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Transport coefficients of the Gribov-Zwanziger plasma
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We study dynamic features of a plasma consisting of gluons whose infrared dynamics is improved by the
Gribov-Zwanziger quantization. This approach embodies essential features of color confinement which set the
plasma apart from conventional quasiparticle systems in several aspects. Our study focusses on a boost-invariant
expansion for in- and out-of-equilibrium settings within a momentum-independent relaxation time approximation,
which at late times can be characterized by the sound velocity cs , and the shear η and bulk ζ viscosities. We obtain
explicit expressions for the transport coefficients η and ζ and check that they are consistent with the numerical
solutions of the kinetic equation. At high temperature, keeping also the Gribov parameter constant, we find a
scaling ζ/η ∝ 1/3 − c2

s which manifests strong breaking of conformal symmetry in contrast to the case of weakly
coupled plasmas.
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I. INTRODUCTION

The fate of hadronic matter at high temperature is still
under active investigation nearly five decades after the theory
of quantum chromodynamics (QCD) was established. Above
a certain (pseudo-)critical temperature, the fundamental quark
and gluon constituents are expected to become the active
degrees of freedom, forming a quark-gluon plasma (QGP).
At asymptotically high energies, such a plasma was for long
regarded as a weakly interacting gas. However, this naive
picture was challenged by experimental data [1–6] from
ultrarelativistic heavy-ion collisions that give evidence for
the creation of a strongly interacting and correlated system
in the accessible energy regime [7,8]. This has raised the
interest in describing the dynamics of the collisions in terms of
dissipative fluid dynamics, characterized by various transport
coefficients [9,10]; see also [11]. These, in turn, are sensitive
to the long-wavelength features of the underlying microscopic
theory by force of the Green-Kubo relations [12].

While the thermodynamic properties of QCD are well
established at high temperature, both within resumed perturba-
tion theory (see [13–15] for reviews and [16–19] for the most
up-to-date results on thermodynamic quantities) and by lattice
methods [20,21], understanding the dynamic properties re-
mains challenging [22]. Let us point out the two main reasons.
In the small-coupling regime, g � 1, the degrees of freedom
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successfully described by resumed perturbation theory are
dressed quasiparticles with an effective mass ∼gT [23–26],
where g is the QCD coupling constant. The perturbative
QCD predictions are, however, in tension with experimental
results because the expected running-coupling strength in the
phenomenologically relevant regime is of the order of unity,
g ∼ O(1) [13–15]. Secondly, because the initial conditions of
ultrarelativistic heavy-ion collisions are highly anisotropic in
momentum space, the incipient evolution of the created system
towards a state complying with a hydrodynamic description
is still debated and new formulations of hydrodynamics are
constructed in this context [27–29]. These outstanding issues
have in turn motivated the application of strong-coupling
techniques, based on the gauge-gravity duality; see, e.g., [30].
One of the striking hallmarks of the latter approaches is the
lack of distinct quasiparticle excitations in the spectrum of
the theory, but rather the dominance of hydrodynamic sound
modes [31–33].

In our present work, we will focus on two main transport
coefficients for soft modes in a charge-free plasma, namely
the shear η and bulk ζ viscosities. In the last years, substantial
knowledge was gained regarding their properties. In particular,
the shear and bulk viscosities were calculated in the high-T
regime using perturbation theory in Refs. [34,35] and [26,36],
respectively. In the phenomenologically relevant temperature
regime, T ∼ (1 − 4)Tc [14,15], lattice calculations are still
plagued by large uncertainties; see [37] for early results
on bulk and [38] for shear viscosities, respectively. One
noteworthy feature is the enhancement of the bulk viscosity
close to the critical temperature, which was also found in
Refs. [39,40]. Encouragingly, the transport coefficients of the
Yang-Mills theory have been recently computed using func-
tional renormalization techniques [41,42]. In a complementary
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effort, the transport properties of supersymmetric plasmas
at high temperatures have recently been studied using the
gauge-gravity duality. For a conformal system a lower bound
on the shear viscosity to entropy density ratio, η/s � 1/4π ,
was found [43]. However, breaking of conformal invariance is
necessary for the generation of bulk viscosity [44,45], and
several models have been proposed to mimic lattice QCD
features [46,47].

Because of confinement effects, the infrared (IR) regime
of QCD is strongly coupled, opposite to the case of quan-
tum electrodynamics. Long-range correlations in the system
contribute to the confinement of colored degrees of freedom.
These features are genuinely nonperturbative and are therefore
beyond the scope of conventional perturbative techniques [13–
15], especially in the study of the QGP [48,49] and for
heavy-ion phenomenology.

Motivated by these considerations, in this work we continue
our investigation of equilibrium and nonequilibrium properties
of a plasma consisting of gluons obtained from the Gribov-
Zwanziger (GZ) quantization which was introduced in Gri-
bov’s seminal paper [50] and later systemized by Zwanziger in
Ref. [51]; for reviews see [52,53]. This prescription improves
the IR behavior of Yang-Mills theory by fixing residual gauge
transformations that remain after applying the perturbative
Faddeev-Popov procedure. Consequently, a new scale γG,
the Gribov parameter, is introduced, which leads to an IR-
improved dispersion relation for gluons [50]. In the Coulomb
gauge this dispersion relation reads

E(k) =
√

k2 + γ 4
G

k2 , (1)

where k is the three-momentum and E is the energy. It em-
bodies the expected behavior: A large energy cost associated
with soft gluons, which subsequently amounts to the reduction
of the physical state space [50,51]; see also [54]. The Gribov
parameter is an intrinsic Yang-Mills scale that is bootstrapped
by a self-consistent gap equation [50,51] and explicitly breaks
the conformal symmetry of the theory.

This framework has recently attracted a lot of attention in
the theory community. In particular, an excellent agreement
between Gribov’s result and lattice data in the Coulomb gauge
was established for the gluon propagator [55]. As one of the
most important features, it was early realized that the positivity
of the gluon spectral function is violated in this theory at any
temperature; see [56,57] for reviews. This implies the absence
of confined particles in the physical asymptotic spectrum and
is thus a crucial measure of color confinement.

The Gribov approach was generalized to finite temper-
ature [58] and it was shown that the Gribov parameter
provides a natural QCD scale that significantly improves the
IR behavior of the theory and provides good agreement with
lattice results on thermodynamic quantities [59]. Owing to
its intimate relation to the (chromo)magnetic scale [59,60],
collective massless degrees of freedom are present at finite
temperature [61]; see also [62,63]. Recently, the connection
between the Gribov parameter and the topological structure of
the QCD vacuum was explored, shedding light on a profound
relationship between the GZ quantization and the confinement

or deconfinement phase transition [64]; see also [65]. The
impact on real-time observables was also examined lately [66].

Motivated by the results discussed above, the Gribov
dispersion relation thus provides a unique and straightforward
way to study the impact of residual confinement effects on
QGP transport properties. It was for the first time employed
in the kinetic and hydrodynamic calculations in our previous
work [67], where the analyzed system was dubbed the
Gribov-Zwanziger (GZ) plasma. In addition to obtaining
a qualitatively good agreement with the Yang-Mills lattice
data [68] in equilibrium, we calculated the bulk viscosity
in a boost-invariant setup [69] using the relaxation-time
approximation. The latter quantity attracts growing attention
in the literature because of possible importance of bulk viscous
effects in relativistic heavy-ion collisions [70–78].

In this paper, we give a detailed discussion of the results
obtained in Ref. [67] and, in addition, we present several
new and complementary results. We study the approach to
equilibrium of the GZ plasma by varying the characteristic
relaxation time τrel, and demonstrate that the late-time behavior
of the system can be quantified using transport coefficients. In
particular, we calculate the bulk and shear viscosities of the
GZ plasma and derive their low- and high-T limits.

One of our important results is the linear scaling relation
ζ/η � κGZ(1/3 − c2

s ) for the GZ plasma (but see caveats in
Sec. IV A). This relation holds for constant Gribov parameter
and constant relaxation time, and is characterized by the
universal values κGZ = 5 when T → 0 and κGZ = 5/2 for
T → ∞, that are independent of γG. In the intermediate,
phenomenologically relevant temperature range the scaling
can be approximated by a slowly varying coefficient κGZ.
A similar scaling law was observed from the gauge-gravity
duality [44,45], and differs from the expected high-T scaling
obtained within perturbative QCD [36].

Our results are compared with the formulas characterizing
a plasma of massive particles obeying Bose-Einstein (BE)
statistics. It turns out that certain physical observables (such
as, for example, the speed of sound) have an apparently similar
behavior for the GZ plasma and the BE massive plasma,
provided the value

√
2γG is adopted for the particle mass.

However, simple relations do not hold in most cases. The
observed differences reflect the modified IR dynamics that sets
the GZ plasma apart from conventional quasiparticle models.

The structure of the paper is as follows. In Sec. II we
discuss the implementation of Lorentz covariance and boost
invariance in our model. The implementation of covariance
into the model is a fundamental problem connected with the
use of the noncovariant dispersion relation, derived by Gribov
in the Coulomb gauge, as a starting point. On the other hand,
the implementation of boost invariance [69] is a simplifying
assumption that facilitates the analysis of a nonequilibrium
system. In Sec. III, using the concepts of the underlying kinetic
theory, we discuss the form of the hydrodynamic equations
for boost-invariant and transversally homogeneous systems,
denoted below as (0+1)D systems. In Sec. IV we present
the kinetic equation in the relaxation time approximation
and show its predictions for various physical observables.
The forms of the bulk and shear viscosity coefficients are
derived in Sec. V, where we discuss also the ratio of the
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two viscosities and relation of ζ/η to the speed of sound.
We summarize and conclude in Sec. VI. The paper is closed
with a series of Appendixes discussing the implementation
of Lorentz covariance, various auxiliary functions and the
low- and high-temperature expansions for thermodynamic
quantities, the speed of sound, and shear and bulk viscosities
and their ratio.

Throughout the paper we use the natural system of
units with c = � = kB = 1. The three-vectors are denoted
by the bold font, the four-vectors are in standard font,
the dot denotes the scalar product with the metric gμν =
diag(+1,−1,−1,−1). The four-vector defining the heat bath,
or the fluid element’s local rest frame (LRF), is denoted by u.
In this frame uμ = (1,0,0,0).

II. IMPLEMENTATION OF COVARIANCE
AND BOOST INVARIANCE

A. Dispersion relation in covariant form

The Gribov dispersion relation, Eq. (1), may be cast into
the following covariant form [67]:

E(k · u) =
√

(k · u)2 + γ 4
G

(k · u)2
, (2)

where u is the four-velocity of the fluid element. We assume
that the Coulomb gauge as well as the in-medium value
of γG are fixed in LRF. We introduce k0 ≡ |k|, which is
the magnitude of the three-vector k ≡ (kx,ky,k‖), and k⊥ =√

k2
x + k2

y such that the resulting four-vector kμ = (k0,k) has
standard Lorentz transformation properties with k2 = 0.

It is important to note that the original dispersion relation in
Eq. (1) is derived in the Coulomb gauge which explicitly breaks
Lorentz invariance. To regain a covariant formalism, which is
necessary for description of relativistic fluids, one has to make
certain assumptions regarding the Lorentz transformation
properties of the quantities appearing in Eq. (1). This problem
is presented and discussed in more detail in Appendix A.
Our choice, based on Eq. (2), is the most natural and free
from mathematical ambiguities. We note that in this case the
zeroth component of the momentum k0 is different from E(k)
appearing in the Gribov-Zwanziger formalism [50]. The latter
is the energy of the interacting particle with a three-momentum
k in the reference frame of the heat bath.

B. Thermodynamiclike quantities

In LRF, the energy density of the GZ plasma described by
the nonequilibrium momentum distribution function f (k) is
described by the formula [58],

ε = g0

∫
d3k

(2π )3
E(k) f (k), (3)

where g0 = 2(N2
c − 1) is the degeneracy factor for gluons with

Nc colors [g0 = 16 for SU(3)]. Generalizing the result of [58],
the energy density of the fluid is given in the covariant form

by the expression [67],

ε =
∫

dK E(k · u) f (x,k), (4)

where f (x,k) is the phase space distribution function and the
integration measure dK is defined as∫

dK(. . .) ≡ g0

∫
d3k

(2π )3k0
k · u(. . .). (5)

Here, the dispersion relation E(k · u) is given by Eq. (2). In
the case of local thermal equilibrium, the gluon distribution
has the Bose-Einstein form [58],

fGZ = 1

exp[E(k · u)/T (x)] − 1
, (6)

where the temperature T can depend on space and time.
We proceed in a similiar fashion with the pressure, which

in LRF is given by [58]

P = g0

3

∫
d3k

(2π )3
|k|∂E(k)

∂|k| f(k) (7)

= g0

3

∫
d3k

(2π )3

k2

E(k)

(
1 − γ 4

G

k4

)
f (k). (8)

In the covariant version, the pressure reads [67]

P = 1

3

∫
dK

(k · u)2

E(k · u)

[
1 − γ 4

G

(k · u)4

]
f (x,k). (9)

The expressions for the energy density and pressure can be
used to find the interaction measure (sometimes referred to as
the trace anomaly),

I ≡ ε − 3P = 2
∫

dK
γ 4

G

(k · u)2 E(k · u)
f (x,k). (10)

This quantity is closely related to the nonconformality of the
system under consideration. We note that I vanishes identically
for γG → 0 (or, more generally, in the conformal limit).

Whenever the system is in local thermal equilibrium, the
temperature dependence may be eliminated to construct the
equation of state (EOS) of the GZ plasma,

εGZ = εGZ(PGZ). (11)

This relation is further discussed in Sec. III B. In this case, the
entropy density can be also calculated from the thermodynamic
identity,

sGZ = εGZ + PGZ

TGZ
, (12)

which is consistent with the conventional thermodynamic
identities,

dεGZ = TGZdsGZ, dPGZ = sGZdTGZ. (13)

In the opposite case, when the system is not in local
equilibrium, one introduces an effective temperature of the
system by the Landau matching condition,

εGZ(T ) = ε. (14)

In this case, the quantity T is nothing else but a measure of the
local, nonequilibrium energy density.
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FIG. 1. The temperature dependence of the equilibrium energy
density ε and pressure P (multiplied by a factor of 3) for the GZ
plasma (red lines) and an ideal plasma of massive particles obeying
BE statistics, labeled “BE” (black lines). In the latter case, the
particles have the mass meff = √

2γG.

The thermodynamics of the system is governed by the
IR scale γG. In the temperature range studied at RHIC and
the LHC a systematic solution of the gap equation suggests
γG � const [58], so that the energy density is not simply
proportional to T 4 [62,79]. This is crucial for reproducing
a nontrivial peaked behavior of the energy density in this
region [58,59]. As a matter of fact, in Ref. [67] we used
γG = 0.7 GeV to describe the lattice data [68] in the vicinity of
the phase transition, in agreement with [58]. We stress that the
SU(3) Yang-Mills theory with Tc = 260 MeV can be described
only qualitatively in the temperature range T ∼ (1 − 5)Tc [58].
This is, nevertheless, expected because our simple approach
does not include any sophisticated resummation scheme in the
calculation of the gluon properties. For a more thorough study
of the transition regime, T ∼ Tc, one should also keep in mind
the alterations of the Yang-Mills vacuum structure [64,65].
Finally, for temperatures much higher than the ones indicated
above, one should keep in mind the relation of the Gribov
scale to the YM magnetic scale that arises from the gap
equation [59,60]. We leave possible further improvements of
our model for future investigations. We only note here that the
precise value of γG is not important for our present discussion.
After fixing γG = 0.7 GeV, the characteristic temperature for
phase transition in our model is about 100 MeV.

In Fig. 1 we show the temperature dependence of the energy
density εGZ (red solid line) and pressure PGZ (red dashed line)
of the GZ plasma. For the temperatures exceeding the value
of γG, one observes that the GZ plasma behaves similarly
to the ideal gas as the energy density equals three times the
pressure [58]. For comparison, in Fig. 1 we have also shown
the results for the energy density (black solid line) and pressure
(black dashed line) of the massive BE plasma. It is natural to
use the effective mass,

meff =
√

2 γG, (15)

in the comparative calculations involving the standard massive
case because it corresponds to the minimum of the Gribov
dispersion relation for |k| = γG, where E = √

2 γG. By inspec-
tion of the results presented in Fig. 1 we conclude, however,
that the use of the effective mass, given by Eq. (15), is not
sufficient to reconcile the results obtained for the GZ plasma
and the massive BE plasma for moderate and low temperatures.
The agreement at high temperatures follows from the fact that
all particles may be treated as massless in this case. This is
the Stefan-Boltzmann limit where we have ε = 3P = 3cSBT 4

and the entropy is sSB = 4cSBT 3, with the Stefan-Boltzmann
constant cSB = g0π

2/90. Further differences are discussed in
Secs. III B and V C.

C. Implementation of boost invariance

Below we consider a (0+1)-dimensional [(0+1)D], boost-
invariant and transversally homogeneous system correspond-
ing to the Bjorken model [69]. It is described by the flow
vector uμ = (t/τ,0,0,z/τ ). In this case, all scalar functions of
space and time depend only on the longitudinal proper time τ ,
defined as τ = √

t2 − z2. One may furthermore introduce the
boost-invariant variables [80],

v = k0t − k‖z, (16)

w = k‖t − k0z. (17)

The variables v and w replace k0 and k‖—for a boost-invariant
system one can consider all the quantities in the plane z = 0
where τ = t , v = k0t , and w = k‖t . We find that

k · u = v

τ
=

√
w2

τ 2
+ k2

⊥, (18)

so that the particle energy becomes a function of the boost-
invariant variables τ , w, and k⊥,

E(k · u) = E(τ,w,k⊥) =
√

w2

τ 2
+ k2

⊥ + γ 4
G

w2

τ 2 + k2
⊥

. (19)

The phase space integration measure can be written as∫
dK(. . .) = g0

(2π )3

∫ ∞

−∞

dw

τ

∫
d2k⊥(. . .). (20)

We note that the phase space distribution function, which is
a Lorentz scalar, may depend only on τ , w, and k⊥, namely
f = f (τ,w,k⊥) [80].

For completeness, we also write down the expressions for
the longitudinal and transverse pressure components that will
be used in the following:1

P‖ =
∫

dK
w2

τ 2E(τ,w,k⊥)

[
1 − γ 4

G(
w2/τ 2 + k2

⊥
)2

]
f, (21)

P⊥ =
∫

dK
k2
⊥

2 E(τ,w,k⊥)

[
1 − γ 4

G

(w2/τ 2 + k2
⊥)2

]
f, (22)

1The parallel pressure acts in the direction of the beam axis. The
transverse pressure acts in the transverse direction to the beam and is
the same for all such directions.
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such that the total pressure, P = (P‖ + 2P⊥)/3, corresponds
to Eq. (9).

III. FIRST- AND ZEROTH-ORDER HYDRODYNAMICS
FOR (0+1)D SYSTEMS

A. Energy-momentum conservation

The main dynamic equation governing the GZ plasma
follows from the energy and momentum conservation. Using
the energy density ε that is always kept equal to its equilibrium
value by force of the Landau matching condition in Eq. (14),
for (0+1)D systems we can write

dε

dτ
+ ε + P‖

τ
= 0; (23)

see, e.g., [81,82]. Equation (23) can be further rewritten as

dε

dτ
+ ε + PGZ

τ
−

4
3ηeff + ζeff

τ 2
= 0. (24)

Here we have expressed the shear and bulk viscous pressures,2

π = 2
3 (P⊥ − P‖), (25)

� = P − PGZ, (26)

in terms of their respective shear and bulk viscosities using
relations valid at first order,

π = 4

3

ηeff

τ
, (27)

� = −ζeff

τ
, (28)

where P = (P‖ + 2P⊥)/3. For conformal systems the shear
tensor is traceless, � = 0, which immediately signals a
vanishing bulk viscosity.

Equation (23) can be treated in two different ways. In the
first case it is treated as a consequence of the relativistic
Boltzmann kinetic equation which yields ε, P‖, and P⊥ as
functions of the proper time. Once ε, P‖, and P⊥ are known
one can calculate the equilibrium pressure PGZ (if the EOS is
known, which is usually assumed) and determine the effective
coefficients ηeff and ζeff as functions of time.

In the second case, Eq. (23) is considered as one of the
hydrodynamic equations, given by Eqs. (23)–(28), which can
be solved only if the kinetic coefficients η and ζ are known.
Such equations are called the first-order (Navier-Stokes) fluid
dynamic equations. In general, they are known to suffer
from several deficiencies, but they usually represent a good
description of systems that are very close to equilibrium. For
such systems one determines the kinetic coefficients η and ζ
as functions of T . We skip the labels “effective” in this second
case to stress that a different method of determination of the
kinetic coefficients is used in this situation. Namely, instead
of solving the kinetic equation for genuine nonequilibrium
systems, one typically considers small perturbations around
the equilibrium state to determine the linear response of the

2Generally, the shear tensor has five independent components. They
are reduced to one independent variable π for (0+1)D systems.

system. This method will be used to determine η and ζ for the
GZ plasma in Sec. V.

The key point of our approach is that the two ways of
treating the shear and bulk viscosities explained above should
become equivalent for systems approaching local equilibrium.
In Sec. IV we construct the kinetic equation and find its
solutions. This allows us to determine ηeff and ζeff as functions
of time. On the other hand, analyzing small perturbations of the
equilibrium distributions in Sec. V we find η and ζ as functions
of temperature. The consistency check that ηeff(τ ) = η(T (τ ))
and ζeff(τ ) = ζ (T (τ )) demonstrates an overall consistency of
our framework and supports our derivation of the functional
forms for ζ (T ) and η(T ).

B. Bjorken hydrodynamics

For perfect fluid (zeroth-order) hydrodynamics the trans-
port coefficients vanish, ζ = η = 0, and the (0+1)D system is
described by the well-known Bjorken evolution equation [69],

dεGZ(T (τ ))

dτ
+ εGZ(T (τ )) + PGZ(T (τ ))

τ
= 0. (29)

The solution of this equation will be denoted later as TGZ(τ ).
Using the thermodynamic relations in Eqs. (12) and (13), we
find from Eq. (29) that

dsGZ

dτ
+ sGZ

τ
= 0, (30)

which has the scaling solution,

sGZ(τ ) = sGZ(τ0)
τ0

τ
. (31)

This describes the characteristic drop of entropy density which
is independent of the EOS of the system. The time dependence
of the temperature in the Bjorken model TGZ(τ ) is found from
the expression,

d ln TGZ(τ )

d ln τ
= −c2

s , (32)

where

c2
s = ∂PGZ

∂εGZ
= ∂PGZ/∂TGZ

∂εGZ/∂TGZ
(33)

is the speed of sound of the GZ plasma. For conformal systems,
e.g., a relativistic, massless gas, where ε = 3P , we reproduce
the well-known scaling solution T (τ ) = T0(τ0/τ )c

2
s with c2

s =
1/3. For more general systems, Eq. (32) demonstrates that the
evolution in local thermodynamic equilibrium is determined
completely by the form of cs .

The temperature dependence of the sound velocity squared
for the GZ plasma is shown in Fig. 2 (solid red line). The
result for the GZ plasma is compared with the result for
the massive BE plasma (black dashed line). Interestingly, the
two results differ for moderate and high values of T . At low
temperatures the common limit for the two systems is (see [83]
and Appendix C 2)

c2
s (T ) = T

meff
= T√

2γG

(T → 0). (34)
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FIG. 2. Temperature dependence of the sound velocity squared
in the GZ plasma (red, solid line) and in the massive BE plasma
(black, dashed line) with the particle mass given by Eq. (15). The
green, dotted line represents the low-temperature limit c2

s = T/meff =
T/(

√
2 γG), while the red, dotted line and the black, dashed-dotted

line depict the first-order deviation at high T for the two systems,
respectively; see Eqs. (35) and (36).

The behavior at high temperatures differs notably. For the GZ
plasma at T � γG we have [58]

c2
s = 1

3

[
1 − 2

3
√

2π cSB

(
γG

T

)3
]

+ O
(

1

T 4

)
, (35)

while for the BE plasma we have

c2
s = 1

3

[
1 − 6

27 cSB

(
m

T

)2
]

+ O
(

1

T 3

)
; (36)

see Appendix D. The high-T expansion breaks down for T �
γG or T � meff in the two cases, as seen in Fig. 2. The GZ
plasma approaches the Stefan-Boltzmann limit c2

s = 1/3 much
faster than the BE plasma, because the deviations go like the
third rather than the second power of the inverse temperature.
The difference between the two systems under consideration is,
however, mostly pronounced in the intermediate temperature
regime, specifically for T ∼ γG, where the GZ plasma has a
more pronounced change of behavior. These features reflect a
harder EOS of the latter compared to the BE plasma and result
in a more rapid change of the energy density and pressure
around the transition temperature, in line with expectations
from the lattice [68]. The full, numerical result for the speed of
sound is, however, crucial to describe the temperature regime
relevant for present-day colliders, where both the low- and
high-T expansions fail; see Fig. 2.

IV. KINETIC EQUATION IN THE RELAXATION-TIME
APPROXIMATION

A. Relaxation-time approximation and caveats

Our main starting point for kinetic considerations
is the formula for the energy density (4), which in

the (0+1)D case depends only on proper time, ε(τ ) =∫
dKE(τ,w,k⊥)f (τ,w,k⊥). To study the time evolution, we

take the derivative of the energy density with respect to the
proper time, which gives

dε

dτ
+ ε(τ ) + P‖(τ )

τ
=

∫
dK E(τ,w,k⊥)

∂f (τ,w,k⊥)

∂τ
. (37)

Here we have identified the term proportional to the longitudi-
nal pressure. We point out that additional terms would appear
in Eq. (37) if the Gribov parameter γG is allowed to be medium
dependent.

The terms on the left-hand side of Eq. (37) should vanish
because of energy-momentum conservation (23) in a (0+1)D
system. Thus, the term on the right-hand side of Eq. (37) should
vanish as well. This suggests that we can use the standard
kinetic equation in the relaxation-time approximation (RTA)
of the form [84–86],

∂f (τ,w,k⊥)

∂τ
= fGZ(τ,w,k⊥) − f (τ,w,k⊥)

τrel(τ )
, (38)

where ∫
dK E(τ,w,k⊥) fGZ(τ,w,k⊥)

=
∫

dK E(τ,w,k⊥) f (τ,w,k⊥). (39)

In Eq. (39) we recognize the Landau matching condition for
the energy density; see Eq. (14).

At this point it is important to emphasize that although
Eqs. (38) and (39) are sufficient to construct a consistent (albeit
simple) kinetic theory scheme, they are limited to the case of
a momentum-independent relaxation time. For a momentum-
dependent relaxation time, the Landau matching (39) does
not hold, because the relaxation time should be kept in the
integrands on both sides of Eq. (39) in this case. This leads to
conceptual problems connected with the calculation of the bulk
viscosity, which are known to exist for more common systems
such as interacting gases with the standard dispersion relation,

E(k) =
√

k2 + m2, for example; see Ref. [87]. In the latter
case, the problem is solved by using a modified expression
for the change of the pressure that accounts for an additional
change of the equilibrium energy density. For the GZ plasma,
it is not completely clear at the moment how to construct a
more general RTA framework with a momentum-dependent
relaxation time. Nevertheless, the present approach can be
applied in the situations where the relaxation time depends on
the effective temperature of the system; see Refs. [88,89].

Another simplification done implicitly in Eqs. (38) and (39)
is that the relaxation time accounts mainly for inelastic colli-
sions. This follows from the assumed form of the equilibrium
distribution function (6), where the chemical potential was
set equal to zero. If the system was dominated by elastic
collisions, the number of particles would be (approximately)
conserved and the background equilibrium distribution (6)
would include a nonvanishing chemical potential determined
from an additional Landau matching condition [similar to
Eq. (39) but expressing the equality of particle densities rather
than particle energies].
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The formal solution of Eq. (38) with a time-dependent
relaxation time is [88–90]

f (τ,w,k⊥) = f0(w,k⊥)D(τ,τ0)

+
∫ τ

τ0

dτ ′

τrel(τ ′)
D(τ,τ ′)fGZ(τ ′,w,k⊥), (40)

where the damping function D(τ2,τ1) has the form,

D(τ2,τ1) = exp

[
−

∫ τ2

τ1

dτ

τrel(τ )

]
. (41)

If the relaxation time is extremely short, the form of Eq. (38)
guarantees that the actual distribution function is in practice
always equal to the equilibrium one.

To construct the solution of Eq. (40) we have to know the
dependence of T and τrel on the proper time τ . We also have to
know the initial distribution f0(w,k⊥), which for this work will
be chosen simply as the isotropic GZ equilibrium distribution
as given in Eq. (6). The proper-time dependence of temperature
is found self-consistently from the Landau matching condition;
see Eq. (43).

Although the relaxation time τrel in Eq. (40) may depend
on time, in this work we fix it to be a constant to single out
basic features of the modified IR dynamics. In the following,
we present results for a range of relaxation times, 0.5 fm/c <
τrel < 2 fm/c, which are in the ballpark of phenomenologically
relevant values [88]. To avoid being biased by this choice
we have also calculated the ratio of the bulk to the shear
viscosities ζ/η, which is independent of the relaxation time
and contains information about the dynamics of the system
that is independent of the RTA scheme; see Sec. V. One
should note, however, that the RTA itself allows for such
independence.

The nonequilibrium evolution equations for the energy
density, the longitudinal, transverse, and total pressures,
I = {ε,P‖,P⊥,P }, respectively, are given by the universal
formula,

I(τ ) = D(τ,τ0)HI

(
γG

T (τ0)
,
τ0

τ

)

+
∫ τ

τ0

dτ ′

τrel(τ ′)
D(τ,τ ′)HI

(
γG

T (τ ′)
,
τ ′

τ

)
, (42)

where the auxiliary functions HI are listed in Appendix B. We
choose the initial condition to be T0 ≡ T (τ0) = 0.6 GeV and
τ0 = 0.5 fm/c, as in Ref. [67].

As stated above, the temperature of the system is fixed
by the Landau matching condition which makes sure that the
actual distribution function f (τ,w,k⊥) yields the same energy
density as the GZ equilibrium function fGZ(τ,w,k⊥). This
gives the implicit equation [88–90],

Hε

(
γG

T (τ )
,1

)
= D(τ,τ0)Hε

(
γG

T (τ0)
,
τ0

τ

)

+
∫ τ

τ0

dτ ′

τrel(τ ′)
D(τ,τ ′)Hε

(
γG

T (τ ′)
,
τ ′

τ

)
, (43)

which has to be solved for the temperature T at the proper
time τ , T (τ ). Alternatively, in equilibrium, the proper-time

FIG. 3. The proper-time dependence of the effective temperature
T (left panel) and the same normalized by the equilibrium temperature
TGZ (right panel) for three values of the relaxation time, τrel =
0.5 fm/c (red, solid), 1 fm/c (green, dashed), and 2 fm/c (blue,
dotted), respectively. The equilibrium temperature in the GZ plasma
is plotted as the dashed-double-dotted line in the left plot, where
we also have added the temperature dependence for a relativistic,
massless gas (black, thin, solid line). We will keep these plotting
conventions for all subsequent figures.

dependence of the temperature can be found directly from
Eq. (32), which corresponds to taking τrel → 0 in Eq. (43).

B. Numerical results

In Fig. 3(a) we plot the proper time dependence of the
temperature for a massless, relativistic gas (black, solid, thin
line), for the GZ plasma in equilibrium (black, dashed-double-
dotted line) and for the GZ plasma with three chosen values
of the relaxation time, τrel = 0.5, 1 and 2 fm/c. In the lower
panel, Fig. 3(a), we plot the ratio of the effective temperature
to the equilibrium temperature, T/TGZ, for the same choice of
the relaxation times. With increasing relaxation time we find
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FIG. 4. The interaction measure, Eq. (10), scaled by the fourth
power of temperature I/T 4 as a function of the effective temperature.
The conventions for the labeling of the curves adopted from Fig. 3.

slower temperature evolutions and larger T/TGZ ratios. This
effect is from increased entropy production within the system
caused by dissipation.

In Fig. 4 the interaction measure (10) scaled by the fourth
power of temperature I/T 4 is plotted versus T . The three
curves corresponding to the three different relaxation times
agree at high and low temperatures. The agreement at high
temperature follows from using the same initial condition in
the kinetic equation. The agreement at low temperatures is
a consequence of the fact that the analyzed systems are all
evolving towards local equilibrium for sufficiently large proper
time. Indeed, to cool the system from the initial temperature
T0 = 600 MeV down to T = 200 MeV takes more than
20 fm/c, which is much larger than the largest relaxation
time used in the calculations. Interestingly, the nonequilibrium
evolution makes the interaction measure always larger than the
equilibrium case [67].

Dynamic properties of the GZ plasma are further described
in Fig. 5 where we plot the proper time evolution of the total,
longitudinal and transverse pressures. The results are presented
again for three values of the relaxation time. In all the cases
we observe an initial decrease of the longitudinal pressure
and increase of the transverse pressure. Usually, this effect is
explained by the presence of the shear viscosity that, because
of strong longitudinal expansion, decreases the longitudinal
pressure and increases the transverse pressure [81]. The dif-
ferences in pressure become more pronounced with increasing
viscosity, hence with the relaxation time. This is also seen in
our calculations. We note, however, that the results in Fig. 5
represent exact solutions, cf. Eq. (42), of the kinetic equation
and do not necessarily rely on the interpretation related to
the use of first-order dissipative fluid dynamics. We also note
that the pressure components become approximately equal at a
relatively late stage of the evolution of the system. In contrast,
the agreement between the full kinetic theory and first-order
dissipative fluid dynamics sets in relatively fast, approximately
at τ ∼ (3 − 5) τrel; see Sec. V.

FIG. 5. Evolution of the various pressure components in time: the
total (solid lines), longitudinal (dotted lines), and transverse pressure
(dashed lines), respectively. The results are presented for three values
of the relaxation time. The color coding is the same as in Fig. 3.

V. TRANSPORT COEFFICIENTS

The basic nonequilibrium properties of the GZ plasma at
late times are characterized by transport coefficients. In the
absence of any conserved charges, the most important ones are
the bulk and shear viscosities; see Eq. (24). In this Section we
recall our results on the bulk viscosity ζ , obtained in Ref. [67],
and present new results on the shear viscosity η and the ratio
ζ/η. In all the cases we first introduce the effective coefficients
using the solutions of the kinetic equation (38). Then, small
perturbations around the equilibrium are studied to derive
formulas for the transport coefficients that define ζ and η
as functions of the temperature T and the Gribov parameter
γG. Numerical results, based on Eq. (43), demonstrate the
consistency of the two approaches whenever the system is
close to equilibrium.

A. Bulk viscosity

Although the energy density is always equal to the
equilibrium energy density (because of the Landau matching
condition), this does not hold for the pressure. The difference
between the actual and the equilibrium pressures describes the
bulk viscous pressure; see Eq. (26). Using the definition of the
trace anomaly, Eq. (10), and the Landau matching condition,
Eq. (14), one finds that

� = −2

3

∫
dK

γ 4
G

(k · u)2 E(k · u)
(f − fGZ), (44)

which simply corresponds to (IGZ − I )/3. Knowing � from
the kinetic theory, we may extract the effective bulk viscosity
using Eq. (28), which gives the effective bulk viscosity

044904-8



TRANSPORT COEFFICIENTS OF THE GRIBOV- . . . PHYSICAL REVIEW C 94, 044904 (2016)

FIG. 6. Effective bulk viscosity scaled by entropy density and the
relaxation time as a function of the temperature for three relaxation
times: τrel = 0.5 fm/c (red squares), τrel = 1 fm/c (green circles),
and τrel = 2 fm/c (blue triangles). Analytic results in the linearized
approximations (red solid line) are calculated using Eq. (48).

coefficient,

ζeff(τ ) = −τ �(τ ). (45)

Alternatively, we may seek the solution of the kinetic equa-
tion (38) in the form,

f ≈ fGZ + δf + · · · , (46)

where δf = −τreldfGZ/dτ and the ellipsis represents higher-
order terms. We truncate the series at the linearized level to
study the late-time behavior of the system. In this case,

δf = −E τrel

T τ

{
w2

E2τ 2

[
1 − γ 4

G(
w2

τ 2 + k2
⊥
)2

]

+ d ln T

d ln τ

}
fGZ(1 + fGZ). (47)

The second term in the curly brackets can be replaced by the
speed of sound, given in Eq. (32). Substituting f − fGZ = δf
in Eq. (44) and extracting the bulk viscosity from Eq. (45),
yields a closed expression,

ζ = g0γ
5
G

3π2

τrel

T

∫ ∞

0
dy

[
cs

2 − 1

3

y4 − 1

y4 + 1

]
fGZ(1 + fGZ), (48)

where fGZ = {exp[γG

√
y2 + y−2/T ] − 1}−1 and y = (k ·

u)/γG. We have omitted the subscript “eff” because Eq. (48)
results from the standard definition of the bulk viscosity that
applies to first-order hydrodynamics.

In Fig. 6 we plot the bulk viscosity obtained numerically
from Eq. (45) and scaled by the entropy density and the
relaxation time τrel, ζ/(sτrel), versus T (filled symbols).

Because we are interested in the properties of the system
close to equilibrium, we simply approximate the a priori
nonequilibrium entropy s by the relation (ε + P )/T (which
is strictly only valid in local, thermal equilibrium). The results
are compared with the linear-response result (red solid line),
from Eq. (48). We observe a good agreement between the
two calculations at low temperature, that correspond to large
evolution times (much larger than the relaxation time). By
comparing the results obtained with three different relaxation
times [see Fig. 3(b)], we estimate the time when the system
complies with a description in terms of linearized transport
coefficients as ∼5 τrel. For all three relaxation times, the ratio
ζ/(sτrel) is nonmonotonic and exhibits a maximum at a similar
temperature as the maximum of the interaction measure; cf.
Fig 4.

It is also instructive to determine the high-T dependence of
the ratio ζ/s. To find the leading behavior it is simply sufficient
to substitute the entropy density and the speed of sound by their
respective values in the Stefan-Boltzmann limit, i.e., s ≈ sSB

and c2
s ≈ 1/3. In this case, i.e., for T � γG (with constant γG

and τrel), we obtain

ζ

s
= 5

8
√

2π3

γ 3
Gτrel

T 2
+ O

(
1

T 4

)
. (49)

B. Shear viscosity

The shear viscous pressure arises in locally anisotropic
systems. In (0+1)D systems, this is measured by π , defined
by Eq. (25). From Eq. (27), we find that

ηeff = −3 τ π

4
= −τ

2
(P‖ − P⊥). (50)

Whenever the system is close to equilibrium, we may
again analyze small perturbations around the equilibrium
distribution, which are described by Eqs. (46) and (47). The
leading-order term fGZ is isotropic and does not contribute to
the difference P‖ − P⊥. Similarly, the term d ln T/d ln τ in δf
is also isotropic and can be neglected. The remaining integral
defining η can be written in the form,

η = g0γ
5
G

30π2

τrel

T

∫ ∞

0
dy

(y4 − 1)2

y4 + 1
fGZ(1 + fGZ), (51)

where the definitions for fGZ and y are given below Eq. (48).
Equation (51) is one of the main new results presented in this
work.

In Fig. 7 we plot the shear viscosity to entropy density ratio,
where η was obtained numerically from Eq. (50) and compare
it with the result obtained using Eq. (51). We employ the
same approximation for the entropy density as in the previous
subsection. The presentation of the results adopts the labeling
conventions of Fig. 6. We observe a very good agreement
between the two calculations at proper times much larger
than the relaxation time. While the linearized regime sets in
slightly faster for the shear viscosity coefficient than for the
bulk viscosity one, roughly at 3 τrel, there is an overall similar
systematics for the two quantities.

044904-9



FLORKOWSKI, RYBLEWSKI, SU, AND TYWONIUK PHYSICAL REVIEW C 94, 044904 (2016)

FIG. 7. The same as Fig. 6 but for the shear viscosity.

To find the high-T limit for the shear viscosity, it is useful
to rewrite Eq. (51) as

η = g0 τrelT
4

30π2
K

(
γG

T

)
, (52)

where

K(a) =
∫ ∞

0
dv

(v4 − a4)2

v4 + a4

eA

(eA − 1)2
, (53)

where v = γGy/T and A =
√

v2 + a4/v2. For asymptotic

temperatures we simply pick up limT →∞ η = g0 τrelT
4

30π2 K(0),
where K(0) = 4π4/15. Thus, because in the same limit the
entropy of the GZ plasma simply goes to the Stefan-Boltzmann
limit, we get

η

s
= τrel T

5
+ O

(
1

T

)
. (54)

For a massless, relativistic ideal gas, this relation is exact at any
temperature in the RTA [88]. Naturally, this limit also coincides
with the result for the massive BE plasma; see Appendix D.

C. ζ/η scaling

From Eqs. (48) and (51), which were obtained assuming a
constant Gribov parameter and relaxation time, we conclude
that the ratio ζ/η is independent of the choice of the relaxation
time. As a consequence, this ratio is a general prediction of
our approach. Strikingly, while typical perturbative arguments
predict ζ/η ∝ (c2

s − 1/3)2 [12,91,92], we obtain a different
form of the scaling. This is most easily demonstrated in the
high temperature limit, T � γG, where, combining Eqs. (49)
and (54) which result in ζ/η ≈ 25

8
√

2π3 ( γG

T
)3, with Eq. (35),

FIG. 8. The ratio of the bulk and shear viscosities ζ/η, scaled by
1/3 − c2

s for the GZ plasma (red, solid line) and the BE plasma (black,
dashed line). The black, horizontal line indicates the value 5/2.

gives

ζ

η
= κGZ

(
1

3
− c2

s

)
+ · · · (T � γG), (55)

with κGZ = 5/2 and the ellipses stand for terms that are
power suppressed in the ratio γG/T . In Fig. 8 we plot ζ/η
for the GZ plasma using Eqs. (48) and (51) (see the solid,
red curve), where the limiting behavior is clearly seen at
high temperature. The linear scaling (55) is characteristic for
systems where the conformal symmetry is explicitly broken
and was also found in strongly coupled theories [44,45]. As an
interesting observation, we note that the agreement between
the Gribov-Zwanziger quantization at high temperature and
strongly coupled theories based on gauge-gravity duality is
not a singular case, as the recently discovered massless mode
of the QGP [61] is also closely in line with the holographic
quasinormal mode [93].

It is instructive to contrast Eq. (55) with results for the
BE plasma. The bulk viscosity of the BE plasma scales very
similarly with 1

3 − c2
s as the result for the GZ plasma; see

Eq. (D7) and the shear viscosity behaves as in the ideal gas
at high temperature [see Eq. (49)]. This is in agreement with
the results found in Ref. [94], which was also derived within
a quasiparticle model using RTA [95]. However, we find that
the high-T limit, T � meff , results in ζ

η
≈ 25

16π3 (meff
T

)3, while
the speed of sound deviates from its ideal value by a quadratic
term [see Eq. (36)]. Therefore, we conclude that for the BE
plasma at high temperatures, we find the relation,

ζ

η
= κBE

(
1

3
− c2

s

)3/2

+ · · · (T � meff), (56)

with κBE = 3
√

15/2 ≈ 5.81, which is qualitatively different
from the linear relation found for the GZ plasma. The differ-
ence to the expected scaling with the second order [12,91,92]
can be traced to the lack of a momentum-dependent relaxation
time as well as a temperature-dependent quasiparticle mass,
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FIG. 9. The temperature dependence of the bulk to shear viscosity
ratio n × ζ/η for the GZ plasma [see Eqs. (48) and (51) with n = 1
(red, solid line)]; and the massive BE plasma [see Eqs. (D7) and (D8)
with n = 5

2 (black, dashed line)].

as expected from perturbative arguments. We plot ζ/η for the
BE plasma using Eqs. (D7) and (D8) (see the dashed, black
curve) in Fig. 8. We note that the curve monotonically tends
to zero at high temperature, confirming the absence of linear
scaling.

To further study the differences between the behavior of the
GZ plasma and the massive BE plasma, in Fig. 9 we plot the
ζ/η ratio versus T for these two systems. At low temperatures,
T � γG or T � m, the ζ/η ratio tends to 5/3 for the GZ
plasma and to 2/3 for the massive plasma; see Appendix C 5
for the results of an analytic low-T expansion. In terms of the
constants in the respective scaling behaviors, this corresponds
to κGZ = 5 and κBE = 2, because c2

s → 0 in both cases. For
a comparison of their respective low-T behaviors, we have
multiplied the BE result by 5/2 in Fig. 9. Surprisingly, the
upper bound of ζ/η in the GZ plasma is in good agreement with
the maximal value of this ratio from a recent gauge-gravity
study [47].

To access the phenomenologically relevant temperature
regime we have to use the full expressions [Eqs. (48) and (51)].
In this regime, T ∼ (1 − 5)Tc, the scaling relation in Eq. (55)
is only approximate with a slowly varying κGZ; see Fig. 8. We
note, however, that the ζ/η ratio in the GZ plasma is always
significantly larger than in the BE plasma. In particular, at
small temperature ζ > η in the GZ plasma while this is never
the case in the massive BE model.

D. Comments on the momentum dependence
of the relaxation time

To further compare our results with other calculations, we
have used the results of Ref. [87] that are valid for interacting
quantum gases with the momentum-dependent relaxation time.
We have parametrized the momentum dependence of the
relaxation time by the expression τrel = τ 0

rel(|k|/m)α , with
α � 0 being a parameter. We have checked that expressions

given in Ref. [87] agree with ours and those derived in Ref. [94]
for the α = 0 case. This confirms our finding that the ratio
ζ/η of the massive BE gas scales with the power 3/2 of
the conformal measure if the relaxation time is constant; see
Eq. (56). We further found that for α � 2 the scaling goes
with the power of 2, as expected for weakly coupled systems.
For 0 < α < 2 it is difficult to find any simple analytic form
of the scaling because of the singularity of the Bose-Einstein
distribution. However, for the Boltzmann statistics used in the
formulas derived in Ref. [87] we find a linear scaling for any
α � 0. For more details see (Appendix D 3).

All these findings indicate that the use of a constant
relaxation time alone is not sufficient to obtain the scaling
with the first power of the conformal measure. The scaling
depends, in particular, on the form of interaction, statistics
obeyed by the system’s particles, and dispersion relation. Thus,
our observation of the linear scaling (55) may be attributed to
several factors, one of them being a specific form of the GZ
dispersion relation.

VI. SUMMARY AND CONCLUSIONS

In this work we have continued our earlier investigations
of the equilibrium and nonequilibrium properties of a plasma
of gluons resulting from the Gribov-Zwanziger quantization
(GZ plasma) in the relaxation time approximation. We have
supplemented our earlier results for the bulk viscosity by the
calculation of the shear viscosity and the ζ/η ratio as a function
of temperature. We have demonstrated that the exact solutions
of the kinetic equation support our expressions for the two
viscosities.

Several of the studied features suggest that at RHIC and
LHC energies the GZ plasma is a strongly coupled system.
First, we observe a larger bulk viscosity ζ/s, compared
to conventional quasiparticle approaches especially in the
low-temperature regime, where ζ > η. This highlights its
significant role for heavy-ion phenomenology. Secondly, for
constant γG and τrel, we find a linear scaling of the ζ/η
ratio with 1/3 − c2

s , reflecting strong breaking of conformal
symmetry of the system. At high temperature, this is at variance
with the expected behavior of weakly coupled plasmas [36] and
similar to expectations from a strongly coupled system [44,45].

Our results have been supplemented by the discussion
of several aspects of the Gribov approach. In particular, we
have analyzed the Lorentz covariance and found the low-
and high-temperature expansions of thermodynamic functions
and transport coefficients. We have also performed systematic
comparisons between the qualitatively different properties of
the Gribov-Zwanziger and the massive Bose-Einstein plasmas.
In this exploratory study, our results have been obtained under
the condition that the Gribov scale as well as the relaxation
time are kept constant. Relaxing these assumptions allows one
to study more complex situations, which we plan to do in the
closest future.

In conclusion, we have demonstrated that the GZ plasma
can be used to address in- and out-of-equilibrium physics in a
unified way, which can be useful for future phenomenological
applications to ultrarelativistic heavy-ion collisions. The latter
may require the inclusion of a temperature dependence of
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the Gribov scale. The first step in this direction was done in
Ref. [96].
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APPENDIX A: IMPLEMENTATION OF LORENTZ
COVARIANCE

Gribov’s dispersion relation, Eq. (1), relating the particle
three-momentum k and energy E explicitly breaks Lorentz
invariance. The reason for this breaking is the use of the
Coulomb gauge ∇ · A = 0 in the derivation of Eq. (1). Without
the lack of generality, we may assume that the Coulomb gauge
is imposed in the inertial reference frame S. The four-velocity
of the whole system in S is uμ = (1,0,0,0), hence, we rewrite
Eq. (1) as two combined equations,

E2
k − k2 = γ 4

G

k2 , uμ = (1,0,0,0). (A1)

We may try to rewrite Eq. (A1) as a single covariant formula.
The first natural choice seems to be the introduction of the four-
vector k̃ = (Ek,k) with the Minkowski square k̃2 = E2

k − k2,
then Eq. (A1) can be written covariantly as

k̃2 = γ 4
G

(k̃ · u)2 − k̃2
. (A2)

In the frame where uμ = (1,0,0,0), Eq. (A2) is reduced
naturally to (A1). However, when (A2) is considered in other
frames, it typically yields four different solutions (some of
them complex) for the energy Ek determined at given values
of k and v. This leads to a paradox, because in S all energy
states are real and equal.

Clearly, one should restrict oneself to the energies defined
in the local rest frame of the fluid element. A natural way
to achieve this and implement the covariant description is to
consider k as the spatial part of the four-vector k = (k0 =

|k|,k) and to treat the energy E defined in Eq. (1) as a scalar,

E =
√

(k · u)2 + γ 4
G

(k · u)2
. (A3)

In the frame S, where uμ = (1,0,0,0), Eq. (A3) is reduced
directly to (A1). In the frame S ′ we have

E =
√

(k′ · u′)2 + γ 4
G

(k′ · u′)2
, (A4)

where u′ and k′ are the four-velocity of the frame S and the
four-momentum k seen in the frame S ′. For one-dimensional
systems considered in this work, the components of u′ may
be treated as the parameters of the Lorentz transformation
k′ · u′ = k′

0u
′
0 − k′

zu
′
z = k0 = |k|. Hence, Eq. (A3) in frames

other than S gives real and nondegenarate values of the energy,
in agreement with the original definition of the energy done in
the frame S, where the Coulomb gauge was imposed.

The prescription (A3) was adopted in this work. We note
that our treatment of energy is similar to the treatment of
temperature in the special theory of relativity. Temperature
measures average kinetic energy and was treated by many
authors as the time component of the four-vector. However,
because T is measured in the LRF, its treatment as a scalar
quantity seems to be more appropriate. The energies appearing
in Gribov’s formula have been obtained also in the special
reference frame where the Coulomb gauge condition holds.
This suggests that E defined in such a way may be treated as
a scalar quantity in the similar way as T .

APPENDIX B: AUXILIARY FUNCTIONS

The energy density is calculated via the auxiliary function
Hε(γG,a,b), defined by

Hε(a,b) = g0γ
4
G

2π2

∫ ∞

0
dy

y hε(y,b)

ea
√

y2+y−2 − 1
, (B1)

with

hε(y,b) = b

∫ π/2

0
dϕ sin ϕ

√
y4β4 + 1

β
, (B2)

where β2 = b2 cos2 ϕ + sin2 ϕ, such that

hε(y,1) =
√

y4 + 1. (B3)

The energy density in equilibrium is given simply by

εGZ(T ) = Hε(γG/T ,1). (B4)

Next, we work out the auxiliary functions for the longitu-
dinal and transverse pressures P‖ and P⊥, respectively. They
are from the expressions,

HP‖ (a,b) = g0γ
4
G

2π2

∫ ∞

0
dy

y hP‖(y,b)

ea
√

y2+y−2 − 1
, (B5)

HP⊥ (a,b) = 1

2

g0γ
4
G

2π2

∫ ∞

0
dy

y hP⊥(y,b)

ea
√

y2+y−2 − 1
, (B6)
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where

hP‖(y,b) = b3
∫ π/2

0
dϕ

sin ϕ cos2 ϕ(y4β4 − 1)

β3
√

y4β4 + 1
, (B7)

hP⊥(y,b) = b

∫ π/2

0
dϕ

sin3 ϕ(y4β4 − 1)

β3
√

y4β4 + 1
, (B8)

such that

hP‖(y,1) = 1

3

y4 − 1√
y4 + 1

, (B9)

hP⊥(y,1) = 2

3

y4 − 1√
y4 + 1

. (B10)

The equilibrium pressure components are then P GZ
‖ (T ) =

HP‖(γG/T ,1) and P GZ
⊥ (T ) = HP⊥ (γG/T ,1), and it is straight-

forward to check that in this case P GZ
‖ (T ) = P GZ

⊥ (T ).
The total pressure is given by P = 1

3 (P‖ + 2P⊥), where
the auxiliary function responsible for its evolution is easily
deduced to be

HP (a,b) = g0γ
4
G

6π2

∫ ∞

0
dy

y hP (y,b)

ea
√

y2+y−2 − 1
, (B11)

with

hP (y,b) = b

∫ π/2

0
dϕ

sin ϕ(y4β4 − 1)

β
√

y4β4 + 1
, (B12)

such that

hP (y,1) = y4 − 1√
y4 + 1

. (B13)

The total pressure in equilibrium is then

P GZ(T ) = HP (γG/T ,1). (B14)

APPENDIX C: LOW-TEMPERATURE EXPANSIONS

In this section we analyze different physical quantities,
such as the equilibrium energy density, equilibrium pressure,
the shear and bulk viscosity coefficients, and derive analytic
expressions for all of them in a form of the series expansion
with the leading terms corresponding to the low-temperature
limit a = γG/T � 1. By including in the systematic way
more terms in the expansions, we may obtain a successful
description also in the region of moderate temperatures.

1. Equilibrium energy density

We start with the equilibrium energy density. Combining
our earlier results (B1)–(B4) for the case b = β = 1, we find

εGZ = g0γ
4
G

2π2

∫ ∞

0
dy

y
√

y4 + 1

ea
√

y2+y−2 − 1
. (C1)

By splitting this integral into two parts, the first from 0 to 1 and
the second from 1 to ∞, and changing the integration variable
y to 1/y in the first part we get

εGZ = g0γ
4
G

2π2

∫ ∞

1

dy

y

(y3 + y−3)
√

y2 + y−2

ea
√

y2+y−2 − 1
. (C2)

In the next step we introduce the integration variable z defined
through the relations,

y =
√

z2 +
√

z4 − 1,
dy

y
= zdz√

z4 − 1
. (C3)

Then, we can rewrite Eq. (C2) as

εGZ = g0γ
4
G

2π2

∫ ∞

1
dz

fε(z)

e
√

2az − 1
, (C4)

where the function fε(z) is defined through the formula,

fε(z) =
√

2z2

√
z4 − 1

(y3 + y−3), (C5)

where y is the function of z defined in Eq. (C3). For a � 1, the
main contribution to the integral (C4) comes from the region
z � 1, where fε(z) has the expansion,

fε(z) =
√

2√
z − 1

+ 23
√

z − 1

2
√

2
+ 307(z − 1)3/2

16
√

2

+ 739(z − 1)5/2

64
√

2
+ 1667(z − 1)7/2

1024
√

2
+ · · · . (C6)

We represent this expansion in a more general form as

fε(z) =
∞∑

n=0

a(n)
ε (z − 1)n−1/2, (C7)

where the coefficients a(n)
ε may be read off from (C6). In this

way we find the expression for the equilibrium energy density
as the following series:

εGZ = g0γ
4
G

2π2

∞∑
n=0

a(n)
ε

∫ ∞

1
dz

(z − 1)n−1/2

e
√

2az − 1
. (C8)

In the next step it is convenient to change the integration
variable z to the variable α defined by equation z = 1 + α2. In
this way we get

εGZ = g0γ
4
G

π2

∞∑
n=0

a(n)
ε

∫ ∞

0
dα

α2n

e
√

2a(1+α2) − 1
. (C9)

This integral over α can be done analytically and expressed by
the gamma and polylogarithm functions,

εGZ = g0γ
4
G

2π2

∞∑
n=0

a(n)
ε (

√
2a)−(n+ 1

2 )�

(
n + 1

2

)
Lin+ 1

2
(e−√

2a).

(C10)

At very low temperatures, a = γG/T � 1, the most important
contribution is that with n = 0. In this case we get

εGZ ≈ g0γ
4
G√

2π3/2

e−√
2a

(
√

2a)1/2
. (C11)

2. Equilibrium pressure and sound velocity

Starting from Eqs. (B11)–(B14) and following the same
steps as in the case of the equilibrium energy density one finds

P GZ = g0γ
4
G

6π2

∫ ∞

0
dy

y4 − 1√
y2 + y−2

1

ea
√

y2+y−2 − 1
, (C12)
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and

P GZ = g0γ
4
G

6π2

∫ ∞

1
dz

fP (z)

e
√

2az − 1
, (C13)

where the function fP (z) is defined through the formula,

fP (z) = y5 + y−5 − (y + y−1)√
2
√

z4 − 1
. (C14)

In the region z � 1, fP (z) has the series expansion,

fP (z) = 6
√

2
√

z − 1 + 19(z − 1)3/2

√
2

+ 93(z − 1)5/2

8
√

2
+ 51(z − 1)7/2

32
√

2
+ · · · , (C15)

which defines the coefficients a
(n)
P used in the formula,

P GZ = g0γ
4
G

6π2

∞∑
n=1

a
(n)
P

∫ ∞

1
dz

(z − 1)n−1/2

e
√

2az − 1
. (C16)

Note that a
(0)
P = 0. The integration over z can be done

analytically in the same way as in the case of the energy
density, and we find an analogous expression to Eq. (C10),
namely

P GZ = g0γ
4
G

6π2

∞∑
n=0

a
(n)
P (

√
2a)−(n+ 1

2 )

×�

(
n + 1

2

)
Lin+ 1

2
(e−√

2a). (C17)

At very low temperatures, a = γG/T � 1, the leading term in
Eq. (C17) is that with n = 1,

P GZ ≈ g0γ
4
G√

2π3/2

e−√
2a

(
√

2a)3/2
. (C18)

Equations (C10) and (C17) can be used to determine the
sound velocity in the system. In the case of the temperature-
independent Gribov parameter γG we obtain

c2
s = ∂P GZ

∂εGZ
= ∂P GZ

/
∂a

∂εGZ
/
∂a

. (C19)

At low temperatures we may use (C11) and (C18) as the
approximations for (C10) and (C17). Keeping in mind that
a = γG/T , we find

c2
s (T ) = 1√

2a
= 1√

2

T

γG
. (C20)

We note that this result is similar to the result obtained for the
massive plasma where we find c2

s = T/m [83], where m is the
mass of particles in the plasma.

One may go beyond the leading-order term in the expan-
sions (C10) and (C17) and include higher-order terms in n
to describe the regime close to the phase transition. Taking

FIG. 10. The a = γG/T dependence of the exact speed of sound
squared compared to approximated formula (C23) up to n = 1 (green
dashed line) and n = 4 (blue dotted line). For completeness we show
corresponding results for n = 1 (purple dashed-dotted line) and n = 4
(black dashed-double-dotted line) obtained by including the first NLO
term in Lin+ 1

2
(e−√

2a).

Lin+ 1
2
(e−√

2a) ≈ e−√
2a , up to n = 4, we get

εGZ ≈ g0γ
4
G√

2π3/2

e−√
2a

(
√

2a)1/2

[
1 + 23

8

(
1√
2a

)
+ 921

128

(
1√
2a

)2

+ 11085

1024

(
1√
2a

)3

+ 175035

32768

(
1√
2a

)4
]
, (C21)

and

P GZ ≈ g0γ
4
G√

2π3/2

e−√
2a

(
√

2a)3/2

[
1 + 19

8

(
1√
2a

)

+ 465

128

(
1√
2a

)2

+ 1785

1024

(
1√
2a

)3
]
, (C22)

and accordingly

c2
s (T ) = 1√

2a

[
1 + 1

2

(
1√
2a

)
− 29

8

(
1√
2a

)2

− 63

8

(
1√
2a

)3
]
. (C23)

In Fig. 10 we present the comparison of the approximated
formula (C23) with the exact one. We observe that, as expected,
the expansion (C23) works very well already at leading
order in n (dashed green line) if the temperatures are very
small. However, at the same time, we see that the expansion
completely fails at temperatures close to and above the phase
transition (a � 3), even when including higher n terms (dotted
blue line). In fact, one can show that to obtain successful
description at the phenomenologically relevant temperatures
which are achievable at RHIC and LHC, 1 � a � 3 (yellow
shaded band in Fig. 10), one has to include NLO terms in
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Lin+ 1
2
(e−√

2a) expansion. In Fig. 10 we present the expansion

analogous to (C23) obtained assuming that Lin+ 1
2
(e−√

2a) ≈
e−√

2a + e−2
√

2a2−(n+1/2) and taking terms up to n = 1 (purple
dashed-dotted line) and n = 4 (black dashed-double-dotted
line) in Eqs. (C10) and (C17). We see that taking already
the first NLO term in Lin+ 1

2
(e−√

2a) is enough for proper
description of temperature dependence of the speed of sound
close to phase transition. We do not show these, somewhat
lengthy, expressions for c2

s herein.

3. Shear viscosity

For the shear viscosity coefficient we use the formula (51),

η = 1

10

g0γ
5
G

3π2

τrel

T

∫ ∞

0
dy

(y4 − 1)2

y4 + 1

eA

(eA − 1)2
, (C24)

where we have introduced the notation A = a
√

y2 + y−2. This
may be further rewritten as

η = 1

10

g0γ
5
G

3π2

τrel

T
η̃, (C25)

with the dimensionless quantity,

η̃ =
∫ ∞

0
dy

(y4 − 1)2

y4 + 1

eA

(eA − 1)2
. (C26)

Changing first the y-integration range to the interval 1 � y �
∞ and, second, changing the integration variable from y to z
using the formulas (C3) we find

η̃ =
∫ ∞

1
dzfη(z)

e
√

2az

(e
√

2az − 1)2
. (C27)

Here

fη(z) = z y√
z4 − 1

(y4 − 1)2(1 + y−6)

y4 + 1
, (C28)

with the expansion,

fη(z) =
∞∑

n=1

a(n)
η (z − 1)n−1/2

= 8
√

z − 1 + 34(z − 1)3/2

+ 111

4
(z − 1)5/2 + 257

16
(z − 1)7/2 + · · · . (C29)

In this way we come to the series of the integrals of the form,

η̃ =
∞∑

n=1

a(n)
η

∫ ∞

1
dz

(z − 1)n−1/2e
√

2az

(e
√

2az − 1)2

=
∞∑

n=1

(2n − 1)a(n)
η√

2a

∫ ∞

0
dα

α2(n−1)

e
√

2a(1+α2) − 1
. (C30)

The second line in Eq. (C30) was obtained by the substitution
z = 1 + α2 in the first line and by integration by parts.
The integration over α in Eq. (C30) yields the gamma and
polylogarithm functions, hence, the final result for the shear

viscosity may be written as the following series:

η = 1

10

g0γ
5
G

3π2

τrel

T

∞∑
n=1

a(n)
η (

√
2a)−(n+ 1

2 )

×�

(
n + 1

2

)
Lin− 1

2
(e−√

2a). (C31)

To get (C31) we used (2n − 1)�(n − 1/2) = 2�(n + 1/2).

4. Bulk viscosity

The bulk viscosity coefficient was given in Eq. (48) and can
be written as the sum of two terms,

ζ = g0γ
5
G

3π2

τrel

T

(
c2
s ζ1 − ζ2

3

)
. (C32)

The coefficients ζi (i = 1,2) are given by the integrals,

ζi =
∫ ∞

1
dz fζi

(z)
e
√

2az

(e
√

2az − 1)2
, (C33)

where the functions fζ1 and fζ2 are defined by the following
expressions:

fζ1 (z) = z√
z4 − 1

(y + y−1)

=
∞∑

n=0

a
(n)
ζ1

(z − 1)n−1/2

= 1√
z − 1

+ 3
√

z − 1

4
− 5

32
(z − 1)3/2

+ 7

128
(z − 1)5/2 − 45

2048
(z − 1)7/2 + · · · , (C34)

fζ2 (z) = z y√
z4 − 1

(y4 − 1)(1 − y−2)

y4 + 1

=
∞∑

n=0

a
(n)
ζ2

(z − 1)n−1/2

= 2
√

z − 1 − 3

2
(z − 1)3/2

+ 23

16
(z − 1)5/2 − 91

64
(z − 1)7/2 + · · · . (C35)

Note that the series defining fζ2 starts with the term 2
√

z − 1,
thus the coefficient a

(0)
ζ2

vanishes. Collecting the expressions
for ζ1 and ζ2 together, we arrive at the formula,

ζ = g0γ
5
G

3π2

τrel

T

∞∑
n=0

[
c2
s (a) a

(n)
ζ1

− 1

3
a

(n)
ζ2

]

× (
√

2a)−(n+ 1
2 )�

(
n + 1

2

)
Lin− 1

2
(e−√

2a). (C36)

5. ζ/η ratio for T → 0

For large a all the polylogarithmic functions can be
approximated by their arguments (this corresponds to the limit
of Boltzmann statistics). Then, the leading contribution in
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FIG. 11. The a = γG/T dependence of −ζ/η/(c2
s − 1/3) at

leading order (solid red line) and assuming Lin+ 1
2
(e−√

2a) ≈ e−√
2a +

e−2
√

2a2−(n+1/2) (black dashed-double-dotted line); see discussion of
Fig. 10.

Eq. (C36) is obtained by inclusion of the first two terms,

ζ ≈ g0γ G5

3π2

τrel

T

e−√
2a

√
2a

[(
1√
2a

· 1 − 1

3
· 0

)√
π

+
(

1√
2a

· 3

4
− 1

3
· 2

)√
π

2

1√
2a

]

≈
√

2

15

g0γ
4
Gτrel

π3/2

e−√
2a

(
√

2a)1/2
. (C37)

Similar expansion for the shear viscosity (with the term n = 1
alone) gives

η =
√

2

9

g0γ
4
Gτrel

π3/2

e−√
2a

(
√

2a)1/2
, (C38)

which leads to the ratio,

ζ

η
= 5

3
. (C39)

By comparing this with the scaling relation in Eq. (55) we
conclude that κGZ = 5.

Similarly as in Appendix C 2 one can go beyond the
leading order in polylogarithm expansion to see how the
result for κ presented above is modified when one in-
cludes higher-order terms in a expansion. In Fig. 11 we
present the κ = −ζ/η/(c2

s − 1/3) at leading order (solid red

line) of Lin+ 1
2
(e−√

2a) and assuming Lin+ 1
2
(e−√

2a) ≈ e−√
2a +

e−2
√

2a2−(n+1/2) (black dashed-double-dotted line). One can
observe that close to the phase transition temperature the value
of κ is significantly smaller than the LO result and somewhat
closer to the value obtained in Fig. 8.

APPENDIX D: MASSIVE BE PLASMA

1. Thermodynamic properties

In this section we collect the basic thermodynamic formulas
for the massive plasma. Below, the parameter ε = +1 for
bosons and ε = −1 for fermions. The quantity g0 is the
degeneracy factor connected with internal quantum numbers,
and μ is the chemical potential (set equal to zero in the
calculations). The series form follows from the expansion of
the BE or Fermi-Dirac (FD) distributions, Kn are the modified
Bessel functions,

ε = g0

2π2
T m2 ε

∞∑
κ=1

εκ

κ2
e

μ
T

κ

[
3 T K2

(
m

T
κ

)

+m κ K1

(
m

T
κ

)]
, (D1)

P = g0

2π2
T 2 m2 ε

∞∑
κ=1

εκ

κ2
e

μ
T

κ K2

(
m

T
κ

)
, (D2)

s = g0

2π2
m2 ε

∞∑
κ=1

εκ

κ2
e

μ
T

κ

[
(4 T − μκ)K2

(
m

T
κ

)

+m κ K1

(
m

T
κ

)]
. (D3)

It is also worth recalling the high-temperature behavior of
these thermodynamic quantities. At T � m we find that

ε = 3cSBT 4 − 2
3m2T 2 + O(1), (D4)

P = cSBT 4 − 2
3m2T 2 + O(1), (D5)

s = 4cSBT 3 − 4
3m2T + O(1), (D6)

where cSB = 8π2/45 for SU(3), which reflect the soft EOS
of the massive BE plasma. The first terms in the above
expansion are the Stefan-Boltzmann energy density, pressure,
and entropy, respectively.

2. Kinetic coefficients

For vanishing chemical potential μ = 0, following the same
linearization procedure as above, we obtain the bulk and shear
viscosities,

ζ = g0m
5

6π2

τrel

T

∫ ∞

0
dy y2

[
c2
s − 1

3

y2

y2 + 1

]
f (1 + f ), (D7)

η = g0m
5

30π2

τrel

T

∫ ∞

0
dy

y6

y2 + 1
f (1 + f ), (D8)

where f = [exp(m
√

y2 + 1/T ) − 1]−1, y = |k|/m, and the
speed of sound c2

s = ∂P/∂ε|μ=0 is found from Eqs. (D1)
and (D2), respectively. The viscosities, given by Eqs. (D7)
and (D8), agree with the ones found from [94].

At high temperatures we can also find the generic behavior
of ζ/s and η/s. To find the leading coefficient of the high-T ex-
pansion, it is enough to simply consider the Stefan-Boltzmann
entropy s ≈ sSB = 4cSBT 3. Then it is straightforward to find
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the following expressions at T � m,

ζ

s
= 5

16π3

m3τrel

T 2
+ O

(
1

T 4

)
, (D9)

η

s
= τrelT

5
+ O

(
1

T

)
, (D10)

which results in the ratio,

ζ

η
≈ 25

16π3

(
m

T

)3

, (D11)

at high temperatures. This leads directly to Eq. (56).

3. Momentum-dependent relaxation time

In the case of a massive and interacting Bose-Einstein
gas, whose interaction is characterized by the momentum-
dependent relaxation time, one may use the expressions for
the bulk and shear viscosity coefficients derived in Ref. [87].
If we assume a simple power-law dependence of the relaxation
time on the momentum, namely

τrel = τ 0
rel(|k|/m)α, (D12)

where α � 0 is a parameter and τ 0
rel is a constant setting the

overall timescale for the relaxation time, Eqs. (58) and (59)
from Ref. [87] can be written in the form,

ζ = g0m
5τ 0

rel

18π2T

∫ ∞

0
dy

y2+α

y2 + 1

× [(
1 − 3c2

s

)
(1 + y2) − 1

]2
f (1 + f ), (D13)

and

η = g0m
5τ 0

rel

30π2T

∫ ∞

0
dy

y6+α

y2 + 1
f (1 + f ), (D14)

where again f = [exp(m
√

y2 + 1/T ) − 1]−1 and y = |k|/m.
For a constant relaxation time (i.e., in the case α = 0),

one can check, using the formula for the sound velocity, that
Eqs. (D13) and (D14) agree with the formulas (D7) and (D8).
Thus, the ratio of the viscosity scale indeed with the power 3/2
of the conformal measure in the case of a constant relaxation
time. If the parameter α grows, the character of the scaling
changes. We have found that for α � 2 the ratio of the viscosity
scales with the power 2 of the conformal measure with a
prefactor depending on the power α. For example,

ζ

η
= 54

5

(
1

3
− c2

s

)2

, (D15)

for α = 2, and

ζ

η
= 396

35

(
1

3
− c2

s

)2

, (D16)

for α = 4.
We also note that in the case of the Boltzmann statistics

one finds the scaling with the second power of the conformal
measure for any non-negative value of α. In this case one may
use (D13) and (D14) replacing f (1 + f ) by f and setting

f = exp(−m
√

y2 + 1/T ). In the limit m � T one finds

ζ

η
= 75

(
1

3
− c2

s

)2

(D17)

for α = 0 and

ζ

η
= 15

(
1

3
− c2

s

)2

(D18)

for α = 1.
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