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Thermal blurring of event-by-event fluctuations generated by rapidity conversion
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We study the effect of thermal blurring caused by the use of (momentum-space) rapidity as a proxy of
coordinate-space rapidity in experimental measurements of conserved-charge fluctuations in relativistic heavy-ion
collisions. In theoretical studies assuming statistical mechanics, calculated fluctuations are those in a spatial
volume. Experiments, on the other hand, can measure fluctuations only in a momentum space in the final state.
In a standard argument to compare experimental results for a momentum space with theoretical studies for a
coordinate space, rapidities of particles are implicitly regarded as equivalent to their coordinate-space rapidity.
We show that the relation of two fluctuations is significantly altered by the existence of the thermal motion, i.e.,
thermal blurring. We discuss that the thermal blurring can be regarded as a part of the diffusion process, and the
effect can be understood by studying the rapidity window dependences of fluctuations. Centrality dependence of
the thermal blurring effect is also discussed.
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I. INTRODUCTION

In relativistic heavy-ion collisions, bulk fluctuations of
conserved charges observed by event-by-event analyses are
among unique hadronic observables which carry information
on the thermal property of the medium in the early stage [1–4];
see a recent review, Ref. [5]. In particular, the non-Gaussianity
of fluctuations characterized by higher order cumulants has
acquired much attention recently [6–11]. Active measurements
of fluctuations have been performed at Relativistic Heavy
Ion Collider (RHIC) and the Large Hadron Collider (LHC)
[12–17]. Measurements will also be carried out in future
experiments, such as the beam-energy scan II (BES-II)
program at RHIC [18] and future facilities, FAIR [19], NICA
[20], and J-PARC [21]. Conserved-charge fluctuations can also
be investigated in numerical experiments on the lattice [22,23].
The comparison between the real and virtual experiments by
means of fluctuations will deepen our knowledge on statistical
and dynamical aspects of relativistic heavy-ion collisions.

In the comparison of fluctuations measured by event-by-
event analyses with those obtained by theoretical analyses,
however, there is a difficulty associated with the phase space
in which the fluctuations are defined [2–4]. On the theoretical
side, including lattice QCD numerical simulations, the cu-
mulants characterizing fluctuations are usually calculated on
the basis of statistical mechanics [1–3,6–9,22]. The cumulants
calculated in this formalism correspond to those in a finite
spatial volume in equilibrium; the phase space is defined in
coordinate space after integrating out the momentum [5]. On
the other hand, in heavy-ion collisions experimental detectors
cannot observe the position of particles in the medium. Instead,
they can only measure the momentum of particles in the
final state. Therefore, the phase-space defining fluctuations
inevitably has to be chosen in momentum space.
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The fluctuations in a momentum-phase space observed
experimentally are usually regarded as a proxy of the one in a
coordinate space as follows [2,3]. First, assuming the Bjorken
space-time evolution, the (momentum-space) rapidity1 y of a
fluid element is equivalent to the coordinate-space rapidity Y =
tanh−1(z/t) of the fluid element because of boost invariance,
where t and z are time and the longitudinal coordinate,
respectively. Second, by assuming that the rapidities of
individual particles in the fluid element is equivalent to
the rapidity of the fluid element, rapidities of particles are
identical with Y . Then, by measuring fluctuations in a rapidity
window �y after integrating out the transverse momentum,
the phase space is regarded as the one in the coordinate
space in a coordinate-space rapidity window �Y = �y, where
transverse coordinates, x and y, are integrated out.

This argument, however, relies on two nontrivial assump-
tions: (1) validity of the Bjorken picture and (2) that the relative
velocities of individual particles against the fluid element are
negligible. Though the former may be justified for sufficiently
high-energy collisions, the latter can be invalidated by thermal
motion irrespective of collision energy. Because of the thermal
motion, the correspondence between the two rapidities y and
Y for individual particles becomes at most an approximate
one. The measurement of fluctuation in �y thus receives
a blurring effect when the results are to be interpreted as
fluctuations in �Y . In this study, we call this effect thermal
blurring, and investigate its effect on fluctuation observables
quantitatively. We note that the existence of the thermal
blurring effect has been pointed out in earlier studies [2–4,24].
The same problem is recently investigated in a slightly different
context in Ref. [25]. The purpose of the present study is to
investigate this effect on cumulants quantitatively. We discuss

1Pseudorapidity is often experimentally measured instead of rapid-
ity because of the relative easiness of the measurement. In this paper,
however, we consider rapidity because theoretically it has a preferable
feature under Lorentz boost.
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the centrality dependence of the thermal blurring effect and
extend the argument to non-Gaussian fluctuations. The main
results of this paper are presented in Ref. [26].

In this study, we estimate the thermal blurring effect by
assuming that individual particles are emitted from the medium
at kinetic freezeout. The thermal motion of individual particles
at kinetic freeze-out is deduced from a simple blast-wave
model for particle yields in pT space. We show that the
thermal blurring effect becomes more prominent as the rapidity
window �y becomes narrower, and at the maximal coverage
of the rapidity window of STAR detector the observed
fluctuations are significantly modified owing to this effect.

Because we consider the thermal blurring at kinetic freeze-
out, our argument relates fluctuations observed experimentally
to those in �Y at kinetic freeze-out. When one wants to
compare the experimental results with thermal fluctuations
generated in a much earlier stage, one has to take account of
the time evolution of fluctuations before kinetic freeze-out
[10,24,28]. The time evolution is basically the diffusion
process toward the equilibrium. In this paper we discuss
that the thermal blurring can be regarded as a part of the
diffusion process. One thus can use the mathematical results
in Refs. [10,24,28] directly to understand the thermal blurring
effects. We argue that the modification of fluctuations due
to thermal blurring and diffusion can be experimentally
understood by studying the rapidity window �y dependences
of the cumulants as discussed for the case of diffusion in
Refs. [10,27,28]. The centrality dependence of net-electric
charge fluctuation observed by ALICE Collaboration [14] is
also discussed on the basis of this picture.

Throughout this paper, we assume the Bjorken space-time
evolution. At lower energy collisions, this picture does not
hold and our discussion would be significantly modified. We,
however, do not consider such effects until Sec. VI.

This paper is organized as follows. In the next section we
study thermal distribution of particles in rapidity space using a
simple blast-wave model. In Sec. III, we then study the thermal
blurring effects on cumulants. The formula of the cumulants
are derived with two different methods in Secs. III A and III B.
Numerical results are then shown in Secs. IV. In Sec. V, we
then consider the effect of diffusion in the hadronic stage and
show that the diffusion and blurring can be regarded as parts
of a single diffusion process on the same footing. Section VI
is devoted to discussions and a short summary.

II. THERMAL DISTRIBUTION IN RAPIDITY SPACE

In this section, we first discuss the magnitude of thermal
blurring by studying the thermal distribution of particles in
rapidity space at kinetic freeze-out on the basis of a blast-wave
model.

In the Bjorken space-time evolution, the distribution of
particle density in y space at coordinate-space rapidity Y ,
nY (y) is related to the distribution at midrapidity n(y) as

nY (y) = n(y − Y ), (1)

because of boost invariance. In what follows, we thus concen-
trate on n(y).

The invariant momentum spectrum of particles crossing a
surface element d�μ is given by the Cooper-Frye formula
[29],

E
dN

d3 p
= d� · pf (p · u), (2)

where f (E) is the single-particle distribution in the rest frame
and uμ denotes the flow velocity. We assume the Boltzmann
distribution for f (E)

f (E) ∼ exp

[
−E − μ

T

]
, (3)

with the temperature T , chemical potential μ, and E =√
m2 + p2 with m, denoting the mass of particles. The effect

of quantum statistics on Eq. (3) is well suppressed for T �
m − μ. At kinetic freeze-out point with the temperature Tkin,
the effect of quantum statistics is negligible for all particles
except for pions, on which the effect is at most about 10%.

In order to calculate the particle distribution n(y) with
Eq. (2), we employ the following simplified blast-wave
model: We assume that the freeze-out with temperature Tkin

and chemical potential μkin takes place at a fixed proper
time τkin with a constant transverse velocity β.2 The flow
vector at midrapidity at (t,x,y,z) = (tkin,x,0,0) is given by
uμ = (γ,βγ,0,0) with γ = (1 − β2)−1/2 while the surface
vector d�μ is proportional to (1,0,0,0). Substituting them into
Eq. (2), the momentum distribution of the emitted particles
from the freeze-out surface at this point is given by

dN

d3 p
∼ exp[−pu/T ] = exp[−γ (E + βpx)/T ], (4)

where in the first proportionality we have used the fact that
the μ dependence through exp(μ/T ) can be factored out.
The particle spectrum emitted from freeze-out surface per unit
rapidity y per unit transverse momentum pT is given by

ñ( pT,y) = dN

d3 p
dpz

dy
. (5)

Using dpz = Edy and by integrating out the transverse
momentum, we obtain the particle distribution per unit rapidity
as

n(y) ∼
∫

dpxdpyEe−γ (E+βpx )/T , (6)

where we have used the rotational invariance with regard to z
axis, i.e., the longitudinal axis. The proportionality coefficient
of n(y) is determined so as to satisfy

∫
dyn(y) = 1. We note

that Eq. (6) does not depend on μ. It is easily shown that n(y)
depends on m and T only through the combination w = m/T .

In Fig. 1 the distribution n(y) is plotted for several values
of w = m/T and β. The figure shows that the distribution
becomes narrower as w becomes larger. This dependence
comes from the suppression of thermal motion at large w.

2In this model, therefore, possible dependence of τkin on the
position in transverse plane is neglected. The possible azimuthal angle
dependence of β for peripheral collisions is not taken into account in
this model, either.
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FIG. 1. Particle density per unit rapidity n(y) for several values
of w = m/T and the transverse velocity β.

The figure also shows that the distribution becomes narrower
for large β, which is a consequence of Lorentz effect; with the
boost of a thermal system, the distribution is squeezed toward
the direction of the boost.

In order to characterize the thermal distribution more
quantitatively, we plot the width σ of n(y) defined by

σ 2 =
∫

dyy2n(y), (7)

as functions of w and β in the upper panels of Figs. 2 and
3, respectively. The blast wave fits for the pT spectra at the
LHC and top-RHIC energies for the most central collisions
show that the freeze-out parameters are Tkin � 100 MeV and
β = 0.6–0.7 [30]. With T = Tkin, we thus have w = m/T �
1.5 and 9 for pions and nucleons, respectively. Figures 2 and
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FIG. 2. Width σ and kurtosis κ of n(y) as a function of w = m/T

for several values of transverse velocity β.
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FIG. 3. Width σ and kurtosis κ of n(y) as a function of transverse
velocity β for several values of w = m/T .

3 show that the width of n(y) for pions is σ � 0.5 with the
blast-wave parameters. This value is almost half the maximal
rapidity window �y = 1.0 at STAR [13]. Because the electric
charge is dominantly carried by pions, this result suggests that
the measurement of electric charge fluctuations with �y = 1.0
[15] is strongly affected by thermal blurring. For nucleons,
we have σ � 0.25 with the same freeze-out parameters. The
measurement of the baryon number cumulants [31] thus is
less affected by thermal blurring than the electric charge,
although the magnitude of σ in this case is not much suppressed
compared to �y = 1.0, either. In the next section, we analyze
the thermal blurring effect more quantitatively by studying the
cumulants directly.

Next, let us consider the deviation of n(y) from Gauss
distribution. Typical parameters to represent the deviation are
the skewness S and kurtosis κ defined by [5]

S = 1

σ 3

∫
dyy3n(y), (8)

κ = 1

σ 4

∫
dyy4n(y) − 3. (9)

Because S and κ vanish for the Gauss distribution, their
nonzero values characterize non-Gaussianity.3 Since n(y) is
an even function, S always vanishes. In the lower panels
of Figs. 2 and 3, the kurtosis of n(y) is plotted for various
parameters. Because the Maxwell-Boltzmann distribution in
nonrelativistic gas is given by Gaussian, non-Gaussianity of
n(y) comes from relativistic effects. In fact, the figures show

3Here, we emphasize that S and κ defined here are the skewness
and kurtosis of n(y), respectively, and thus are different from those
of event-by-event fluctuations of a conserved charge.
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that the magnitude of κ becomes large for small w and large
β, at which the relativistic effects become more prominent.
For the parameters relevant to pions and nucleons at kinetic
freeze-out, however, we have |κ| < 0.5, which indicates that
the deviation from the Gauss distribution is not large. In Sec. IV
we will show that the effect of non-Gaussianity of n(y) on
cumulants is indeed well suppressed.

In the nonrelativistic limit w → ∞ and β → 0, the distri-
bution n(y) approaches a Gauss distribution with the width
σ = 1/w, which is shown by the dotted line in Fig. 2.

III. BLURRING EFFECT ON CUMULANTS

Next, we investigate the effects of thermal blurring on
cumulants of a particle number Q�y in a rapidity window �y.
To this end, in this section we first develop the formulation
for the cumulants of Q�y using two different methods, which
give the same result. In Sec. III A, we first derive the result
by only using the general properties of the cumulants and the
binomial distribution function. We then obtain the same result
in Sec. III B starting from a discretized formalism.

In this study, we investigate the thermal blurring effect
focusing on the case that the density in Y space before
thermal blurring is given by ρY(Y ) and does not have event-by-
event fluctuation. The density ρy(y) in y space after thermal
blurring has event-by-event fluctuations even in this case, and
accordingly the cumulants 〈(Q�y)n〉c for n � 2 have nonzero
values. Because 〈(Q�y)n〉c for n � 2 vanish without thermal
blurring in this case, their nonzero values can be used as a
measure of the magnitude of this effect. As we will discuss
in Sec. III C, the fluctuations of ρY(Y ) can straightforwardly
be incorporated in this analysis following the treatment in
Refs. [10,28].

A. Simple derivation

In order to describe the cumulants of Q�y , we first consider
particles in an infinitesimal range dY in Y space before thermal
blurring. The number of particles in dY is

NdY (Y ) = ρY(Y )dY. (10)

After thermal blurring, a particle in dY is found in the rapidity
interval −�y/2 � y � �y/2 with probability

p�y(Y ) =
∫ �y/2

−�y/2
dyn(y − Y ). (11)

See Fig. 4. Because of the nature of thermal blurring, this
probability is to be regarded independent for individual

FIG. 4. Illustration of the rapidity window �y and the probability
p�y(Y ) in Eq. (11).

particles. Therefore, the distribution of the particle number
found in the rapidity interval �y

qdY→�y : Number of particles which exist in dY

and are found in �y, (12)

obeys the binomial distribution function,

Bp,N (m) = NCmpm(1 − p)N−m, (13)

with p = p�y(Y ) and N = NdY (Y ). Using the fact that the nth
order cumulant of Eq. (13) is given by [5]

〈mn〉c = ξn(p)N, (14)

we find that the cumulants of qdY→�y are given by

〈(qdY→�y)n〉c = ξn[p�y(Y )]NdY (Y )

= ξn[p�y(Y )]ρY(Y )dY. (15)

The explicit forms of ξn(p) up to the fourth order are

ξ1(p) = p,ξ2(p) = p(1 − p), ξ3(p) = p(1 − p)(1 − 2p),

ξ4(p) = p(1 − p)(1 − 6p + 6p2). (16)

For the fifth and sixth orders, see Ref. [32].
The total number of particles Q�y in �y is obtained by

summing up qdY→�y for all infinitesimal ranges dY as

Q�y =
∑
{dY }

qdY→�y. (17)

To calculate the cumulants of Q�y , we note that the cumulants
of the sum of uncorrelated stochastic variables are simply given
by the sum of the cumulants [5]. Because qdY→�y should be
uncorrelated for different dY bins, the cumulants of Q�y are
obtained as

〈(Q�y)n〉c =
∑
{dY }

〈(qdY→�y)n〉c

=
∫

dYξn[p�y(Y )]ρY(Y ), (18)

where in the last equality we used Eq. (15) and replaced the
sum with an integral. When the density ρY(Y ) is uniform,
ρY(Y ) = ρ0, we have

〈(Q�y)n〉c = ρ0

∫
dYξn[p�y(Y )]. (19)

Next, let us see the behavior of Eq. (18) in the �y → 0
limit. In this limit, the probability p�y(Y ) should be suppressed
proportionally to �y irrespective of the value of Y . Because
ξn(p) in Eq. (14) satisfy ξn(p) → p for p → 0 [5], we have

ξn[p�y(Y )] → p�y(Y ) for �y → 0, (20)

and the cumulants of Q�y converge to a common value

〈(Q�y)n〉c =
∫

dYp�y(Y )ρY(Y ) = 〈Q�y〉, (21)

for any n � 1. This result shows that Q�y in this limit obeys
a Poisson distribution [5].

For small but finite �y, the probability p�y(Y ) may be
expanded by a power series of �y starting from the first
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FIG. 5. Discrete system discussed in Sec. III B.

order. By substituting this expansion into Eq. (18) and using
Eq. (14), one finds that the �y dependence of 〈(Q�y)n〉c is
also expanded by a power series of �y. The nth-order term in
this expansion for n � 2 generally takes a nonzero value.

B. Derivation based on discretized formalism

Next, we derive Eq. (18) again but in a different way. In
this subsection, we start from discretized coordinate spaces
and take the continuum limit at the end.

We divide the coordinates Y and y into discrete cells with
equal lengths δY and δy, respectively, as illustrated in Fig. 5.
For simplicity, we further assume δY = δy, though this is
not essential in the following argument. For the moment,
we assume that the total number of the cells L is finite in
each space, although the final result does not depend on the
finiteness of the number of cells. The distribution of particles
in Y space is represented by the numbers of particles NI in
individual cells labeled by I = 1,2, . . . ,L. The distribution
after thermal blurring in y space is also represented by the
number of particles nj in cells labeled by j = 1,2, . . . ,L.

As in the previous subsection, we consider the thermal
blurring starting from a fixed distribution N = (N1, . . . ,NL)
in Y space. Thermal blurring gives rise to fluctuation of
the distribution n = (n1, . . . ,nL) in y space. We denote the
probability distribution function of n by Py(n).

Owing to thermal blurring, a particle in a cell, say in the
I th cell, in Y space is distributed to various cells in y space.
We denote the probability that the particle is found in j th cell
in y space as

PI→j : the probability that a particle

in the I th cell in Y space is found

in the j th cell in y space. (22)

Note that
∑

j PI→j = 1 has to be satisfied. Next, we consider
the probability that NI particles in the I th cell are distributed
in y space with mI,j particles in the j th cell as shown in Fig. 5.
This probability is given by

pI (mI ; NI ) = fNI
(mI ; P I ), (23)

with mI = (mI,1, . . . ,mI,L), P I = (PI→1, . . . ,PI→L), and the
multinomial distribution function

fNI
(mI ; P I ) = NI !

mI,1! . . . mI,L!

∏
j

(PI→j )mI,j δNI ,
∑

j mI,j
,

(24)

where the Kronecker delta represents the conservation of
particle number. The probability Py(n) is then given by the

product of Eq. (23) after the sum over mI,j for all cells with a
constraint nj = ∑

I mI,j as

Py(n) =
∏
I

[∑
mI

pI (mI )

] ∏
j

δnj ,
∑

I mI,j
. (25)

To calculate the cumulants of n, it is convenient to use
generating functions [5]. The factorial moment generating
function of Eq. (25) is calculated to be

Gf (s) =
∑

n

⎡
⎣

⎛
⎝∏

j

s
nj

j

⎞
⎠Py(n)

⎤
⎦

=
∏
I

⎡
⎣∑

mI

pi(mI )
∏
j

s
mI,j

j

⎤
⎦

=
∏
I

⎛
⎝∑

j

sjPI→j

⎞
⎠

NI

, (26)

with s = (s1, . . . ,sL). In the last step, we used Eqs. (23)
and (24). The factorial cumulant generating function is then
obtained as

Kf(s) = ln Gf(s) =
∑

I

NI ln

⎛
⎝∑

j

sjPI→j

⎞
⎠. (27)

To take the continuum limit, δY → 0 and δy → 0, of
Eq. (27), we replace Ni → ρY(Y )δY and PI→j = n(y − Y )δy.
The sums over I and j in Eq. (27) then become integrals and
one obtains the generating functional

Kf[s(y)] =
∫

dYρY(Y ) ln

[∫
dys(y)n(y − Y )

]
. (28)

The factorial cumulants of Q�y are obtained by applying
the operator

D�y =
∫ �y/2

−�y/2
dy ′ δ

δs(y ′)
, (29)

to Eq. (28) and taking s(y) = 1 afterward as

〈(Q�y)n〉fc = (D�y)nKf|s(y)=1, (30)

where the definition of the functional derivative δ/δs(y)
is understood as the limit of the discretized notation. The
cumulants of Q�y are then obtained by using the relation
between cumulants and factorial cumulants [5,28]. This
manipulation leads to Eq. (18). We note that with s(y) = 1
the argument of logarithmic function in Eq. (28) becomes
unity,

∫
dys(y)n(η − Y ) = ∫

dyn(η − Y ) = 1, which makes
the manipulation apparent.

C. Relation with diffusion master equation
and initial fluctuation

Here, we note that Eq. (18) has the same form as the
results of the cumulants 〈(Q�y)n〉c obtained in the diffusion
master equation (DME) [10,28] with fixed initial condition
when n(y) is replaced by a Gauss distribution with the
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width [2
∫ t

0 dt ′D(t)]1/2, where D(t) is the time (t)–dependent
diffusion coefficient; see, Sec. 2.5 in Ref. [28]. This cor-
respondence is reasonable, because in the DME individual
particles composing the system behave independently, and the
location of a particle at time t with a fixed initial position
is distributed by a Gauss distribution owing to their random
motion. Note that the Gaussianity of this distribution in the
DME is consistent with the particle diffusion described by a
diffusion equation [5,28].

The results in Eq. (18) are obtained for fixed initial density
ρY(Y ) without fluctuation. In Refs. [10,28], the solutions of the
DME are obtained for initial conditions including fluctuations;
see Sec. 2.7 in Ref. [28], for example. The derivation in these
studies is applicable straightforwardly to the present problem,
thermal blurring. When the fluctuation of ρY(Y ) is taken into
account, the result Eq. (18) for the first- and second-order
cumulants is modified as

〈Q�y〉c =
∫

dY 〈ρY(Y )〉0p�y(Y ), (31)

〈(Q�y)2〉c =
∫

dY 〈ρY(Y )〉0ξ2[p�y(Y )]

+
∫

dY1dY2〈δρY(Y1)δρY(Y2)〉0p�y(Y1)p�y(Y2),

(32)

where 〈·〉0 represents the expectation values taken for the
distribution of ρY(Y ) with δρY(Y ) = ρY(Y ) − 〈ρY(Y )〉0. In
Refs. [10,28], the result is also extended to describe the
net-particle number, i.e., the difference of the particle and
antiparticle numbers.

IV. NUMERICAL RESULTS

A. Rapidity window dependence

Next, we see the thermal blurring effect on 〈(Q�y)n〉c

numerically. In this section, we consider the cumulants for
homogeneous distribution in Y space, Eq. (19). In Fig. 6,
we show the �y dependences of the ratio of the cumulants
normalized by the Poissonian value [28]

Rn(�y) = 〈(Q�y)n〉c

〈Q�y〉c
, (33)

for several values of w with β = 0.6 [30]. Because Rn(�y)
should vanish without thermal blurring, their nonzero values
represent a measure to see the magnitude of the thermal
blurring effect. The figure shows that Rn(�y) for n � 2
becomes unity in the limit �y → 0. This result is consistent
with Eq. (21), which states that the distribution of Q�y

becomes Poissonian in this limit. This limit can be regarded as
the case that the information on the event-by-event fluctuations
of ρY(Y ) is completely lost owing to thermal blurring. On
the other hand, Rn(�y) approaches zero for large �y. This
result shows that the thermal blurring effect is suppressed
when �y 
 σ is satisfied. We note that the �y dependence of
the cumulants in Fig. 6 can be compared with the experimental
results. For example, R2(�y) is related to the D-measure D as
R2(�y) = D/4 [4].
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FIG. 6. Rapidity window dependences of the cumulants in nor-
malization Rn = 〈Qn

�y〉c/〈Q�y〉c with vanishing initial condition for
several values of w = m/T with β = 0.6.

The maximal rapidity window of STAR detector is
�y = 1.0. The upper panel of Fig. 6 shows that the effect
of thermal blurring is rather strong for the second-order
cumulant with �y = 1.0. For w = 1.5 corresponding to the
electric charge fluctuation, we have R2(�y) � 0.5. This result
shows that the second-order cumulant of the electric charge
fluctuation 〈N2

Q〉c observed by STAR [15] receives about
50% modification due to thermal blurring. Because 〈N2

Q〉c is
modified, the ratio of the cumulants κσ 2 = 〈N4

Q〉c/〈N2
Q〉c is

also modified. The blurring effect is smaller at the maximal
rapidity window of the ALICE detector �y = 1.6 [14] or
for w = 9 corresponding to net-baryon number cumulants.
Even for these cases, however, R2(�y) is larger than 0.25,
which indicates that the thermal blurring effect is not well
suppressed. The middle and lower panels of Fig. 6 show the
results for the third- and fourth-order cumulants, R3(�y) and
R4(�y). These panels suggest that the thermal blurring effect
is more suppressed for higher order, but is not negligible for
�y = 1.0. In particular, the sign of the fourth-order cumulant
can become negative owing to this effect.

From the results in Fig. 6, it is interesting to analyze the �y
dependences of the cumulants experimentally and compare
with these results. In particular, the simultaneous analysis of
the second-, third-, and fourth-order cumulants for electric
charge and baryon number cumulants would enable us to
confirm the validity of the picture on thermal blurring and to
investigate its magnitude. We also note that the wider rapidity
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coverage is desirable for the analysis of �y dependences. The
extension of STAR detector to cover wider �y [18] thus will
be quite effective for these analyses.

In order to see the effect of non-Gaussianity of n(y) on our
results, we calculate 〈(Q�y)n〉c by replacing n(y) with a Gauss
function with the width in Eq. (7). The results are shown by the
lines with light colors in Fig. 6. The difference of these results
from those with n(y), however, is small and almost invisible
in the figure except for 〈(Q�y)4〉c with w = 1.5 having a small
deviation. This result shows that one can safely replace n(y)
with a Gauss function in the study of 〈(Q�y)n〉c up to the
fourth order. From the discussion in Sec. III C, this result also
suggests that the thermal blurring effect can be described by
the same manner as those developed in Refs. [10,28].

The result in Fig. 6 is obtained for the fixed initial density
ρY(Y ) without event-by-event fluctuation. When the event-by-
event fluctuations of ρY(Y ) are included, the �y dependence
of Rn(�y) is modified depending on parameters specifying
the fluctuations of ρY(Y ). Because this analysis is essentially
the same as those addressed in Refs. [10,28], in the present
study we just refer to Figs. 2 and 3 in Ref. [10] and Figs. 4–8
in Ref. [28], which show these results. An important remark
on these results is that with the inclusion of the event-by-event
fluctuations of ρY(Y ), the thermal blurring effects on R3(�y)
and R4(�y) can be enhanced significantly compared with the
results in Fig. 6.

B. Centrality dependence

Next, we investigate the centrality dependence of the
thermal blurring effect for the second-order cumulant. In the
previous subsection we used parameters of the blast-wave
model, Tkin and β, for the most central collisions. Because
these parameters have centrality dependences [30], when
one applies our results to noncentral collisions the freeze-out
parameters have to be replaced with those corresponding
to the centrality. The experimental results suggest that Tkin

becomes larger while β becomes smaller from central to
peripheral collisions [30]. The analysis in Sec. II suggests
that both these dependences enhance the width of n(y), and
accordingly the thermal blurring effect.

In this subsection, we include the event-by-event fluctua-
tions of ρY(Y ) in the analysis in order to compare the results
with experimental data, as it is known that ρY(Y ) has such
fluctuations in the early stage [2,3]. We assume that the
correlation function of ρY(Y ) has the form

〈δρY(Y1)δρY(Y2)〉0 = D2δ(Y1 − Y2)〈ρY(Y1)〉0. (34)

Note that Eq. (34) is satisfied in the equilibrated medium
[5], and would be well justified even near the QCD critical
point [25]. Here, D2 is a quantity which is proportional to
susceptibility in the early stage [28] and is related to D-measure
D [4] as D2 = D/4.

The results in the previous sections without fluctuations of
ρY(Y ) are obtained with D2 = 0, while in the hadron resonance
gas model one has D2 � 1 [4,5]. By substituting Eq. (34) into
Eq. (32) and assuming uniform average density 〈ρY(Y )〉0 =
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FIG. 7. Centrality dependence of the second-order cumulant of
net-electric charge and the comparison with the experimental result
by ALICE Collaboration [14].

ρ0, one obtains [24]

〈(Q�y)2〉c = ρ0

∫
dY {ξ2[p�y(Y )] + D2[p�y(Y )]2}

= ρ0

{
1 − (1 − D2)

∫
dY [p�y(Y )]2

}
. (35)

In Fig. 7, we plot the �y dependence of R2(�y) with
blast-wave parameters for centrality bins 0–5%, 20–30%,
and 40–50% for ALICE experiment [30] for D2 = 0 and
0.35. In the figure, we also show the D-measure observed by
ALICE Collaboration with a translation R2(�y) = D/4 [4].
Here, we emphasize that D2 is the D-measure in the initial
condition, while R2(�y) is the experimentally observed one
with a rapidity window �y, which takes a different value
from D2 owing to thermal blurring. The figure shows that the
results for D2 = 0.35 agrees with the experimental data within
the error for all centrality bins. More accurate experimental
data, however, are required to obtain a more quantitative
conclusion. It, however, is notable that the qualitative centrality
dependence observed in Ref. [30] is already well reproduced
by thermal blurring and centrality independent D2.

V. BLURRING AFTER DIFFUSION

Up to now, we have estimated the magnitude of thermal
blurring, assuming that the particles are emitted from the
hot medium at kinetic freeze-out time. In this argument, the
distribution of ρY(Y ) in Y space at kinetic freeze-out is related
to the experimentally observed one after thermal blurring. On
the other hand, the experimentally observed fluctuations are
usually compared with thermal fluctuations in earlier stage,
such as chemical freeze-out time or much earlier, in the
literature. In this case, the modification of the event-by-event
fluctuations in a rapidity window �Y before kinetic freeze-out
has to be taken into account besides the thermal blurring
effect. We emphasize that the coordinate-space rapidities Y of
individual particles and accordingly ρY(Y ) in each event are
changing before the kinetic freeze-out because of the nonzero
velocity of individual particles along longitudinal direction
[2,3,24].
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If the motion of particles in Y space before kinetic freeze-
out is well approximated by diffusion process, a particle at Y =
Y0 at some early proper time τ = τ0 is distributed at kinetic
freeze-out time τ = τkin in Y space by a Gauss distribution

Pdrift(Y0 → Ykin) ∼ exp

(
− (Ykin − Y0)2

2d2

)
, (36)

with the diffusion distance d. Note that d is related to the τ -
dependent diffusion coefficients D(τ ) and DY(τ ) in Cartesian
and Bjorken coordinates, respectively, as [27,28]

d2 = 2
∫ τkin

τ0

dτ ′ D(τ ′)
τ ′2 = 2

∫ τkin

τ0

dτ ′DY(τ ′). (37)

After the diffusion in Y space, particles are observed at
some rapidity y through thermal blurring. Then, the probability
that a particle located at Y = Y0 at τ = τ0 is found at a rapidity
y in the final state after thermal blurring, PD+B(Y0 → y), is
given by the convolution integral

PD+B(Y0 → y) =
∫

dYkinPdrift(Y0 → Ykin)n(y − Ykin).

(38)

Generally, the probability Eq. (36) of the diffusion motion
for different particles can be correlated because the scattering
of particles can give rise to such a correlation. We also note that
the above argument does not take account of the possibility
of pair creations and annihilations of particles. When one
considers the baryon number for sufficiently large

√
sNN ,

however, the correlation should be well suppressed because
baryons in the hadronic medium almost exclusively interact
with pions [31]. The chemical freeze-out picture also suggests
that the pair creations and annihilations hardly occur after
chemical freeze-out time. When these conditions are satisfied,
the total effect due to the diffusion in Y space and thermal
blurring can be described by simply replacing n(y − Y ) in
Eq. (18) with PD+B(Y0 → y) in Eq. (38). As discussed in
Sec. IV A, the effect of non-Gaussianity of n(y) is well
suppressed. By approximating n(y) by a Gauss distribution,
PD+B(Y0 → Ykin) given by the convolution of two Gauss ones
also becomes Gaussian. The total effect due to the diffusion
and blurring then can be regarded as if it were from a single
diffusion process, although the diffusion length, or the width
of the Gauss distribution, includes both effects. In this picture,

the results in Figs. 6 and 7 should be interpreted as the results
with minimal diffusion lengths. We also note that the hadronic
decays [34] give rise to diffusion of charges in rapidity space,
and thus would be treated as a part of the diffusion and
blurring to a good approximation. Finally, we note that the
same conclusion on thermal blurring is also applicable to the
interpretation of the balance function and correlation along
rapidity direction [35,36] measured experimentally.

VI. SUMMARY

In this study, we investigated the thermal blurring effect,
i.e., the effect arising from the use of rapidity y in substitution
for the coordinate-space rapidity Y , on cumulants of conserved
charges measured by the event-by-event analysis in relativistic
heavy-ion collisions quantitatively. Our analysis suggests that
the thermal blurring affects fluctuation observables signifi-
cantly at the maximal rapidity coverage of STAR detector,
�y = 1.0, and not negligible even with �y = 1.6 the maximal
rapidity coverage of ALICE detector. When one compares
the event-by-event fluctuation observed in these experiments
with theoretical results obtained on the basis of statistical
mechanics, therefore, the correction arising from the thermal
blurring effect should be taken into account seriously.

Although we assumed the Bjorken space-time evolution
throughout this paper, for low-energy collision this picture
does not hold any more. For lower energy collisions the effect
of global charge conservation will also show up [27,33]. These
effects have to be considered seriously in the interpretation
of experimentally observed fluctuations at BES-II energy
region [18]. Throughout this study we also assumed that the
transverse momentum is integrated out. In real experiments,
however, the particles are observed in a finite transverse
momentum acceptance. The understanding of the effect of
the momentum cut [37] on fluctuations is another important
issue. The comparison and estimate of the thermal blurring
effects based on the dynamical models [11] are also interesting
subjects for future study.
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