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Electromagnetic fields with electric and chiral magnetic conductivities in heavy ion collisions
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We derive an analytic formula for electric and magnetic fields produced by a moving charged particle in a
conducting medium with the electric conductivity o and the chiral magnetic conductivity o, . We use the Green’s
function method and assume that o, is much smaller than o. The compact algebraic expressions for electric
and magnetic fields without any integrals are obtained. They recover the Lienard—Wiechert formula at vanishing
conductivities. Exact numerical solutions are also found for any values of o and o, and are compared with analytic
results. Both numerical and analytic results agree very well for the scale of high-energy heavy ion collisions.
The spacetime profiles of electromagnetic fields in noncentral Au + Au collisions have been calculated based on
these analytic formula as well as exact numerical solutions.
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I. INTRODUCTION

Strong electromagnetic fields are generated in peripheral
heavy ion collisions (HICs), which provides a good
opportunity for studying rich phenomena related to strong
fields. At the collisional energy /s per nucleon which is much
larger than the nucleon mass m,, the nucleons are moving
with the velocity v = [(s — mﬁ)/s]l/2 ~1— m,%/(Zs) which
is almost speed of light with a large Lorentz contraction factor
y = 1/[1 —v*/c*1V/? ~ \/s/m,. The typical electric field in
the comoving frame of one nucleus can be estimated by the
Coulomb law, Ze/ R?% with Z and R, being the proton number
and the radius of the nucleus, respectively. The magnetic field
in the laboratory frame can be approximated as the product of
the Lorentz factor and the electric field in the comoving frame
of the nucleus, eB ~ yvZe?/R%. In Au+ Au collisions
at the BNL Relativistic Heavy Ion Collider (RHIC) at
A/s =200 GeV, the peak value of the magnetic field at the
moment of the collision is about Sm% (m is the pion mass)
or 1.4 x 10'® Gauss. In Pb + Pb collisions at the CERN
Large Hadron Collider (LHC) at /s = 2.76 TeV, the peak
value of the magnetic field can be 10 times as large as at
RHIC.

Since the magnitude of the electromagnetic fields enter the
regime of strong interactions, the effects of such enormous
fields are expected to be observable in the final hadronic
events in HICs. In recent years there have been many efforts to
investigate such effects, among which the interplay between
strong magnetic fields and quantum anomaly leads to a group
of related phenomena, such as the chiral magnetic effect
(CME) [1,2], the chiral vortical effect [3,4], the chiral magnetic
wave [5], the chiral vortical wave [6], etc. For reviews of
recent developments, see, e.g., Refs. [7,8]. All these effects
are related to the chiral properties of fermions, especially
massless fermions or chiral fermions. The movement of chiral
fermions can be described by the chiral kinetic equations
which incorporate structures of Berry phase and monopole
in momentum space [9-18]. The charge-separation effect
observed in the STAR and ALICE experiments can be well
described by the CME [19-21], but no definite conclusion
has been made that the charge-separation effect results are
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unambiguously and exclusively from the CME instead of from
the collective expansion of the fireball.

As a starting point to study these phenomena, one must
know the spacetime profile of electromagnetic fields in HICs.
Several earlier calculations [1,22-24] as well as later cal-
culations including event-by-event fluctuations [25,26] show
that the electromagnetic fields peak almost at the time of
collision and disappear in a very short time after the collision.
For example, the magnetic field along the global angular
momentum falls rapidly by ~1/13. At \/s = 200 GeV, it drops
by two to three orders of magnitude in about 0.5 fm/c from the
collision time. If this is the case, one cannot expect a sizable
influence on the final-state hadrons in late time from such short
pulses of magnetic fields. However, the medium effects have
not be considered in these calculations. The main response
of the plasma to the fields is the electric conduction. The
electric conductivity is proportional to plasma temperature,
which is a function of time because the plasma is expanding.
In the strong-coupling regime, electric conductivity can be
calculated by lattice gauge theory [27,28] and holographic
models [29]. Ohm’s currents will be induced in the plasma
and slow down the decrease of the fields [30,31]. To study
the CME effect, one has to include the CME conductivity o .
The electromagnetic fields produced by a point charge with o,
and o have been calculated analytically in Ref. [32] but only
for the relativistic limit (v = 1). The numerical and analytic
calculations with o but without o, were done in Ref. [30,31].
The directed flow of charged hadrons in HIC has been studied
with nonvanishing o but without o, in Ref. [33] by calculating
the velocity shift of each fluid cell due to the electromagnetic
force in the hydrodynamic evolution.

In this paper, we solve the Maxwell equations both
analytically and numerically for a moving point charge in a
conducting medium with nonvanishing ¢ and o,. To obtain
analytic results we assume constant ¢ and o,. We use the
method of the Green’s functions under the condition o, < &
which is valid for high-energy HICs. Analytic expressions of
electric and magnetic fields are given for finite o and small
values of o, without taking the relativistic limit (v = 1).
The numerical results for finite o and o, agree perfectly
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with the analytic results. Finally, we carry out the numerical
calculations for the electromagnetic fields in noncentral Au +
Au collisions at /s = 200 GeV. Normally one uses the AMPT
model [34], the HUING model [35], or the UrQMD model
[36] to simulate the collision processes and to calculate the
electromagnetic fields. In this paper, we use the UrQMD model
to give the spacetime and momentum configuration of charged
particles in HICs with vanishing o and o, , but we will use a
kinematic model for participant nucleons with nonvanishing
o and o, . Generally the strong magnetic fields will influence
the evolution of the particle system [37], which we will not
consider in our calculations.

The paper is organized as follows: In Sec. II, we give the
formal solution to the Maxwell equations with o and o, by
using the method of Green’s functions. In Secs. Il and IV, we
derive analytic expressions for the magnetic and electric fields
of a point charge, respectively. We give in Sec. V numerical
results for electromagnetic fields produced in noncentral Au +
Au collisions at /s = 200 GeV. A summary of results is given
in Sec. VL.

We adopt the following conventions for three-dimensional
(3D) or two-dimensional (2D) vectors. We use Roman letters in
boldface for 3D or 2D vectors. In Cartesian coordinates, three
orthogonal components of a 3D vector are denoted as plain
Roman letters with subscripts x, y, z. A point in coordinate
space is written as X = (x,y,z) = (Xr,z), where X7 represents
its 2D component. Similarly, a momentum is written as k =
(ky,ky,k.) = (k7 ,k;). The vectors of the electric and magnetic
fields are writtenas E = (E,,E,,E;)and B = (B,,B,,B;). We
also use cylindrical coordinate whose longitudinal component
is chosen to be the third component of Cartesian coordinate;
e.g., X = (xr,¢,z) with xp = |xr]|.

II. FIELD EQUATIONS AND THEIR FORMAL SOLUTIONS

We consider an infinite homogeneous medium whose
conducting property can be described by a constant electric
conductivity o and a constant chiral magnetic conductivity
oy . These requirements give us the most simplified model for
conducting medium with the chiral magnetic effect (CME). In
this medium, the total currents can be decomposed into three
parts: the external current, the Ohm’s current (0 E) induced
by the electric field E, and the chiral magnetic current (o, B)
induced by the magnetic field B. The Maxwell equations read

V.E— pext’
€
V.-B=0,
\% XE:_atB,
V x B = 4E + Jou + 0E + 0, B, (1)

J
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where pex and Jex: denote the external charge and current
densities, respectively. One should note that, in general, the
permittivity €(w) = 1 4+ io/w depends on frequency. Taking
the curl of the third and the fourth lines in Eq. (1) and using
the first and the second lines, we obtain

(V2 =9 —08,)B+0,V xB=-V x Jex,

1
(V? =8} —03)E+0,VxE = Eva + 0. (2

It is obvious that both the magnetic and electric fields satisfy
the same system of partial differential equations,

L¥(t,x) + 0,V x F(t,x) = £(t,%). 3)

Here, F(z,x) is a vector representing B or E. The partial
differential operator is defined as L = V2 — Btz —09;. The
function f(z,x) on the right-hand side stands for the source
terms in Eq. (2). We can also write Eq. (3) in a matrix
form in terms of three components of F = (F,,F,,F;) and

f= (fxvfysfz):

L —0,0; 0,0y F, fr
0,0 L —oa A |ex=|A]Cx.
—0,0,  0y0, L F; e

“)
where we have used the shorthand notation V =
(0/0x,0/0y,0/0z) = (0y,0y,0;).

Now we are at the point to solve the above equation. To this
end, it is convenient to work in momentum space and expand

F(z,x) and f(z,x) as

dod®k . .
F(t,x) = (;)T)élgflwtﬂk.xF(w’k)’
dod’k . .
£(1,x) = (;UT)Ale"‘“’J“’k"‘f(w,k). )

Inserting the above expressions into Eq. (4), we obtain by
making replacement 9, - —iw, V — ik,

L —ioyk, ioyk, Fy fx
ioyk, L —ioyky | | Fy | (0, k)=] f, | (w,k),

—ioyky  ioyky L F, Iz
(6)

where L = w® +iocw — k* and k = |k|. We can write the
coefficient matrix in a compact form,

M;; = Lé;j — ioy€ijiky, @)
with the determinant

detM = L(L* — 07k%). (8)

In Eq. (7) we have used the notation k = (ky,k,,k;) = (ki,k2,k3). If det M # 0, we can get the inverse of M given by its adjoint

matrix divided by its determinant,

L? —o2k2
1 2
= S —iLoyk, — olkk,

iLoyky — a)%kxkZ

iLoyk, — akaky —iLoyk, — akakz
L*—olk; iLoyk, — o kyk: |. 9)
—iLoyk, — a)%kykZ L? — a)%kz2
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With M~! we can write down the solution to Eq. (6) as

F(w,k) = [Lf(w,k) —

1
JRpmpere

where the source terms f(w,k) are given by

—ik x Jexi(w,Kk)
fw.k) = { s

1+io/w

We note that the second term ~o§k[k -f(w,k)] in Eq. (10) is
obviously vanishing for B but is not vanishing for E. By using
the charge-conservation equation dpex /9t + V - Jexy = 0, this
term for E is proportional to ~[(L* — o7k*)(1 4 io/w)]".
From the poles of F(w,k), we can obtain the dispersion
relations w(k) for collective modes of electromagnetic fields.
The poles of the first term (or of B) in Eq. (10) are given
by the roots of L* — o7k* = 0, which are w,,, = —io/2 +
s1(k? + soko, — 02/4)1/2 (s1,5o = £1). For E, the second
termin Eq. (10) introduces an additional pole ® = —io besides
ws,s,- These poles give the collective modes of the fields
without external sources, where @ and k are independent
variables.

If we choose the source term as an instantaneous point
source, i.e., f(w,k) is a constant vector (independent of w and
k), F(w,k)in Eq. (10) is just the Green’s function in momentum
space. This Green’s function is retarded for o, = 0 because all
w poles are in the lower half plane. However, for nonvanishing
oy, the pole w,. _ can be in the upper half plane on the
imaginary axis for small momenta. The causality of the field is
then broken due to this pole. Such a noncausality is related
to instability, which is generated by the positive feedback
between chiral magnetic current and magnetic field; see, e.g.,
Ref. [38]. This is similar to the first-order hydrodynamics
which is noncausal and unstable. When taking into account
the time-space behavior of o and o, or nonlinear effects, such
a causality problem is expected to be solved.

For external charges with pex; and Jex, the dispersion
relations will be modified due to additional relations between
w and K, e.g., in the next section we will consider a point charge
moving along the z direction which introduces the constraint
w = vk,.

III. MAGNETIC FIELDS OF A MOVING CHARGE
A. Integration over polar angle and longitudinal momentum

In this section, we derive an analytical expression for the
magnetic field of a charged particle. Without loss of generality,
we consider the situation that the charged particle (with charge
Q) moves along the third axis direction. More general cases
along arbitrary directions can be obtained by rotation. In heavy
ion collisions, generally the CME conductivity is a small
quantity compared to the electric one. The charge density and
the current density read

Q5(x)8(y)(z — v1),
Qvd(x)8(y)8(z — vi)e.. (12)

p(t,x) =
J(t,x) =

ioyk x f(w,k)] —
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for B,

—iwJex(w,k) forE. (11)

(
In momentum space, they are in the form

plw.k) =21 Q8(w — k;v),

J(w,k) =27 Quvé(w — k;v)e,. (13)

Here we denote three directions in flat coordinate space
as (ey,ey,e;). In cylindrical coordinates, we denote three
orthogonal directions as (e,,ey,e;). Inserting Eq. (13) into
Egs. (10) and (11), we obtain the magnetic field in momentum
space,

B, Lk, —ioyk.k,
o ek [

By (C(),k) = —2ﬂlem x 1Oy KyK;

B, N\ o, (12 4+ 1)

(14)

We can transform Eq. (14) back to coordinate space. This
involves integration over w and k. Since the charged particle
moves along the third direction, it is convenient to work in the
cylindrical coordinate (r,¢,z). So we can write k - x = k7 -
X7 + k,z = krxy cos @ + k,z, where we have assumed that
the angle between x7 and k7 is 6. We can easily integrate over
k, from Eq. (14), which removes the delta function with k,
being set to w/v in the integrand,

B,

2
B¢ (t,x) = —iQ dwd9d3kT —iw(t—z/v)+iky xcosd kT
sinf ; —wcosd
x| L(w,kr)| —cos@ | + —% | —wsind | |,
0 v vk
(15)

where we have chosen that x7 is along e,, so e, (e,) is in the
direction of x7 and ey (e,) is in the direction of e, x e,. We
have used in Eq. (15)

1
L(w,k7) = —Wa) +iow— kT,

2
1)

D(@.kr) = LX(w,kr) = 03— — o k7. (16)

Integration over 6 can be done by using cylindri-

cal Bessel functions, fozn dOetkrxrcos? — 2q Jo(krxr) and

fozn dfekrrcost cos @ = 27i Jy(krxr). Inserting these into
Eq. (15), we can have a simple form:

[ dodk; Bl@.kr)
Bex = Q/ @n)? D(w.kr)’ an
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where B'(w,kr) can be defined in cylindrical coordinates as
follows:

B! 0
By |(w,kr) = ke "~/ L(w,kr)| Jilkrxr)
B/ 0
o ioJi(krxr)
+ X 0 , (18)

U\ —vkr Jolkrxr)

where Jy and J; are Bessel functions of the first kind. Note
that the integral over w in Eq. (17) is from —oo to +00. We can
easily prove that the right-hand side of Eq. (17) is areal number.
We see in the integrand that w is always accompanied by an
imaginary unit i. If we replace @ with —w in the integrand, we
will get exactly its complex conjugate, so the the integral over
o in Eq. (17) can be replaced by an integral of the real part
over o from 0 to 4-o0.

B. Integration over frequency

To carry out the integration over w, we need to make
analytic continuation for the frequency to the complex plane
and calculate the residues of singularities. The denominator
D(w,kr) in Eq. (17) is a quartic polynomial of w. For a fixed
k7, D(w,kr) has four roots in the complex plane, each of
which gives a pole of the integrand. In high-energy heavy ion
collisions, the Ohm conductivity o is much larger than the
chiral magnetic conductivity o, so it is reasonable to treat o,
as a perturbation.

Now we deal with the poles of the integrand in Eq. (17). To
this end, we need to find the roots of the equation D(w,k7) = 0.
For a fixed value of k7, we assume the solutions take the
following form:

w=wo+0yci+0o 0+, (19)

where the zeroth-order value w, denote the roots of the
equation L(w,k7) = 0 and are given by

wi = ivyz[vyo £,/(vyo)? +4k7]. (20)

We see that the zeroth-order solutions are doublets. We insert
Eq. (19) into D(w,kr) and expand in powers of o,. When
implementing wy = w4 in D(w,kr), the zeroth- and first-order
terms in o, are vanishing. The coefficient ¢; appears in the 0)%
term and can be determined by the condition that it vanishes.
Implementing the values of ¢, we can determine ¢, from the
vanishing of the a; term. Putting them together, we obtain the
roots in the following form:

1 2.2
Wy, = 0, + 520, + 02c? (s1.8 = £1),  (21)

1 2 :
where ¢{V and ¢{?) are given by

n ”Vz\/ (Wyo) +20%3 + s(vyo), (y o) + 4k3
V2| (vyo ) +4k;

: 37,2 2

vy k7(2 — v°)
c? = —s 5 (22)
[(vyo) + 4k7]
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The polynomial D(w,k7) can thus be expressed in terms of
these four roots in Eq. (21),

1
Diwkn) = 03 [] @—wuw. (23)

51.S2=ﬂ:

It is easy to verify that w,; and w,_ are located in the upper
half complex plane and w__ is located in the lower half one,
while w__ is located in the lower half plane when o, < k7.
For a relativistic particle in heavy ion collisions, the condition
0, < kr is satisfied in most cases [32]. So we treat w_,. as a
pole located in the lower half plane.

To the linear order in o, , the differences between two poles
in the upper and lower half plane are

Aoy =wiy —wy =~ ZO'XCSFI) — 20va2 forkr =0,
Ao =w_ —w__~20,c" -0 forky =0.  (24)

We see that Aw, (Aw_)isnonvanishing (vanishing) atky = 0.
For the imaginary part in Eq. (20), we see |w4 | > (vy)’o,i.e.,
it has nonzero lower bound but |w_| > 0 has zero bound,
where the equality holds at k7 = O for both cases. The poles in
the upper (lower) half plane whose imaginary part is w4 (w-)
give the advanced (retarded) solution with vt — z < 0 (vt —
z > 0). Such a difference in the imaginary part makes the
advanced solution more suppressed than the retarded one at
the relativistic limit with y > 1.

Then we can carry out the integration over @ by contour
integration. For the advanced (retarded) region vt < z (vt >
7), we need to close the contour in the upper (lower) half plane
and pick up two poles w; + (w— 1). The residues of DY w,k7)
at poles are given by

. W — Wy
lim - =
o=y, D(w,kr)

(vy)4 20, ¢
(s TE), @23)
ZUXCSI ((SC‘)) Sw

where $w = 0y — w_ = ivy[(vyo)? + 4k2]'/? is the differ-
ence between the two roots in Eq. (20). Thus, the integration
over w can be done by applying the residue theorem,

Rslsz (kT) =

dk
B(r.x) = —i9<% _ t) 0 f £ ;B’(w+,s,kr)R+,s(kT)

. Z dkT ’
+19<t - ;)Qf g;B(w—,ka)R—,x(kT)a

(26)

where the terms of 6(: — 1) and (¢ — £) correspond to ad-
vanced and retarded contributions, respectively. Superficially,
there is an advanced contribution from the poles in the upper
half plane of w; whether the advanced part contributes to the
final results depends on the values of the integrals over kr.

C. Algebraic expressions for magnetic fields

After carrying out the k7 integral, we obtain an algebraic
expression for the tangential component By to leading order
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in oy,

O vyxr ovy A
Byt = =~ (1 + T«/Z)e Y

Here we have defined symbols A = y%(vt — z)? —l—x% and

A =(ovy/lywt —z7) — VA] (note that A < 0). It is easy
to verify that By in Eq. (27) recovers the formula from
Lienard—Wiechert potentials when ¢ = 0. We note that such
a form of By was first given in Ref. [33]. The linear-order
contribution in o, is absent in By. This means that the chiral
magnetic effect characterized by o, does not play a major role
in the tangential component. However, the major correction is
from electric conductivity.

For the radial and longitudinal components, we now give
following simple algebraic expressions to leading order in oy :

2
B.(t,x) = —oy é UZ;ZT [y(vt —z2) + A\/K]eA,
Q vy ovy
BZ(I,X) = ng_ﬂm[yz(vl - Z)2<1 + T\/Z)
—|—A<1 - %JZ)}A. (28)

We see that they are proportional to o, . Previous studies have
shown that the electric conducting effect will never generate
B, and B, so these nonvanishing components are the result
of the chiral magnetic effect. This can be easily understood:
a moving charge produces magnetic fields in the tangential
direction, which then turns into a tangential current due to the
chiral magnetic effect and finally generates B, and B,.

One can verify that the higher-order corrections to By, B,
and B, are all of O(af). At very late time, one can see from

Eqs. (27) and (28) that the fields decay in time as By , ~ 1/ 12
and B, ~ 1/t.

We now make a few comments about advanced and retarded
contributions in Eqgs. (27) and (28). We see that 9(% —1)
and 6(¢ — %), which characterize the advanced and retarded
contributions, disappear: the reason is that the rest expressions
apart from the 6 functions are identical in both contributions,
therefore we can combine them as 0(3 —1) + 6@ — 2) = 1.
The presence of the factor e# shows that the advanced contri-
bution is suppressed exponentially relative to the retarded one,
since the oy2(vt — z) part in A is negative (positive) for the
advanced (retarded) parts.

The appearance of the advanced contribution can be
understood as follows: Note that the charged particle is
assumed to move from z,f = —o0 to z,f = oo and is located
at z = 0 at the moment ¢t = 0. For v < 1, i.e., the speed of the
charged particle is less than the light speed, the presence of
the advanced part can be easily understood since the electric
and magnetic fields propagate faster than the particle. At a
moment ¢ the electric and magnetic fields are present at z > vt
before the particle arrives. These fields are actually generated
at an earlier time than ¢ and arrive at z ahead of the particle.
When v = 1 (not realistic though), the electric and magnetic
fields cannot propagate faster than the particle, so the fields
are vanishing in the advanced region z > ¢. This can be clearly
seen from Eqgs. (27) and (28) in which the exponent A =

PHYSICAL REVIEW C 94, 044903 (2016)

(ovy/2)[y (vt — ) — /Al = —00 (with y = 400 or v = 1)
to make the advanced part vanish. Therefore the appearance
of the advanced part does not contradict causality.

D. Relativistic limit

In this section, we consider the relativistic limit with v ~ 1
and y > 1. Equation (16) becomes

L(wkr)~iocw — k%,
D(w.kr) ~ (icw — k2) — 020® — o2k} (29)
The D = 0 has two roots for a given k7,

Sk k3 — (0% +02). (30)

X

10 2 Oy

oz—i—a)% T~ 6240

w4 = —

If we focus on the region k7 > o, o,, these can be simplified
to
k7
= . 31
T e+ oy ©D

These two roots are all under the real axis, which means that
the advanced solution is vanishing. So the contour integration
over w in the lower half plane picks up these two poles at w. .
We can carry out the integration of the Bessel functions:

00 5 5 b b2
fo dkk” exp [—zak ]Jl(kb) =12 exp [15],

[} i b2
/ dkk exp [—iak*]Jo(kb) = —— exp [i—]. (32)
0 2a 4a

Finally, we obtain the analytical expressions for the magnetic
fields:

2
o X7 __oXr
B,(t,x) = 6(t Z)an(t — 27 exp [ At — Z):|

* {“ i [42){%1)} T [43{3} }
By(t,x) = 0(t — )0 —1—exp [— o3 }
87 (r —2) 4(t —z2)
o .X2 . o x2
x {a cos |:4(tX—Tz):| + oy sin |:4(tX—Tz):| }
B.(t,x) = 0(t — z)Q; exp |:— ox% :|
4 (t — 2) 4t — z)

o oy X7 oy X7
x{ USIH|:4(t—Z)]+UXCOS|:4(Z—Z)i|}.

(33)

We see that only By is nonvanishing at o, = 0. For a point
charge moving in the opposite direction, v ~ —1, the magnetic
fields [up to 6(f + z) ] can be obtained from Eq. (33) by a
rotation along any radial axis on the transverse plane at z =
0. In this case, By and B, change their signs but B, does
not.
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One can verify that these fields satisfy the Maxwell
equations (1). In the same way, we can also derive analytic

PHYSICAL REVIEW C 94, 044903 (2016)

formula for electric fields in the relativistic limit but the
expressions are much more complicated than magnetic fields.

J
IV. ELECTRIC FIELDS OF A MOVING CHARGE

In this section, we derive the analytical expression for electric fields in a medium with both Ohm conductivity and chiral
magnetic conductivity. As done in Sec. IIl A, we consider that a charged particle moves in the third direction. Following the
procedure similar to that of Sec. III A, we obtain

E 2 (k k, 0

: S — k) | L+a? [k ,

E, (w,k):Zm'QwL(;D_ ;:2) 2|k | Fio| ke | vl o] | (34)
E. o) | @TIo \k, 0 1

With Eq. (14) for B and Eq. (34) for E we can verify that the Maxwell equations are really satisfied.
When transforming back to coordinate space, we follow the same procedure as in Sec. III A and get a form for electric fields
similar to Eq. (17) for magnetic fields,

0 [ dodkr E(w,kr)

E¢x)=—— | —5 ———. 35
(1,%) v ] 2n? Dwkn) (35
In the cylindrical coordinate, E'(w,kr) is given by
E; ] L(a),kT) +02 kTJl(kaT) 0
b |@.kr) = ikpwe V| ——— X 0 + | —o ke Jitkrxr) | | (36)
E! 0= \—i(w/v)Jotkrxr) vL(w.kr)Jo(krxr)

But the difference from the case with magnetic fields is that, besides the four poles in 1/D(w,kr), there is an additional pole in
the lower half plane from the first term ~1/(w + io’), as shown in Eq. (34).

From the Maxwell equations, we can obtain Ey from B, instantly (E4, = —vB,),
0 vy’xr A
Ep =0y gy Ly —2) + AVAle!. (37)

Generally, the integration over k7 in E, ; cannot be worked out analytically due to the term 1/(iw — o) in Eq. (36). However, at
the relativistic limit y >> 1, this can be done and we can obtain algebraic expression for E, ;:

_ O [vxr ovy O _o(t—z/v) y(vt — 2) A
R AL A PR UEE ) Y

47 vXT VA
0 a1 ay o’ —o(t—z/v)

E.=—=]_¢ —[)/(vt )+ AVA + —A] + L eot=ar, — Ak, (38)
47 A3/2 v v?

where I'(0,—A) is the incomplete gamma function defined as I'(a,z) = L *dt t*exp(—t). We have checked in numerical
calculations that the result of Eqgs. (37) and (38) is a good approximation to the exact result for the scale of heavy ion collisions.
We have also checked that electric and magnetic fields in Eqs. (37) and (38) and in Eqgs. (27) and (28) satisfy the Maxwell
equations (1) with good accuracy for the scale of heavy ion collisions.

In the leading order in o, we see in Eqs. (37) and (38) that E is proportional to o, while E, . are independent of o,. The

higher-order contributions to Ey, E,, and E are all of 0(6)%).

V. NUMERICAL RESULTS FOR ELECTROMAGNETIC
FIELDS IN HEAVY ION COLLISIONS

In this section we give numerical results for B and E
from Eqgs. (17) and (35). The source terms are given by the
configuration that two nuclei collide with an impact parameter,
which is a convolution of the point charge and current density
in the form of Eq. (12) with the charge distribution of
nuclei.

Our main goal is to test the validity of our analytic formula
for the electric and magnetic fields in a conducting medium.
To this end we made simplifications by assuming that the
conducting medium is always there and does not evolve with
constant conductivities. In this way we can focus on qualitative

(

aspects of the medium effects. In the real case, one has to solve

Maxwell equations coupled with hydrodynamic equations
or transport equations self-consistently, where the charged
particles move in the fields while the fields are generated by
the charged particles. The transport coefficients are generated
by particle collisions and evolve with time. Of course this is
far beyond the scope of this paper and will be addressed in our
future projects.

Figure 1 shows B and E as functions of time at x = (0,0,0)

fm produced by a point charge (proton) of 100 GeV located
at (6,0,0) fm and moving along e,. The value of o is set to
5.8 MeV in accordance with the lattice calculations [27,28].
We note that the time-varying electric conductivity, o ~ t~!/3,
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t (fm/c)
FIG. 1. The electromagnetic fields at x = (0,0,0) fm produced
by a point charge (proton) of 100 GeV which are located at x =

(6,0,0) fm and moving along e,. We choose the following values of
conductivities: 0 = 5.8 MeV and 0, = 1.5 MeV.

does not significantly change the lifetime of the fields during
the hydrodynamic evolution [39]. So choosing a constant o is
a good approximation in this period. The value of o, is set to
1.5 MeV, which corresponds to ps ~ 100 MeV. We see that
the magnitude of By is larger than B, almost all the time and
that B, is much smaller than B, and By. The nonvanishing B,
and B; is due to the chiral magnetic effect or o, # 0. We also
see that the magnitude of E, is larger than E, (just opposite
to the magnetic field) and E. All field components of B and
E are damped as the time goes on.

We show in Fig. 2 the geometry of two colliding nuclei
in peripheral collisions with the impact parameter b. The
global magnetic field of this configuration is along —e,. In
the numerical calculation of B and E, we choose b = 4 fm
for Au+ Au collisions at /s = 200 GeV. We use UrQMD
to simulate the spacetime and momentum configurations of
charged particles in Au + Au collisions in the case of the
Lienard—Wiechert potential. After the collisions, the spectator
nucleons which do not collide fly by freely while participant
nucleons are stopped to produce new particles. Participant
nucleons will be treated differently in the cases of nonvanishing
medium effects with o and o,: the rapidity distribution of
charged particles produced by participant nucleons has to be
modified. In our calculations, we adopt the rapidity distribution
in Ref. [33].

We show in Figs. 3 and 4 the time evolution of B and
E in Au + Au collisions at +/s = 200 GeV and at two points
(6,0,0) fm [point P in Fig. 2] and (0,6,0) fm [point Q in Fig. 2].
We consider three cases: (a) Lienard—Wiechert potential (o =

PHYSICAL REVIEW C 94, 044903 (2016)

AY
z=0

AN "X

FIG. 2. The geometry of two colliding nuclei in the transverse
plane at z = 0. One nucleus at (b/2,0) in the transverse plane is
moving along e,, while another nucleus at (—b/2,0) is moving along
—e,. The points P and Q in the transverse plane are two typical points
at which B and E will be calculated.

o, = 0, blue solid lines); (b) with only o (0 # 0 and o, =0,
red dashed lines); (c) with both ¢ and o, (0 % 0 and o, # 0,
magenta dash-dotted lines).

In Fig. 3 we give the time evolution of B, and E, at the
point x = (0,6,0) fm or the point Q. The x and z components
are vanishing, By, ~ 0 and E, ; =~ 0 because OQ is along
the direction of global orbital angular momentum or global
magnetic field. The effect of o, on By, and E, is small at late
time.

In Fig. 4, we see that By, B, and E, are mainly controlled
by oy, i.e., they are vanishing at o, = 0. It is interesting to see
that B, has different signs from L-W and from o # 0 in very
short time from the collision moment. The reason is that B,
with L-W is from spectators moving apart rapidly so it is along
—e, and decays quickly in time, but B, with nonvanishing o
is dominated by the conducting current and lasts longer than
the L-W contribution.

The contour plots for electric and magnetic fields in the
transverse plane of z = 0 are shown in Fig. 5. The time is set
tot = 2 fm/c. We see that the magnitudes of x,z components
of electric fields |E, ,(¢,x,y,z)| are symmetric for flipping the
signs of their arguments x and y. The symmetry is partially
broken for |Ey(¢,x,y,2)| and |B, ,(¢,x,y,z)| due to o,: they
are symmetric for flipping the sign of x but not for y, while
|B.(t,x,y,z)| preserves the symmetry for flipping the signs of
x and y. The field configuration can be more clearly seen in
Fig. 6, where the transverse components are shown in two-
dimension vectors. We see that E; is more symmetric than
Br in the transverse plane. A magnetic field along —e, can
also be clearly seen near the origin (0,0,0). It is obvious that
|By(tv-x7yvz)| # |By(f»x»—y,2)|-

The asymmetry in Figs. 5 and 6 can be easily understood
from nonvanishing B, resulting from o, . Suppose one positive
charge is located at (a,0,0) fm and moving along —e,, while
the other one is located at (—a,0,0) fm and moving along e_;
see Fig. 7. We can compare the magnetic fields at two points,
(0,6,0) fm and (0,—b,0) fm. For simplicity we assume the
relativistic limit and use Eq. (33), where we observe that B,
does not change the sign when flipping the velocity direction.
Therefore the direction of radial components of the magnetic
fields from two oppositely moving charges at the upper point
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Au+Au Vs =200GeV @(0,6,0) Au+Au v's =200GeV @(0,6,0)
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1S 06 0.001}: “‘Ek o6f & % 0.001 :
> 10741 S [E % 107
Q" 04; 00 02 04 06 08 1.0/ WY g4lk 00 02 04 06 0.8 1.0]
I —_—L-W o Ty Y, —_ LW
0.2} N — with o B with &
I iy e - with 0 & 0y, 0.2 e, e - with 0 & 0y
O.O'Ir". -—_-_wy_-'_-_u.ua.ulu;u.-n.uu..m-.uu_ ool """"-n-«...-,_____q__‘_-._-‘“. ]
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FIG. 3. Time evolution of B, and E, in Au + Au collisions at /s = 200 GeV and x = (0,6,0) fm for three cases: (a) Lienard—Wiechert
potential (6 = o, = 0); (b) witho (¢ # O and o, = 0); (c) witho and 0, (0 # O0and o, # 0). The x and z components are vanishing, B, . ~ 0
and £, ; ~ 0.

(0,0,0) fm is opposite to that at the lower point (0,—b,0). VI. SUMMARY
But azimuthal components have the same directions and
magnitudes at upper and lower point. Thus the total magnetic
fields, or the vector sums of radial and azimuthal components,
have different magnitude at two symmetric points with respect
to the x axis.

We have derived analytic expressions for electric and
magnetic fields produced by a point charge in a conducting
medium with the electric conductivity ¢ and the chiral
magnetic conductivity o, . We used the method of the Green’s
function under the condition o > o,. We have given in

Au+Au Vs =200GeV @(6,0,0) Au+Au Vs =200GeV @(6,0,0)

0.12f ]
010t ...... with o & g, 1
0.08}
0.06}
0.04F" %
0.02f
0.00 -

-0.02},
0.2}

01tR N
¥
L 0.0 -

2
Va

eB, /m

AT

N
g -0.1t
~
> L —_
o 02 — L - wW
® o3ty with
04t !\l . with g & Oy 1
_0.5.. ]
0.007} .. ] ,\
0.006f 5 . e with 0 & g, | 0.00 vy~ R ———
0.005} : ‘ ] i e
o~k : ~k_0.02ft e
E o004} : RS P
o’ 0.003} 1oy t004r g / —L-W
® 0002t el o I — with o
o e -0.06} 1/ .
o.001t: T 3 v ...... with o & g,
0.000} . . . 3 -0.08} . . . ]
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0
t (fm/c) t (fm/c)

FIG. 4. The time evolution of B and E in Au + Au collisions at /s = 200 GeV and x = (6,0,0) fm for three cases: (a) Lienard—Wiechert
potential (L-W, o0 = o, = 0); (b) with o (¢ # 0 and o, = 0); (¢) with o and 0, (0 # 0 and o, # 0).
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FIG. 5. Contour plots for electric (upper panel) and magnetic (lower panel) fields in the transverse plane of z =0 at t =2 fm/c and
/s =200 GeV in Au + Au collisions. The two colliding nuclei are shown as two red dashed circles.

Egs. (28), (37), and (38) the algebraic expressions for electric
and magnetic fields as functions of spacetime without any
integrals. Numerical results show that these algebraic results
work very well for values of o, that are not very small
compared to . We have also given the algebraic expressions
for magnetic fields at relativistic limit v = 1.

The spacetime profiles of electromagnetic fields in non-
central Au + Au collisions have been calculated based on the
above analytic formula as well as the exact numerical method.
The UrQMD model was used to simulate the spacetime and
momentum configurations of charged particles. In collisions,

the participant nucleons are treated differently from spectators
by introducing a smooth rapidity distribution to account for
newly produced charged particles in the central rapidity region.
The magnitudes of the axial components of both electric field
and magnetic field have the symmetry of flipping the signs
of their transverse coordinate arguments x and y. But the
magnitudes of transverse components are only symmetric for
flipping the sign of x (in the reaction plane) but not for y. This
is the result of the CME.

Combining the spacetime evolution of electromagnetic
fields with hydrodynamic models or transport models, one can
calculate in the future the correlations of charged particles
as possible observables of the CME and compare with

<Br> <Er> experimental data.
20F v e [ RN A 44
NN NI N WA y y
Iy 4 LR NI A * ~ 4
LIt T “*&H/‘*‘ : (@ (b)
10 440 - mn ) Kook ~ ‘\ A A 4 /( v
NP~ SN BAAAAS L Ephlslg B, B,
g N :,l' }' S N w\?' i~ 1 ‘(\/::: By, By, By +B,,
= (o] SNSRI Yo o el « - =i c2 B,+B, C1 c2 Cc1
: CEESREPEN N P aa e Y S . - -
SN AR s A“);"‘\‘/\ A - >
10 v~ R R ‘:ﬁ} —{\\:A X B+, X
-— F - - .- - [ R} - v -~ > X an r r
TIIiisoonniIoooy o »"é? 3‘* RN B o
...... A B T T N N s F¥ , M ENENRY
—20F e s P AN R Ny DI IR B, By,
L L L L L L L L L L BID"'Bzo
-20 -10 O 10 20 -20 -10 O 10 20
x (fm) x (fm) FIG. 7. Illustration of the asymmetry of the magnetic fields at

FIG. 6. The two-dimensional vector fields for transverse compo-
nents By and Er in the transverse plane of z = 0 at t = 2 fm/c and
/s =200 GeV in Au + Au collisions.

nonvanishing o, . Two positive point charges at (£a,0,0) move in the
e, directions: (a) azimuthal components, (b) radial components. The
azimuthal components are symmetric at symmetric points (0, =+ b,0),
while the radial components have opposite signs.
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