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Electromagnetic fields with electric and chiral magnetic conductivities in heavy ion collisions
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We derive an analytic formula for electric and magnetic fields produced by a moving charged particle in a
conducting medium with the electric conductivity σ and the chiral magnetic conductivity σχ . We use the Green’s
function method and assume that σχ is much smaller than σ . The compact algebraic expressions for electric
and magnetic fields without any integrals are obtained. They recover the Lienard–Wiechert formula at vanishing
conductivities. Exact numerical solutions are also found for any values of σ and σχ and are compared with analytic
results. Both numerical and analytic results agree very well for the scale of high-energy heavy ion collisions.
The spacetime profiles of electromagnetic fields in noncentral Au + Au collisions have been calculated based on
these analytic formula as well as exact numerical solutions.
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I. INTRODUCTION

Strong electromagnetic fields are generated in peripheral
heavy ion collisions (HICs), which provides a good
opportunity for studying rich phenomena related to strong
fields. At the collisional energy

√
s per nucleon which is much

larger than the nucleon mass mn, the nucleons are moving
with the velocity v = [(s − m2

n)/s]1/2 ∼ 1 − m2
n/(2s) which

is almost speed of light with a large Lorentz contraction factor
γ = 1/[1 − v2/c2]1/2 ∼ √

s/mn. The typical electric field in
the comoving frame of one nucleus can be estimated by the
Coulomb law, Ze/R2

A, with Z and RA being the proton number
and the radius of the nucleus, respectively. The magnetic field
in the laboratory frame can be approximated as the product of
the Lorentz factor and the electric field in the comoving frame
of the nucleus, eB ∼ γ vZe2/R2

A. In Au + Au collisions
at the BNL Relativistic Heavy Ion Collider (RHIC) at√

s = 200 GeV, the peak value of the magnetic field at the
moment of the collision is about 5m2

π (mπ is the pion mass)
or 1.4 × 1018 Gauss. In Pb + Pb collisions at the CERN
Large Hadron Collider (LHC) at

√
s = 2.76 TeV, the peak

value of the magnetic field can be 10 times as large as at
RHIC.

Since the magnitude of the electromagnetic fields enter the
regime of strong interactions, the effects of such enormous
fields are expected to be observable in the final hadronic
events in HICs. In recent years there have been many efforts to
investigate such effects, among which the interplay between
strong magnetic fields and quantum anomaly leads to a group
of related phenomena, such as the chiral magnetic effect
(CME) [1,2], the chiral vortical effect [3,4], the chiral magnetic
wave [5], the chiral vortical wave [6], etc. For reviews of
recent developments, see, e.g., Refs. [7,8]. All these effects
are related to the chiral properties of fermions, especially
massless fermions or chiral fermions. The movement of chiral
fermions can be described by the chiral kinetic equations
which incorporate structures of Berry phase and monopole
in momentum space [9–18]. The charge-separation effect
observed in the STAR and ALICE experiments can be well
described by the CME [19–21], but no definite conclusion
has been made that the charge-separation effect results are

unambiguously and exclusively from the CME instead of from
the collective expansion of the fireball.

As a starting point to study these phenomena, one must
know the spacetime profile of electromagnetic fields in HICs.
Several earlier calculations [1,22–24] as well as later cal-
culations including event-by-event fluctuations [25,26] show
that the electromagnetic fields peak almost at the time of
collision and disappear in a very short time after the collision.
For example, the magnetic field along the global angular
momentum falls rapidly by ∼1/t3. At

√
s = 200 GeV, it drops

by two to three orders of magnitude in about 0.5 fm/c from the
collision time. If this is the case, one cannot expect a sizable
influence on the final-state hadrons in late time from such short
pulses of magnetic fields. However, the medium effects have
not be considered in these calculations. The main response
of the plasma to the fields is the electric conduction. The
electric conductivity is proportional to plasma temperature,
which is a function of time because the plasma is expanding.
In the strong-coupling regime, electric conductivity can be
calculated by lattice gauge theory [27,28] and holographic
models [29]. Ohm’s currents will be induced in the plasma
and slow down the decrease of the fields [30,31]. To study
the CME effect, one has to include the CME conductivity σχ .
The electromagnetic fields produced by a point charge with σχ

and σ have been calculated analytically in Ref. [32] but only
for the relativistic limit (v = 1). The numerical and analytic
calculations with σ but without σχ were done in Ref. [30,31].
The directed flow of charged hadrons in HIC has been studied
with nonvanishing σ but without σχ in Ref. [33] by calculating
the velocity shift of each fluid cell due to the electromagnetic
force in the hydrodynamic evolution.

In this paper, we solve the Maxwell equations both
analytically and numerically for a moving point charge in a
conducting medium with nonvanishing σ and σχ . To obtain
analytic results we assume constant σ and σχ . We use the
method of the Green’s functions under the condition σχ � σ
which is valid for high-energy HICs. Analytic expressions of
electric and magnetic fields are given for finite σ and small
values of σχ without taking the relativistic limit (v = 1).
The numerical results for finite σ and σχ agree perfectly
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with the analytic results. Finally, we carry out the numerical
calculations for the electromagnetic fields in noncentral Au +
Au collisions at

√
s = 200 GeV. Normally one uses the AMPT

model [34], the HIJING model [35], or the UrQMD model
[36] to simulate the collision processes and to calculate the
electromagnetic fields. In this paper, we use the UrQMD model
to give the spacetime and momentum configuration of charged
particles in HICs with vanishing σ and σχ , but we will use a
kinematic model for participant nucleons with nonvanishing
σ and σχ . Generally the strong magnetic fields will influence
the evolution of the particle system [37], which we will not
consider in our calculations.

The paper is organized as follows: In Sec. II, we give the
formal solution to the Maxwell equations with σ and σχ by
using the method of Green’s functions. In Secs. III and IV, we
derive analytic expressions for the magnetic and electric fields
of a point charge, respectively. We give in Sec. V numerical
results for electromagnetic fields produced in noncentral Au +
Au collisions at

√
s = 200 GeV. A summary of results is given

in Sec. VI.
We adopt the following conventions for three-dimensional

(3D) or two-dimensional (2D) vectors. We use Roman letters in
boldface for 3D or 2D vectors. In Cartesian coordinates, three
orthogonal components of a 3D vector are denoted as plain
Roman letters with subscripts x, y, z. A point in coordinate
space is written as x = (x,y,z) = (xT ,z), where xT represents
its 2D component. Similarly, a momentum is written as k =
(kx,ky,kz) = (kT ,kz). The vectors of the electric and magnetic
fields are written as E = (Ex,Ey,Ez) and B = (Bx,By,Bz). We
also use cylindrical coordinate whose longitudinal component
is chosen to be the third component of Cartesian coordinate;
e.g., x = (xT ,φ,z) with xT = |xT |.

II. FIELD EQUATIONS AND THEIR FORMAL SOLUTIONS

We consider an infinite homogeneous medium whose
conducting property can be described by a constant electric
conductivity σ and a constant chiral magnetic conductivity
σχ . These requirements give us the most simplified model for
conducting medium with the chiral magnetic effect (CME). In
this medium, the total currents can be decomposed into three
parts: the external current, the Ohm’s current (σE) induced
by the electric field E, and the chiral magnetic current (σχB)
induced by the magnetic field B. The Maxwell equations read

∇ · E = ρext

ε
,

∇ · B = 0,

∇ × E = −∂tB,

∇ × B = ∂tE + Jext + σE + σχB, (1)

where ρext and Jext denote the external charge and current
densities, respectively. One should note that, in general, the
permittivity ε(ω) = 1 + iσ/ω depends on frequency. Taking
the curl of the third and the fourth lines in Eq. (1) and using
the first and the second lines, we obtain(∇2 − ∂2

t − σ∂t

)
B + σχ∇ × B = −∇ × Jext,(∇2 − ∂2

t − σ∂t

)
E + σχ∇ × E = 1

ε
∇ρext + ∂tJext. (2)

It is obvious that both the magnetic and electric fields satisfy
the same system of partial differential equations,

L̂F(t,x) + σχ∇ × F(t,x) = f(t,x). (3)

Here, F(t,x) is a vector representing B or E. The partial
differential operator is defined as L̂ = ∇2 − ∂2

t − σ∂t . The
function f(t,x) on the right-hand side stands for the source
terms in Eq. (2). We can also write Eq. (3) in a matrix
form in terms of three components of F = (Fx,Fy,Fz) and
f = (fx,fy,fz):⎛
⎜⎝

L̂ −σχ∂z σχ∂y

σχ∂z L̂ −σχ∂x

−σχ∂y σχ∂x L̂

⎞
⎟⎠
⎛
⎝Fx

Fy

Fz

⎞
⎠(t,x) =

⎛
⎝fx

fy

fz

⎞
⎠(t,x).

(4)
where we have used the shorthand notation ∇ =
(∂/∂x,∂/∂y,∂/∂z) ≡ (∂x,∂y,∂z).

Now we are at the point to solve the above equation. To this
end, it is convenient to work in momentum space and expand
F(t,x) and f(t,x) as

F(t,x) =
∫

dωd3k
(2π )4

e−iωt+ik·xF(ω,k),

f(t,x) =
∫

dωd3k
(2π )4

e−iωt+ik·xf(ω,k). (5)

Inserting the above expressions into Eq. (4), we obtain by
making replacement ∂t → −iω, ∇ → ik,⎛
⎝ L −iσχkz iσχky

iσχkz L −iσχkx

−iσχky iσχkx L

⎞
⎠
⎛
⎝Fx

Fy

Fz

⎞
⎠(ω,k)=

⎛
⎝fx

fy

fz

⎞
⎠(ω,k),

(6)
where L = ω2 + iσω − k2 and k = |k|. We can write the
coefficient matrix in a compact form,

Mij = Lδij − iσχεij lkl, (7)

with the determinant

det M = L
(
L2 − σ 2

χk2). (8)

In Eq. (7) we have used the notation k = (kx,ky,kz) = (k1,k2,k3). If det M �= 0, we can get the inverse of M given by its adjoint
matrix divided by its determinant,

M−1 = 1

detM

⎛
⎜⎝

L2 − σ 2
χk2

x iLσχkz − σ 2
χkxky −iLσχky − σ 2

χkxkz

−iLσχkz − σ 2
χkxky L2 − σ 2

χk2
y iLσχkx − σ 2

χkykz

iLσχky − σ 2
χkxkz −iLσχkx − σ 2

χkykz L2 − σ 2
χk2

z

⎞
⎟⎠. (9)
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With M−1 we can write down the solution to Eq. (6) as

F(ω,k) = 1

L2 − σ 2
χk2

[Lf(ω,k) − iσχk × f(ω,k)] − σ 2
χ

L
(
L2 − σ 2

χk2
)k[k · f(ω,k)], (10)

where the source terms f(ω,k) are given by

f(ω,k) =
{−ik × Jext(ω,k) for B,

ik ρext(ω,k)
1+iσ/ω

− iωJext(ω,k) for E.
(11)

We note that the second term ∼σ 2
χk[k · f(ω,k)] in Eq. (10) is

obviously vanishing for B but is not vanishing for E. By using
the charge-conservation equation ∂ρext/∂t + ∇ · Jext = 0, this
term for E is proportional to ∼[(L2 − σ 2

χk2)(1 + iσ/ω)]−1.
From the poles of F(ω,k), we can obtain the dispersion
relations ω(k) for collective modes of electromagnetic fields.
The poles of the first term (or of B) in Eq. (10) are given
by the roots of L2 − σ 2

χk2 = 0, which are ωs1s2 = −iσ/2 +
s1(k2 + s2kσχ − σ 2/4)1/2 (s1,s2 = ±1). For E, the second
term in Eq. (10) introduces an additional pole ω = −iσ besides
ωs1s2 . These poles give the collective modes of the fields
without external sources, where ω and k are independent
variables.

If we choose the source term as an instantaneous point
source, i.e., f(ω,k) is a constant vector (independent of ω and
k), F(ω,k) in Eq. (10) is just the Green’s function in momentum
space. This Green’s function is retarded for σχ = 0 because all
ω poles are in the lower half plane. However, for nonvanishing
σχ , the pole ω+,− can be in the upper half plane on the
imaginary axis for small momenta. The causality of the field is
then broken due to this pole. Such a noncausality is related
to instability, which is generated by the positive feedback
between chiral magnetic current and magnetic field; see, e.g.,
Ref. [38]. This is similar to the first-order hydrodynamics
which is noncausal and unstable. When taking into account
the time-space behavior of σ and σχ or nonlinear effects, such
a causality problem is expected to be solved.

For external charges with ρext and Jext, the dispersion
relations will be modified due to additional relations between
ω and k, e.g., in the next section we will consider a point charge
moving along the z direction which introduces the constraint
ω = vkz.

III. MAGNETIC FIELDS OF A MOVING CHARGE

A. Integration over polar angle and longitudinal momentum

In this section, we derive an analytical expression for the
magnetic field of a charged particle. Without loss of generality,
we consider the situation that the charged particle (with charge
Q) moves along the third axis direction. More general cases
along arbitrary directions can be obtained by rotation. In heavy
ion collisions, generally the CME conductivity is a small
quantity compared to the electric one. The charge density and
the current density read

ρ(t,x) = Qδ(x)δ(y)δ(z − vt),

J(t,x) = Qvδ(x)δ(y)δ(z − vt)ez. (12)

In momentum space, they are in the form

ρ(ω,k) = 2πQδ(ω − kzv),

J(ω,k) = 2πQvδ(ω − kzv)ez. (13)

Here we denote three directions in flat coordinate space
as (ex,ey,ez). In cylindrical coordinates, we denote three
orthogonal directions as (er ,eφ,ez). Inserting Eq. (13) into
Eqs. (10) and (11), we obtain the magnetic field in momentum
space,⎛
⎝Bx

By

Bz

⎞
⎠(ω,k) = −2πiQv

δ(ω − kzv)

L2 − σ 2
χk2

⎛
⎝ Lky − iσχkxkz

−Lkx − iσχkykz

iσχ

(
k2
x + k2

y

)
⎞
⎠.

(14)

We can transform Eq. (14) back to coordinate space. This
involves integration over ω and k. Since the charged particle
moves along the third direction, it is convenient to work in the
cylindrical coordinate (r,φ,z). So we can write k · x = kT ·
xT + kzz = kT xT cos θ + kzz, where we have assumed that
the angle between xT and kT is θ . We can easily integrate over
kz from Eq. (14), which removes the delta function with kz

being set to ω/v in the integrand,⎛
⎝Br

Bφ

Bz

⎞
⎠(t,x) = −iQ

∫
dωdθdkT

(2π )3 e−iω(t−z/v)+ikT xT cosθ k2
T

D(ω,kT )

×
⎡
⎣L(ω,kT )

⎛
⎝ sinθ

−cosθ
0

⎞
⎠ + iσχ

v

⎛
⎝−ωcosθ

−ωsinθ
vkT

⎞
⎠
⎤
⎦,

(15)

where we have chosen that xT is along ex , so er (ex) is in the
direction of xT and eφ (ey) is in the direction of ez × er . We
have used in Eq. (15)

L(ω,kT ) = − 1

v2γ 2
ω2 + iσω − k2

T ,

D(ω,kT ) = L2(ω,kT ) − σ 2
χ

ω2

v2
− σ 2

χk2
T . (16)

Integration over θ can be done by using cylindri-
cal Bessel functions,

∫ 2π

0 dθeikT xT cos θ = 2πJ0(kT xT ) and∫ 2π

0 dθeikT xT cos θ cos θ = 2πiJ1(kT xT ). Inserting these into
Eq. (15), we can have a simple form:

B(t,x) = −Q

∫
dωdkT

(2π )2

B′(ω,kT )

D(ω,kT )
, (17)
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where B′(ω,kT ) can be defined in cylindrical coordinates as
follows:⎛

⎝B ′
r

B ′
φ

B ′
z

⎞
⎠(ω,kT ) ≡ k2

T e−iω(t−z/v)

⎡
⎣L(ω,kT )

⎛
⎝ 0

J1(kT xT )
0

⎞
⎠

+ σχ

v

⎛
⎝ iωJ1(kT xT )

0
−vkT J0(kT xT )

⎞
⎠
⎤
⎦, (18)

where J0 and J1 are Bessel functions of the first kind. Note
that the integral over ω in Eq. (17) is from −∞ to +∞. We can
easily prove that the right-hand side of Eq. (17) is a real number.
We see in the integrand that ω is always accompanied by an
imaginary unit i. If we replace ω with −ω in the integrand, we
will get exactly its complex conjugate, so the the integral over
ω in Eq. (17) can be replaced by an integral of the real part
over ω from 0 to +∞.

B. Integration over frequency

To carry out the integration over ω, we need to make
analytic continuation for the frequency to the complex plane
and calculate the residues of singularities. The denominator
D(ω,kT ) in Eq. (17) is a quartic polynomial of ω. For a fixed
kT , D(ω,kT ) has four roots in the complex plane, each of
which gives a pole of the integrand. In high-energy heavy ion
collisions, the Ohm conductivity σ is much larger than the
chiral magnetic conductivity σχ , so it is reasonable to treat σχ

as a perturbation.
Now we deal with the poles of the integrand in Eq. (17). To

this end, we need to find the roots of the equation D(ω,kT ) = 0.
For a fixed value of kT , we assume the solutions take the
following form:

ω = ω0 + σχc1 + σ 2
χc2 + · · · , (19)

where the zeroth-order value ω0 denote the roots of the
equation L(ω,kT ) = 0 and are given by

ω± ≡ ivγ 1
2

[
vγ σ ±

√
(vγ σ )2 + 4k2

T

]
. (20)

We see that the zeroth-order solutions are doublets. We insert
Eq. (19) into D(ω,kT ) and expand in powers of σχ . When
implementing ω0 = ω± in D(ω,kT ), the zeroth- and first-order
terms in σχ are vanishing. The coefficient c1 appears in the σ 2

χ

term and can be determined by the condition that it vanishes.
Implementing the values of c1, we can determine c2 from the
vanishing of the σ 3

χ term. Putting them together, we obtain the
roots in the following form:

ωs1s2 ≡ ωs1 + s2σχc(1)
s1

+ σ 2
χc(2)

s1
(s1,s2 = ±1), (21)

where c(1)
s1

and c(2)
s1

are given by

c(1)
s =

vγ 2

√
(vγ σ )2 + 2v2k2

T + s(vγ σ )
√

(vγ σ )2 + 4k2
T

√
2
√

(vγ σ )2 + 4k2
T

,

c(2)
s = −s

ivγ 3k2
T (2 − v2)[

(vγ σ )2 + 4k2
T

]3/2 . (22)

The polynomial D(ω,kT ) can thus be expressed in terms of
these four roots in Eq. (21),

D(ω,kT ) = 1

(vγ )4

∏
s1,s2=±

(ω − ωs1s2 ). (23)

It is easy to verify that ω++ and ω+− are located in the upper
half complex plane and ω−− is located in the lower half one,
while ω−+ is located in the lower half plane when σχ < kT .
For a relativistic particle in heavy ion collisions, the condition
σχ < kT is satisfied in most cases [32]. So we treat ω−+ as a
pole located in the lower half plane.

To the linear order in σχ , the differences between two poles
in the upper and lower half plane are

ω+ = ω++ − ω+− ≈ 2σχc
(1)
+ → 2σχvγ 2 for kT = 0,

ω− = ω−+ − ω−− ≈ 2σχc
(1)
− → 0 for kT = 0. (24)

We see that ω+ (ω−) is nonvanishing (vanishing) at kT = 0.
For the imaginary part in Eq. (20), we see |ω+| � (vγ )2σ , i.e.,
it has nonzero lower bound but |ω−| � 0 has zero bound,
where the equality holds at kT = 0 for both cases. The poles in
the upper (lower) half plane whose imaginary part is ω+ (ω−)
give the advanced (retarded) solution with vt − z < 0 (vt −
z > 0). Such a difference in the imaginary part makes the
advanced solution more suppressed than the retarded one at
the relativistic limit with γ � 1.

Then we can carry out the integration over ω by contour
integration. For the advanced (retarded) region vt < z (vt >
z), we need to close the contour in the upper (lower) half plane
and pick up two poles ω+,± (ω−,±). The residues of D−1(ω,kT )
at poles are given by

Rs1s2 (kT ) ≡ lim
ω→ωs1s2

ω − ωs1s2

D(ω,kT )

≈ (vγ )4

2σχc
(1)
s1 (δω)2

(
s2 − s1

2σχc(1)
s1

δω

)
, (25)

where δω ≡ ω+ − ω− = ivγ [(vγ σ )2 + 4k2
T ]1/2 is the differ-

ence between the two roots in Eq. (20). Thus, the integration
over ω can be done by applying the residue theorem,

B(t,x) = −iθ

(
z

v
− t

)
Q

∫
dkT

2π

∑
s=±

B′(ω+,s ,kT )R+,s(kT )

+ iθ

(
t − z

v

)
Q

∫
dkT

2π

∑
s=±

B′(ω−,s ,kT )R−,s(kT ),

(26)

where the terms of θ ( z
v

− t) and θ (t − z
v
) correspond to ad-

vanced and retarded contributions, respectively. Superficially,
there is an advanced contribution from the poles in the upper
half plane of ω; whether the advanced part contributes to the
final results depends on the values of the integrals over kT .

C. Algebraic expressions for magnetic fields

After carrying out the kT integral, we obtain an algebraic
expression for the tangential component Bφ to leading order
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in σχ ,

Bφ(t,x) = Q

4π

vγ xT

3/2

(
1 + σvγ

2

√

)
eA. (27)

Here we have defined symbols  ≡ γ 2(vt − z)2 + x2
T and

A ≡ (σvγ /2)[γ (vt − z) − √
] (note that A < 0). It is easy

to verify that Bφ in Eq. (27) recovers the formula from
Lienard–Wiechert potentials when σ = 0. We note that such
a form of Bφ was first given in Ref. [33]. The linear-order
contribution in σχ is absent in Bφ . This means that the chiral
magnetic effect characterized by σχ does not play a major role
in the tangential component. However, the major correction is
from electric conductivity.

For the radial and longitudinal components, we now give
following simple algebraic expressions to leading order in σχ :

Br (t,x) = −σχ

Q

8π

vγ 2xT

3/2
[γ (vt − z) + A

√
]eA,

Bz(t,x) = σχ

Q

8π

vγ

3/2

[
γ 2(vt − z)2

(
1 + σvγ

2

√


)

+
(

1 − σvγ

2

√

)]

eA. (28)

We see that they are proportional to σχ . Previous studies have
shown that the electric conducting effect will never generate
Br and Bz, so these nonvanishing components are the result
of the chiral magnetic effect. This can be easily understood:
a moving charge produces magnetic fields in the tangential
direction, which then turns into a tangential current due to the
chiral magnetic effect and finally generates Br and Bz.

One can verify that the higher-order corrections to Bφ , Br ,
and Bz are all of O(σ 2

χ ). At very late time, one can see from
Eqs. (27) and (28) that the fields decay in time as Bφ,r ∼ 1/t2

and Bz ∼ 1/t .
We now make a few comments about advanced and retarded

contributions in Eqs. (27) and (28). We see that θ ( z
v

− t)
and θ (t − z

v
), which characterize the advanced and retarded

contributions, disappear: the reason is that the rest expressions
apart from the θ functions are identical in both contributions,
therefore we can combine them as θ ( z

v
− t) + θ (t − z

v
) = 1.

The presence of the factor eA shows that the advanced contri-
bution is suppressed exponentially relative to the retarded one,
since the σγ 2(vt − z) part in A is negative (positive) for the
advanced (retarded) parts.

The appearance of the advanced contribution can be
understood as follows: Note that the charged particle is
assumed to move from z,t = −∞ to z,t = ∞ and is located
at z = 0 at the moment t = 0. For v < 1, i.e., the speed of the
charged particle is less than the light speed, the presence of
the advanced part can be easily understood since the electric
and magnetic fields propagate faster than the particle. At a
moment t the electric and magnetic fields are present at z > vt
before the particle arrives. These fields are actually generated
at an earlier time than t and arrive at z ahead of the particle.
When v = 1 (not realistic though), the electric and magnetic
fields cannot propagate faster than the particle, so the fields
are vanishing in the advanced region z > t . This can be clearly
seen from Eqs. (27) and (28) in which the exponent A ≡

(σvγ /2)[γ (vt − z) − √
] = −∞ (with γ = +∞ or v = 1)

to make the advanced part vanish. Therefore the appearance
of the advanced part does not contradict causality.

D. Relativistic limit

In this section, we consider the relativistic limit with v ∼ 1
and γ � 1. Equation (16) becomes

L(ω,kT ) ≈ iσω − k2
T ,

D(ω,kT ) ≈ (
iσω − k2

T

)2 − σ 2
χω2 − σ 2

χk2
T . (29)

The D = 0 has two roots for a given kT ,

ω± = − iσ

σ 2 + σ 2
χ

k2
T ± σχ

σ 2 + σ 2
χ

kT

√
k2
T − (

σ 2 + σ 2
χ

)
. (30)

If we focus on the region kT � σ, σχ , these can be simplified
to

ω± = k2
T

iσ ± σχ

. (31)

These two roots are all under the real axis, which means that
the advanced solution is vanishing. So the contour integration
over ω in the lower half plane picks up these two poles at ω±.
We can carry out the integration of the Bessel functions:∫ ∞

0
dkk2 exp

[−iak2
]
J1(kb) = − b

4a2
exp

[
i
b2

4a

]
,

∫ ∞

0
dkk exp

[−iak2
]
J0(kb) = − i

2a
exp

[
i
b2

4a

]
. (32)

Finally, we obtain the analytical expressions for the magnetic
fields:

Br (t,x) = θ (t − z)Q
xT

8π (t − z)2 exp

[
− σx2

T

4(t − z)

]

×
{
σ sin

[
σχx2

T

4(t − z)

]
− σχ cos

[
σχx2

T

4(t − z)

]}
,

Bφ(t,x) = θ (t − z)Q
xT

8π (t − z)2 exp

[
− σx2

T

4(t − z)

]

×
{
σ cos

[
σχx2

T

4(t − z)

]
+ σχ sin

[
σχx2

T

4(t − z)

]}
,

Bz(t,x) = θ (t − z)Q
1

4π (t − z)
exp

[
− σx2

T

4(t − z)

]

×
{
−σ sin

[
σχx2

T

4(t − z)

]
+ σχ cos

[
σχx2

T

4(t − z)

]}
.

(33)

We see that only Bφ is nonvanishing at σχ = 0. For a point
charge moving in the opposite direction, v ∼ −1, the magnetic
fields [up to θ (t + z) ] can be obtained from Eq. (33) by a
rotation along any radial axis on the transverse plane at z =
0. In this case, Bφ and Bz change their signs but Br does
not.
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One can verify that these fields satisfy the Maxwell
equations (1). In the same way, we can also derive analytic

formula for electric fields in the relativistic limit but the
expressions are much more complicated than magnetic fields.

IV. ELECTRIC FIELDS OF A MOVING CHARGE

In this section, we derive the analytical expression for electric fields in a medium with both Ohm conductivity and chiral
magnetic conductivity. As done in Sec. III A, we consider that a charged particle moves in the third direction. Following the
procedure similar to that of Sec. III A, we obtain⎛

⎝Ex

Ey

Ez

⎞
⎠(ω,k) = 2πiQω

δ(ω − kzv)

L2 − σ 2
χk2

⎡
⎣L + σ 2

χ

ω + iσ

⎛
⎝kx

ky

kz

⎞
⎠ + iσχv

⎛
⎝ ky

−kx

0

⎞
⎠ − vL

⎛
⎝0

0
1

⎞
⎠
⎤
⎦. (34)

With Eq. (14) for B and Eq. (34) for E we can verify that the Maxwell equations are really satisfied.
When transforming back to coordinate space, we follow the same procedure as in Sec. III A and get a form for electric fields

similar to Eq. (17) for magnetic fields,

E(t,x) = −Q

v

∫
dωdkT

(2π )2

E′(ω,kT )

D(ω,kT )
. (35)

In the cylindrical coordinate, E′(ω,kT ) is given by⎛
⎝E′

r

E′
φ

E′
z

⎞
⎠(ω,kT ) = ikT ωe−iω(t−z/v)

⎡
⎣L(ω,kT ) + σ 2

χ

iω − σ

⎛
⎝ kT J1(kT xT )

0
−i(ω/v)J0(kT xT )

⎞
⎠ +

⎛
⎝ 0

−σχvkT J1(kT xT )
vL(ω,kT )J0(kT xT )

⎞
⎠
⎤
⎦. (36)

But the difference from the case with magnetic fields is that, besides the four poles in 1/D(ω,kT ), there is an additional pole in
the lower half plane from the first term ∼1/(ω + iσ ), as shown in Eq. (34).

From the Maxwell equations, we can obtain Eφ from Br instantly (Eφ = −vBr ),

Eφ = σχ

Q

8π

v2γ 2xT

3/2
[γ (vt − z) + A

√
]eA. (37)

Generally, the integration over kT in Er,z cannot be worked out analytically due to the term 1/(iω − σ ) in Eq. (36). However, at
the relativistic limit γ � 1, this can be done and we can obtain algebraic expression for Er,z:

Er = Q

4π

{
γ xT

3/2

(
1 + σvγ

2

√

)

− σ

vxT

e−σ (t−z/v)

[
1 + γ (vt − z)√



]}
eA,

Ez = Q

4π

{
−eA 1

3/2

[
γ (vt − z) + A

√
 + σγ

v

]

+ σ 2

v2
e−σ (t−z/v)�(0, − A)

}
, (38)

where �(0,−A) is the incomplete gamma function defined as �(a,z) = ∫ ∞
z

dt ta−1 exp(−t). We have checked in numerical
calculations that the result of Eqs. (37) and (38) is a good approximation to the exact result for the scale of heavy ion collisions.
We have also checked that electric and magnetic fields in Eqs. (37) and (38) and in Eqs. (27) and (28) satisfy the Maxwell
equations (1) with good accuracy for the scale of heavy ion collisions.

In the leading order in σχ , we see in Eqs. (37) and (38) that Eφ is proportional to σχ while Er,z are independent of σχ . The
higher-order contributions to Eφ , Er , and Ez are all of O(σ 2

χ ).

V. NUMERICAL RESULTS FOR ELECTROMAGNETIC
FIELDS IN HEAVY ION COLLISIONS

In this section we give numerical results for B and E
from Eqs. (17) and (35). The source terms are given by the
configuration that two nuclei collide with an impact parameter,
which is a convolution of the point charge and current density
in the form of Eq. (12) with the charge distribution of
nuclei.

Our main goal is to test the validity of our analytic formula
for the electric and magnetic fields in a conducting medium.
To this end we made simplifications by assuming that the
conducting medium is always there and does not evolve with
constant conductivities. In this way we can focus on qualitative

aspects of the medium effects. In the real case, one has to solve
Maxwell equations coupled with hydrodynamic equations
or transport equations self-consistently, where the charged
particles move in the fields while the fields are generated by
the charged particles. The transport coefficients are generated
by particle collisions and evolve with time. Of course this is
far beyond the scope of this paper and will be addressed in our
future projects.

Figure 1 shows B and E as functions of time at x = (0,0,0)
fm produced by a point charge (proton) of 100 GeV located
at (6,0,0) fm and moving along ez. The value of σ is set to
5.8 MeV in accordance with the lattice calculations [27,28].
We note that the time-varying electric conductivity, σ ∼ t−1/3,
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FIG. 1. The electromagnetic fields at x = (0,0,0) fm produced
by a point charge (proton) of 100 GeV which are located at x =
(6,0,0) fm and moving along ez. We choose the following values of
conductivities: σ = 5.8 MeV and σχ = 1.5 MeV.

does not significantly change the lifetime of the fields during
the hydrodynamic evolution [39]. So choosing a constant σ is
a good approximation in this period. The value of σχ is set to
1.5 MeV, which corresponds to μ5 ∼ 100 MeV. We see that
the magnitude of Bφ is larger than Br almost all the time and
that Bz is much smaller than Br and Bφ . The nonvanishing Br

and Bz is due to the chiral magnetic effect or σχ �= 0. We also
see that the magnitude of Er is larger than Eφ (just opposite
to the magnetic field) and Ez. All field components of B and
E are damped as the time goes on.

We show in Fig. 2 the geometry of two colliding nuclei
in peripheral collisions with the impact parameter b. The
global magnetic field of this configuration is along −ey . In
the numerical calculation of B and E, we choose b = 4 fm
for Au + Au collisions at

√
s = 200 GeV. We use UrQMD

to simulate the spacetime and momentum configurations of
charged particles in Au + Au collisions in the case of the
Lienard–Wiechert potential. After the collisions, the spectator
nucleons which do not collide fly by freely while participant
nucleons are stopped to produce new particles. Participant
nucleons will be treated differently in the cases of nonvanishing
medium effects with σ and σχ : the rapidity distribution of
charged particles produced by participant nucleons has to be
modified. In our calculations, we adopt the rapidity distribution
in Ref. [33].

We show in Figs. 3 and 4 the time evolution of B and
E in Au + Au collisions at

√
s = 200 GeV and at two points

(6,0,0) fm [point P in Fig. 2] and (0,6,0) fm [point Q in Fig. 2].
We consider three cases: (a) Lienard–Wiechert potential (σ =

FIG. 2. The geometry of two colliding nuclei in the transverse
plane at z = 0. One nucleus at (b/2,0) in the transverse plane is
moving along ez, while another nucleus at (−b/2,0) is moving along
−ez. The points P and Q in the transverse plane are two typical points
at which B and E will be calculated.

σχ = 0, blue solid lines); (b) with only σ (σ �= 0 and σχ = 0,
red dashed lines); (c) with both σ and σχ (σ �= 0 and σχ �= 0,
magenta dash-dotted lines).

In Fig. 3 we give the time evolution of By and Ey at the
point x = (0,6,0) fm or the point Q. The x and z components
are vanishing, Bx,z ≈ 0 and Ex,z ≈ 0 because OQ is along
the direction of global orbital angular momentum or global
magnetic field. The effect of σχ on By , and Ey is small at late
time.

In Fig. 4, we see that Bx , Bz, and Ey are mainly controlled
by σχ , i.e., they are vanishing at σχ = 0. It is interesting to see
that By has different signs from L-W and from σ �= 0 in very
short time from the collision moment. The reason is that By

with L-W is from spectators moving apart rapidly so it is along
−ey and decays quickly in time, but By with nonvanishing σ
is dominated by the conducting current and lasts longer than
the L-W contribution.

The contour plots for electric and magnetic fields in the
transverse plane of z = 0 are shown in Fig. 5. The time is set
to t = 2 fm/c. We see that the magnitudes of x,z components
of electric fields |Ex,z(t,x,y,z)| are symmetric for flipping the
signs of their arguments x and y. The symmetry is partially
broken for |Ey(t,x,y,z)| and |Bx,y(t,x,y,z)| due to σχ : they
are symmetric for flipping the sign of x but not for y, while
|Bz(t,x,y,z)| preserves the symmetry for flipping the signs of
x and y. The field configuration can be more clearly seen in
Fig. 6, where the transverse components are shown in two-
dimension vectors. We see that ET is more symmetric than
BT in the transverse plane. A magnetic field along −ey can
also be clearly seen near the origin (0,0,0). It is obvious that
|By(t,x,y,z)| �= |By(t,x,−y,z)|.

The asymmetry in Figs. 5 and 6 can be easily understood
from nonvanishing Br resulting from σχ . Suppose one positive
charge is located at (a,0,0) fm and moving along −ez, while
the other one is located at (−a,0,0) fm and moving along ez;
see Fig. 7. We can compare the magnetic fields at two points,
(0,b,0) fm and (0,−b,0) fm. For simplicity we assume the
relativistic limit and use Eq. (33), where we observe that Br

does not change the sign when flipping the velocity direction.
Therefore the direction of radial components of the magnetic
fields from two oppositely moving charges at the upper point
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FIG. 3. Time evolution of By and Ey in Au + Au collisions at
√

s = 200 GeV and x = (0,6,0) fm for three cases: (a) Lienard–Wiechert
potential (σ = σχ = 0); (b) with σ (σ �= 0 and σχ = 0); (c) with σ and σχ (σ �= 0 and σχ �= 0). The x and z components are vanishing, Bx,z ≈ 0
and Ex,z ≈ 0.

(0,b,0) fm is opposite to that at the lower point (0,−b,0).
But azimuthal components have the same directions and
magnitudes at upper and lower point. Thus the total magnetic
fields, or the vector sums of radial and azimuthal components,
have different magnitude at two symmetric points with respect
to the x axis.

VI. SUMMARY

We have derived analytic expressions for electric and
magnetic fields produced by a point charge in a conducting
medium with the electric conductivity σ and the chiral
magnetic conductivity σχ . We used the method of the Green’s
function under the condition σ � σχ . We have given in

FIG. 4. The time evolution of B and E in Au + Au collisions at
√

s = 200 GeV and x = (6,0,0) fm for three cases: (a) Lienard–Wiechert
potential (L-W, σ = σχ = 0); (b) with σ (σ �= 0 and σχ = 0); (c) with σ and σχ (σ �= 0 and σχ �= 0).
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FIG. 5. Contour plots for electric (upper panel) and magnetic (lower panel) fields in the transverse plane of z = 0 at t = 2 fm/c and√
s = 200 GeV in Au + Au collisions. The two colliding nuclei are shown as two red dashed circles.

Eqs. (28), (37), and (38) the algebraic expressions for electric
and magnetic fields as functions of spacetime without any
integrals. Numerical results show that these algebraic results
work very well for values of σχ that are not very small
compared to σ . We have also given the algebraic expressions
for magnetic fields at relativistic limit v = 1.

The spacetime profiles of electromagnetic fields in non-
central Au + Au collisions have been calculated based on the
above analytic formula as well as the exact numerical method.
The UrQMD model was used to simulate the spacetime and
momentum configurations of charged particles. In collisions,

FIG. 6. The two-dimensional vector fields for transverse compo-
nents BT and ET in the transverse plane of z = 0 at t = 2 fm/c and√

s = 200 GeV in Au + Au collisions.

the participant nucleons are treated differently from spectators
by introducing a smooth rapidity distribution to account for
newly produced charged particles in the central rapidity region.
The magnitudes of the axial components of both electric field
and magnetic field have the symmetry of flipping the signs
of their transverse coordinate arguments x and y. But the
magnitudes of transverse components are only symmetric for
flipping the sign of x (in the reaction plane) but not for y. This
is the result of the CME.

Combining the spacetime evolution of electromagnetic
fields with hydrodynamic models or transport models, one can
calculate in the future the correlations of charged particles
as possible observables of the CME and compare with
experimental data.

FIG. 7. Illustration of the asymmetry of the magnetic fields at
nonvanishing σχ . Two positive point charges at (±a,0,0) move in the
±ez directions: (a) azimuthal components, (b) radial components. The
azimuthal components are symmetric at symmetric points (0, ± b,0),
while the radial components have opposite signs.
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