp

{
i

√
αsdY

π

∫
z
Kx−z · ξ z

}
, (10)

where the noise ξ z = (ξa
z,1t

a,ξ a
z,2t

a) is taken to be Gaussian and
local in transverse coordinate, color, and rapidity: 〈ξb

z,i(Y )〉 = 0
and 〈

ξa
x,i(Y )ξb

y,j (Y ′)
〉 = δabδij δ(2)

xy δ(Y − Y ′) , (11)

and the perturbative JIMWLK kernel is given by

Kx−z = (x − z)

(x − z)2
. (12)

As discussed in Ref. [56], the perturbative kernel needs to
be regularized at large distance scales to limit growth in impact
parameter space. This is done using the modified kernel

K
(mod)
x−z = m|x − z|K1(m|x − z|)Kx−z. (13)

Here K1(x) is the modified Bessel function of the second kind.
At small arguments xK1(x) = 1 + O(x2), such that the kernel
is unmodified, while for large arguments K1(x) = √

π
2x

e−x

decays exponentially with the infrared regulator m chosen to
be equal to that introduced in Eq. (8). On the level of the
Balitsky-Kovchegov equation [57,58], which is the large Nc

limit of the JIMWLK equation, it is known that next-to leading
order effects [59] slow down the evolution [60–62]. Here,
we adjust the evolution speed by treating the strong coupling
constant αs as a free parameter.

In practice, we need to determine the Wilson lines of a
nucleus at all x relevant for a certain collision energy and
rapidity range. To do so we first compute the Wilson lines
at the largest x value using the IPSat/IP-Glasma model. For
a left-moving nucleus at LHC energies of

√
s = 2.76 TeV at

y = −2.4, which is the largest (negative) rapidity we consider,
this is x = (〈pT 〉/√s) exp(2.4) ≈ 0.002 for the typical 〈pT 〉 ≈
0.5 GeV. We then solve the JIMWLK equation (10) up to
rapidity y = 2.4, which corresponds to x ≈ 1.6 × 10−5. For
the right-moving nucleus the x values are simply reversed.

In Fig. 2 we show the transverse structure of one nucleus
employing the quantity 1 − Re[tr(Vx)]/Nc at different values
of x using m = 0.4 GeV and αs = 0.3. As previously demon-
strated in Refs. [56,63] the increase of the saturation scale Qs

with decreasing x leads to a reduction of the characteristic
transverse length scale ∼1/Qs , which is clearly visible in
Fig. 2. Despite significant changes on smaller scales, one
also observes that the large-scale structure of the nucleus is
only mildly modified even after evolution of several units in
rapidity.

C. Gluon fields after the collision

Using the Wilson lines of the incoming nuclei at rapidities

Y1/2 = 
Y0 ± Yobs, the gluon fields in the future light-cone
are determined numerically for each slice in rapidity yobs.
Based on the procedure outlined in Ref. [33] we determine
the discretized analog of Eqs. (6) and (7). Given these
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FIG. 2. JIMWLK evolution of the gluon fields in one nucleus for m = 0.4 GeV and αs = 0.3. Shown is 1 − Re[tr(Vx)]/Nc in the transverse
plane at rapidities Y = −2.4 (x ≈ 2 × 10−3) (a), Y = 0 (x ≈ 2 × 10−4) (b), and Y = 2.4 (x ≈ 1.6 × 10−5) (c) to illustrate the change of the
typical transverse length scale with decreasing x. The global geometry clearly remains correlated over the entire range in rapidity.

initial conditions, the source free Yang-Mills equations are
solved forward in time, for each rapidity separately (see, e.g.,
Ref. [7]). From the resulting fields at τ = 0.2 fm/c we compute
the gluon multiplicity and the energy momentum tensor T μν .

The gluon distribution can be obtained by measuring equal-
time correlation functions of the gauge fields after imposing
the Coulomb gauge ∂iA

i |τ = 0 at a given time [35,64]:

dN

d2k⊥dy

∣∣∣∣
τ

= 1

(2π )2

∑
λ,a

∣∣τgμν
(
ξλ,k⊥∗
μ (τ )

←→
∂τ Aa

ν (τ,k⊥)
)∣∣2

,

(14)

where gμν = (1,−1,−1,−τ−2) denotes the Bjorken metric
and λ = 1 and 2 labels the two transverse polarizations. In
Coulomb gauge, the mode functions take the form

ξ (1),k⊥
μ (τ ) =

√
π

2|k⊥|

⎛
⎝−ky

kx

0

⎞
⎠H

(2)
0 (|k⊥|τ ), (15)

ξ (2),k⊥
μ (τ ) =

√
π

2|k⊥|

⎛
⎝ 0

0
kT τ

⎞
⎠H

(2)
1 (|k⊥|τ ), (16)

where H (2)
α denotes the Hankel functions of the second type

and order α (see Ref. [35] for details).

III. RESULTS

For illustration we first present 3D plots of T ττ in a single
event at

√
s = 2.76 TeV in Fig. 3. We find that in each

event the distribution of deposited energy is dominated by
approximately boost-invariant flux-tube-like structures, with
a typical transverse size of a nucleon. Deviations from boost
invariance introduced by the JIMWLK evolution of both nuclei
are clearly visible as well. Variations on both small and large
transverse and longitudinal distance scales can be observed.

These structures in rapidity are quantified in the following,
where we compute the rapidity dependence of the gluon
multiplicity and its fluctuations as well as the rapidity
variation in value and orientation of eccentricities. These
quantities should have a direct effect on various experimental

observables, such as the charged-particle rapidity spectra, the
pseudorapidity-dependent factorization ratio rn(η1,η2) [65],
and Legendre coefficients of two-particle multiplicity [66] and
eccentricity correlations in rapidity.

A. Rapidity dependence of the multiplicity

We first present results for the rapidity dependence of the
transverse momentum integrated gluon multiplicity. Figure 4
shows the event-averaged gluon multiplicity relative to its
value at Y = 0 for αs = 0.15, αs = 0.225, and αs = 0.3 and
m = 0.4 GeV. The dependence on the coupling αs is clearly
visible. In particular, we find approximate scaling with αsY ,
as demonstrated explicitly in Fig 4(b). The statistical errors
are smaller than the width of the line. To demonstrate the
event-by-event fluctuations, we also show results from three
single events using thin lines. To get a sense of the magnitude
of the rapidity dependence we compare to a Gaussian fit
(width σ = 3.86) of experimental data for dNch/dY from the
ALICE Collaboration, also scaled by the value at Y = 0 [67].
Hydrodynamic evolution will broaden the initial distribution
in space-time rapidity to produce somewhat broader dNch/dY
spectra (see, e.g., Ref. [9]). We thus conclude that when
characterizing the evolution speed by a constant αs , it needs
to be 0.15 or greater to generate results compatible with the
experimental data. To compare to evolution speeds quoted in
the description of structure functions we compute

λ = d ln Q2
s

dY
. (17)

Here Qs is defined as the inverse of r at which the dipole
amplitude N = tr 〈1 − V †(b + r/2)V (b − r/2)〉/Nc, where
the average is over b, reaches the value 0.15.2 We further
neglect the detailed Y dependence of λ and quote a range of λ
values over the considered Y range. We find λ ≈ 0.28–0.3 for

2We constrain ourselves to small values of the dipole amplitude
because at large r nonperturbative effects that are not included in our
prescription affect its value [56].
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x η x η x
η

(a) (b) (c)

FIG. 3. View of the three-dimensional distribution of T ττ in a single event from different angles, covering the entire transverse plane and
4.8 units in rapidity.

αs = 0.15 and λ ≈ 0.6–0.8 for αs = 0.3. Values of λ = 0.2–
0.3 are consistent with experimental data on structure functions
[68–70].

We note that the results presented in Fig. 4 depend only
mildly on the infrared regulator m. For m = 0.2 GeV we find
a slightly faster change with Y , leading to an approximately
15% smaller dN/dY at Y = ±2.4.

The single-event rapidity distributions dN/dY are then
used to determine the two-particle rapidity correlation

FIG. 4. (a) Gluon multiplicity relative to its value at Y = 0 for
αs = 0.15, αs = 0.225, and αs = 0.3 using m = 0.4 GeV. The various
dashed lines show results from three single events for each value of
the coupling constant. The green dash-dot-dotted line is a Gaussian fit
to the charged hadron dNch/dY data from the ALICE Collaboration
[67]. (b) The same results plotted vs αsY .

function [71]

C(Y1,Y2) = 〈N (Y1)N (Y2)〉
〈N (Y1)〉〈N (Y2)〉 , (18)

where N (y) = dN/dy.
In Fig. 5 we show the result for the normalized correlation

function

CN (Y1,Y2) = C(Y1,Y2)

Cp(Y1)Cp(Y2)
, (19)

where the normalization factors Cp(Y1) = 1
2Y

∫ Y

−Y
C(Y1,Y2)

dY2 and Cp(Y2) = 1
2Y

∫ Y

−Y
C(Y1,Y2)dY1 are chosen such that

CN (Y1,Y2) is normalized to be 1 on average. The general
structure and magnitude of the correlation function is similar to
that observed by the ATLAS Collaboration [72]. The expected
stronger rapidity dependence for the larger αs = 0.3 compared
to αs = 0.15 is clearly visible.

In analogy to the experimental data [72], our result for
the gluon CN can be expanded in Legendre polynomials.
Following Refs. [66,73], the Legendre coefficients are given
by

an,m =
∫

CN (Y1,Y2)
Tn(Y1)Tm(Y2) + Tn(Y2)Tm(Y1)

2

dY1

Y

dY2

Y
,

(20)

where Tn(Yp) = √
n + 1/2 Pn(Yp/Y ) and Pn are the standard

Legendre polynomials. The an,m are related to the Legendre
coefficients of the single-particle distribution an via an,m =
〈anam〉, where an is defined through N (y)/〈N (y)〉 = 1 +∑

n anTn(y) [72,74].
The results for

√|an,m| with different αs and mass pa-
rameters m are shown in Fig. 6. In the experimental data
the coefficient a1,1 is the only one insensitive to short-range
correlations, such as those resulting from resonance decays. It
is further largely unaffected by final state interactions [15]
and Fig. 6 shows that it is also insensitive to m, which
makes it a rather robust observable to constrain the evolution
speed characterized by αs . Extrapolating the experimental
results where short-range correlations are removed and pT >
0.2 GeV to very central events, which we consider here,
the ATLAS Collaboration finds

√
a1,1 ≈ 0.015 [74], which

is approximately in between our results using αs = 0.15
and αs = 0.225. We show higher Legendre coefficients for
completeness. They can be used for comparison with different
initial state models but should not be compared to experimental
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FIG. 5. The correlation function CN (Y1,Y2) for m = 0.4 GeV and
αs = 0.15 (a) and αs = 0.3 (b).
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FIG. 6. Legendre coefficients
√|an,m| labeled by (n,m) of the

gluon multiplicity correlator for different values of αs and m.

data, because they are affected both by final-state interactions,
like hydrodynamic evolution, and short-range correlations
like those from resonance decays [15,16]. We note that in
p + p collisions a1,1 was determined in a model including
fluctuations of the saturation scale and evolution of this scale
with rapidity in Ref. [75]. This should capture important
features of our more detailed calculation.

B. 3D event geometry

We characterize the transverse geometry by the spatial
analog to the flow Q vector

εn(η) = εn(η)einφn(η) =
∫

dr2ε(r,φ,η)rneinφ∫
dr2ε(r,φ,η)rn

, (21)

defining both the rapidity-dependent magnitude εn(η) and the
orientation φn(η) of the spatial nth order eccentricity. Instead
of determining the energy density ε from the eigensystem of
T μν , we neglect the effect of flow velocities in the following
and approximate ε by T ττ .

We first demonstrate how the geometry can vary with
rapidity in a single event, by showing the change of the
eccentricity relative to its value at η = 0 and the corresponding
variation in angle quantified by sin{n[φn(η) − φn(0)]} for a
selection of three typical events in Fig. 7. Some events show
ε2 and ε3 decreasing (or increasing) together, others have
them vary in opposite directions. We do not observe a strong
correlation between the variation in angle relative to the change
in magnitude of εn.

Because of its direct relation to the experimental observable
used to characterize the decorrelation of anisotropic flows [65],
we first study

rn(ηa,ηb) = 〈Re[εn(−ηa) · ε∗
n(ηb)]〉

〈Re[εn(ηa) · ε∗
n(ηb)]〉

= 〈εn(−ηa)εn(ηb) cos{n[φn(−ηa) − φn(ηb)]}〉
〈εn(ηa)εn(ηb) cos{n[φn(ηa) − φn(ηb)]}〉 ,

(22)

where εn replaces the flow Q vector used in the experimental
analysis. The brackets 〈·〉 denote the average over configu-
rations. It was found that the magnitude of rn in coordinate
space (22) is very close to the decorrelation of final charged
hadrons in pseudorapidity using a hydrodynamic model for
n = 2 [76]. For n = 3 this correspondence is also good for the
central collisions that we study here.

The results for central collisions (b = 0 fm) with fixed
ηb = 2.4, m = 0.4 GeV, and three different values of αs are
shown in Figs. 8 and 9. Because larger values of the coupling
constant lead to a faster rapidity evolution of the Wilson
lines, they also result in a faster decorrelation of the event
eccentricities across different rapidities. However, our results
for rn also show some dependence on the effective mass scale
m, regulating the growth of the nucleus in impact parameter
space. While we find no significant change for n = 2 when
using a smaller value of m = 0.2 GeV (and αs = 0.3), we find
an approximately two times faster drop of r3 with rapidity ηa

for the smaller value of m = 0.2 GeV (and αs = 0.3). This
can be explained by the increased sensitivity of r3 to the edges
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φ
φ

φ
φ

φ
φ

FIG. 7. Change of the eccentricity relative to its value at η = 0 [panels (a)–(c)] and the corresponding variation in angle quantified by
sin{n[φn(η) − φn(0)]} [panels (d)–(f)] in three single configurations. Simulations used αs = 0.3 and m = 0.4 GeV.

of the nuclei [r3 weight in Eq. (21)], which exhibit a faster
rapidity evolution for smaller values of m.

We further compare our results to experimental data from
the CMS Collaboration [65]. Given the correspondence of
initial- and final-state rn values demonstrated in Ref. [76], a
direct comparison of our results to the experimental data is
possible. The experimental data show a decorrelation for both
n = 2 and n = 3 that is closest to our result with αs = 0.225
and m = 0.4 GeV. As discussed above, the smaller values of

FIG. 8. Decorrelation of the initial spatial eccentricity r2(ηa,ηb)
for ηb = 2.4 in central events (b = 0 fm) using three different values
of αs . We compare to experimental data from the CMS Collaboration
[65].

αs also lead to evolution speeds more compatible with DIS
data and thus should be considered the more realistic choice
also for this observable.

In Figs. 10 and 11, we compare the 3D Glasma result for r2

and r3 using αs = 0.225 to results from the torque model [77],
the 3D Monte Carlo-based Glauber model (3DMCG) [15],
and the AMPT model (a multiphase transport model) initial
conditions studied in Ref. [76].

FIG. 9. Decorrelation of the initial spatial eccentricity r3(ηa,ηb)
for ηb = 2.4 in central events (b = 0 fm) using three different values
of αs . We compare to experimental data from the CMS Collaboration
[65].
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FIG. 10. Decorrelation of the initial spatial eccentricity r2(ηa,ηb)
for ηb = 2.4 in central events (b = 0 fm) with αs = 0.225, compared
to results from the torque model [77], the AMPT model [76], and
the 3DMCG model [15]. We compare to experimental data from the
CMS Collaboration [65].

While in our framework the rapidity dependence is due
to quantum fluctuations of color charges in both nuclei
described by QCD evolution equations, the other models
employ more phenomenological approaches. The 3DMCG
model’s rapidity dependence results from the fact that the
ends of flux tubes between participant quarks follow a given
random distribution in rapidity. The torque model generates the
effect from asymmetric source profiles in pseudorapidity and
from fluctuations of the length of strings. The AMPT model
uses HIJING [78], which includes fluctuations of string lengths
as well as an asymmetric distribution between forward and
backward going participants, which depends on the transverse
position. The three-dimensional spatial structure should thus
differ quite significantly between these three models and our
framework, yet the shape of rn does not seem to be able to
distinguish between the models. However, the magnitude of

FIG. 11. Decorrelation of the initial spatial eccentricity r3(ηa,ηb)
for ηb = 2.4 in central events (b = 0 fm) with αs = 0.225, compared
to results from the torque model [77], the AMPT model [76], and
the 3DMCG model [15]. We compare to experimental data from the
CMS Collaboration [65].

(a)

(b)

FIG. 12. The deviation in percent of εn(ηa) from εn(0) given by

εn(ηa,0) for n = 2 (a) and n = 3 (b) with m = 0.4 GeV.

the decorrelation can deviate quite significantly between the
models, with our results with αs = 0.225 for both r2 and r3

being closest to the AMPT model and results for αs = 0.15
producing weaker decorrelation than any other model.

It is desirable to find an experimental observable that is
more sensitive to how the geometry evolves and fluctuates with
rapidity. In the following we analyze in more detail the rapidity
dependence of the geometry in the 3D Glasma framework.

To quantify the typical change of the magnitude of the
eccentricity εn(η) with rapidity, we compute the quantity


εn(ηa,ηb) =
〈 |εn(ηa) − εn(ηb)|

εn(ηb)

〉
. (23)

The result for fixed ηb = 0 is shown in Fig. 12. The deviation
grows approximately linearly with 
η = |ηa − ηb|. We further
find approximate scaling with αs
η. The slope of the deviation

εn(ηa,ηb) is thus given by ±0.4 αs per unit of rapidity.

We quantify how the orientation of the eccentricities
changes with rapidity by using 〈cos[n(φn(ηa) − φn(ηb))]〉,
because this is the relevant quantity entering rn (22). The
result for αs = 0.15, 0.225, and 0.3 for ηb = 0 is shown in
Fig. 13. The weak dependence of r2 on rapidity (Fig. 8) can be
mainly attributed to the weak change of the orientation shown
in Fig. 13.

Finally we perform an analysis analogous to that of the
multiplicity correlations in Sec. III A with the eccentricities ε2
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(a)

(b)

FIG. 13. Change in angle φn(ηa) relative to φn(0) quantified by
〈cos{n[φn(ηa) − φn(0)]}〉 for n = 2 (a) and n = 3 (b) with m =
0.4 GeV.

and ε3. We define

C̃n(Y1,Y2) = 〈Re[εn(Y1) · ε∗
n(Y2)]〉

〈εn(Y1)〉〈εn(Y2)〉 , (24)

compute C̃n
N analogous to Eq. (19), and perform the same

expansion into Legendre polynomials as with C in Eq. (20).

FIG. 14. Legendre coefficients of the expansion of the
eccentricity-vector correlator, characterizing fluctuations of the trans-
verse geometry in rapidity.

Due to limited statistics we constrain this analysis to ãn
k,k =

〈ãn
k ãn

k 〉, where ãn
k represents the kth Legendre coefficient of the

nth order eccentricity correlator C̃n
N . We present the results for

m = 0.4 GeV in Fig. 14. No significant m dependence was
observed. One can clearly see that also the fluctuations of
the transverse geometry in rapidity depend strongly on the
evolution speed characterized by αs . It will be very interesting
to compare these results to other initial state models and
experimental measurements, where εn in Eq. (24) should be
replaced by Q vectors.

IV. CONCLUSIONS AND OUTLOOK

We have presented the first step towards a fully three-
dimensional initial state for heavy ion collisions from quasi-
first-principles calculations within the effective theory of the
color glass condensate. Our calculations are accurate for
single inclusive quantities to leading logarithmic order in 1/x.
They should further capture the main effects for multiparticle
observables that involve different rapidities, in particular,
for rapidity separations �α−1

s . We computed the rapidity
distributions of produced gluons and their fluctuations, as
well as the spatial geometry of the energy momentum tensor
and its variation in rapidity. For observables that allow for
an approximate comparison to experimental heavy ion data,
good agreement is found when using evolution speeds in x
that are similar to those extracted from DIS measurements.
Interestingly, for this evolution speed our model shows a
weaker decorrelation than other models in central collisions,
leading to a good description of the usually underestimated
decorrelation measure r2.

This work provides the basis for important phenomeno-
logical applications and further theoretical developments.
On the phenomenology side, the initial energy momentum
tensors computed in this work can in principle be used
to initialize viscous hydrodynamic simulations. However,
additional modeling will be required to extend the distributions
to large rapidities where large x effects, which are not captured
in our framework, play a role. Concerning theoretical improve-
ments, we discussed that at NLO (beyond leading logarithmic
accuracy) quantum fluctuations beyond the logarithmically
enhanced contribution need to be taken into account. When
doing so, full 3D Yang-Mills simulations can be performed,
which will be an important next step towards a fully 3D initial
state from first principles.

ACKNOWLEDGMENTS

We thank Piotr Bozek, Wojciech Broniowski, Tuomas
Lappi, Long-Gang Pang, Prithwish Tribedy, and Raju Venu-
gopalan for valuable discussions. B.P.S. and S.S. are supported
under DOE Contract No. DE-SC0012704. This research used
resources of the National Energy Research Scientific Com-
puting Center, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. B.P.S. acknowledges support from a DOE Office
of Science Early Career Award. S.S. gratefully acknowledges
support from a Goldhaber Distinguished Fellowship from
Brookhaven Science Associates.

044907-9
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