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Quantal nucleon diffusion: Central collisions of symmetric nuclei
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The quantal diffusion mechanism of nucleon exchange is studied in the central collisions of several symmetric
heavy ions in the framework of the stochastic mean-field (SMF) approach. Since, at bombarding energies below the
fusion barrier, dinuclear structure is maintained, it is possible to describe nucleon exchange as a diffusion process
familiar from deep-inelastic collisions. Quantal diffusion coefficients, including memory effects, for proton and
neutron exchanges are extracted microscopically employing the SMF approach. The quantal calculations of
neutron and proton variances are compared with the semiclassical results.
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I. INTRODUCTION

Multinucleon exchange is an important mechanism in
deep-inelastic heavy-ion collisions. Considerable effort has
been spent to describe deep-inelastic collisions in terms of
nucleon transport models [1–4]. More recently, it has been
realized that multinucleon exchange is an important process in
the quasifission reactions of heavy ions [5]. The challenge of
nuclear theory, for these reactions, is to describe the entrance
channel dynamics leading either to fusion or to quasifission,
as well as the dynamical evolution of the dinuclear complex
toward a compound nucleus [6–10]. Dynamical description of
the reaction mechanisms is often done within macroscopic or
microscopic-macroscopic approaches [11–16]. A mean-field
approach such as the time-dependent Hartree-Fock (TDHF)
theory provides a microscopic basis for describing the heavy-
ion reaction mechanism at low bombarding energies [17,18].
For heavy systems, at collision energies near the fusion barrier,
the compound nucleus formation is severely inhibited by the
quasifission mechanism. The colliding ions stick together
for a long time, but separate without going through the
compound nucleus formation. During the long contact times
many nucleons are exchanged between the projectile and
the target nuclei. In multinucleon exchange reactions, it is
possible to study charge equilibration driven by the nuclear
symmetry energy [19], and to produce very neutron-rich heavy
ions [20,21]. A number of models have been developed for the
description of the reaction mechanism in the multinucleon
transfer process in quasifission reactions [7,13,22,23]. Within
the last few years the TDHF approach has been utilized to
study the dynamics of quasifission [24–27]. Particularly, the
study of quasifission is showing great promise to provide
insight based on very favorable comparisons with experimental
data. However, in the mean-field approximation the collective
aspects of collision dynamics are treated semiclassically,
and fluctuations of the macroscopic variables are severely
inhibited. To remedy this problem one must go beyond
TDHF [28–30].
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In the recently developed stochastic mean-field (SMF)
approach, the dynamical description is extended beyond the
mean-field approximation by incorporating the initial fluctua-
tions [30,31]. In a number of studies, it has been demonstrated
that the SMF approach alleviates the drawbacks of the standard
mean-field approach and improves the description of nuclear
collision dynamics by including the fluctuation mechanism
of the collective motion [30,32–37]. Most applications have
been carried out for collisions where a dinuclear structure is
maintained. In this case it is possible to define macroscopic
variables by a geometric projection procedure with the help
of the window dynamics. The SMF approach gives rise to
a Langevin description for the evolution of macroscopic
variables [38,39]. In most analyses of the nucleon diffusion
mechanism, the deduced Langevin description has been ap-
plied by calculating transport coefficients in the semiclassical
approximation and neglecting the memory effects. In a recent
work, we investigated nucleon exchange mechanism for the
central collisions of several symmetric systems in the quantal
framework of the SMF approach under a certain approx-
imation [40]. In this work, we consider central collisions
of symmetric systems below the fusion barrier as well, but
improve the quantal description of the diffusion mechanism
to a large extent. We extract quantal diffusion coefficients for
proton and neutron transfers, including memory effects, from
the SMF approach. In symmetric collisions, the mean values
of the proton and neutron numbers of the outgoing fragments
do not change. However, as result of nucleon exchange,
outgoing fragments exhibit charge and mass distributions
around their initial values. We carry out calculations for the
variance of neutron and proton distributions of the outgoing
fragments in the central collisions of 28O +28O, 40Ca +40Ca,
48Ca +48Ca, and 56Ni +56Ni systems at bombarding energies
slightly below their fusion barriers, and compare the results
with the corresponding semiclassical calculations.

In Sec. II, we present a brief description of the quantal
nucleon diffusion mechanism based on the SMF approach.
In Sec. III, we present a derivation of the quantal expression
for proton and neutron diffusion coefficients. The result of
calculations is reported in Sec. IV, and conclusions are given
in Sec. V.
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II. DIFFUSION MECHANISM

In heavy-ion collisions, when the system maintains a binary
structure, the reaction evolves primarily by nucleon exchange
through the window between the projectile-like and target-like
fragments. It is possible to analyze the nucleon exchange
mechanism by employing a nucleon diffusion concept based
on the SMF approach. In the SMF approach, the standard
mean-field description is extended by incorporating the mean-
field fluctuations in terms of generating an ensemble of events
according to quantal and thermal fluctuations in the initial
state. Instead of following a single event specified by fixed
initial conditions, in the SMF approach an ensemble of events
are propagated specified in terms of the quantal and thermal
fluctuations of the initial state; for details please refer to
[31–36]. In extracting transport coefficients for nucleon ex-
change, we take the proton and neutron numbers of projectile-
like fragments Zλ

1 ,Nλ
1 as independent variables, where λ

indicates the event label. We can define the proton and neutron
numbers of the projectile-like fragments in each event by
integrating over the nucleon density on the projectile side of
the window. In central collisions of symmetric systems, the
window is perpendicular to the collision direction, taken as
the x axis, and the position of the window is fixed at the origin
of the center-of-mass frame at x0 = 0. The proton and neutron
numbers of the projectile-like fragments are defined as(

Zλ
1 (t)

Nλ
1 (t)

)
=

∫
d3r θ (x − x0)

(
ρλ

p(�r,t)
ρλ

n (�r,t)
)

. (1)

Here, ρλ
p(�r,t) and ρλ

n (�r,t) are the local densities of protons and
neutrons, and x0 = 0. According to the SMF approach, the
proton and neutron numbers of the projectile-like fragment
follow a stochastic evolution according to the Langevin
equations,

d

dt

(
Zλ

1 (t)
Nλ

1 (t)

)
=

∫
d3rg(x)

(
J λ

x,p(�r,t)
J λ

x,n(�r,t)
)

=
(

vλ
p(t)

vλ
n(t)

)
. (2)

In this expression, we introduce a smoothing function g(x) for
convenience:

g(x) = 1√
2πκ

exp

(
− x2

2κ2

)
. (3)

In the limit κ → 0, g(x) becomes a delta function g(x) →
δ(x). The right-hand side of Eq. (2) denotes the proton, vλ

p(t),
and neutron, vλ

n(t), drift coefficients for the event λ, which are
determined by the proton and the neutron current densities,
J λ

x,p(�r,t),J λ
x,n(�r,t), through the window for that event. In the

SMF approach, the fluctuating proton and neutron current
densities are defined as

J λ
x,α(�r,t) = �

m

∑
ij∈α

Im
[
	∗

j (�r,t ; λ)∇x	i(�r,t ; λ)ρλ
ji

]
. (4)

Here, and in the rest of the paper, we use the label α = p,n
for the proton and neutron states. The parameter κ of the
Gaussian smoothing function is determined by setting typical
particle-hole matrix elements of proton and neutron currents

through the window


λ
ji(t) =

∫
d3r g(x) Im[	∗

j (�r,t ; λ)∇x	i(�r,t ; λ)] (5)

to their values obtained at κ → 0 as g(x) → δ(x). It turns out
that this limiting value equals the smoothed value by means of
a Gaussian with a dispersion given by value κ = 1.0 fm. This
value is on the order of lattice spacing, which indicates the
numerical calculations implicitly involve such a smoothing
mechanism. Drift coefficients fluctuate from event to event
due to stochastic elements of the initial density matrix ρλ

ji

and also due to the different sets of the wave functions
in different events. As a result, there are two sources for
fluctuations of the nucleon current: (i) fluctuations arising from
the state dependence of the drift coefficients, which may be
approximately represented in terms of fluctuations of proton
and neutron numbers of the dinuclear system, and (ii) the
explicit fluctuations δvλ

p(t) and δvλ
n(t), which arise from the

stochastic part of the proton and neutron currents [29,36].
In the present work, we investigate the nucleon diffusion
mechanism for the central collisions of light heavy ions. Due
to the relatively short collision times, fluctuations driven by
the symmetry energy are small. Therefore, we neglect the
fluctuation mechanism due to the state dependence of the drift
coefficients and include only the explicit fluctuations arising
from the stochastic part of the current densities. Equations
for the mean values of proton, Z1(t) = Zλ

1 (t), and neutron,

N1(t) = Nλ
1 (t), numbers of the projectile-like fragments are

obtained by taking the ensemble averaging of the Langevin
equation (2). Here and below, the bar over a quantity indicates
the average over the generated ensemble. For small amplitude
fluctuations, we obtain the usual mean-field result given by the
TDHF equations,

d

dt

(
Z1(t)
N1(t)

)
=

∫
d3rg(x)

(
Jx,p(�r,t)
Jx,n(�r,t)

)
=

(
vp(t)
vn(t)

)
. (6)

Mean values of the current densities of protons and neutrons
along the collision direction are given by

Jx,α(�r,t) = �

m

∑
h∈α

Im[	∗
h(�r,t)∇x	h(�r,t)], (7)

where the summation h runs over the occupied states origi-
nating both from the projectile and the target nuclei. The drift
coefficients vp(t) and vn(t) denote the net proton and neutron
currents across the window, respectively. In order to calculate
the fluctuations of the proton and neutron numbers of the
fragments we linearize the Langevin equation (2) around the
mean values vp(t) and vn(t), and keep only the stochastic part
of the currents to obtain

d

dt

(
δZλ

1 (t)
δNλ

1 (t)

)
=

(
δvλ

p(t)
δvλ

n(t)

)
. (8)

The variances of neutron and proton distribution of projectile

fragments are defined as σ 2
nn(t) = (Nλ

1 − N1)
2

and σ 2
pp(t) =

(Zλ
1 − Z1)

2
. Multiplying both side of Eq. (8) by Nλ

1 − N1 and
Zλ

1 − Z1, and taking the ensemble averages, we find that the

044624-2



QUANTAL NUCLEON DIFFUSION: CENTRAL COLLISIONS . . . PHYSICAL REVIEW C 94, 044624 (2016)

proton and neutron variances are determined by

d

dt
σ 2

αα(t) = 2Dαα(t), (9)

where Dαα(t) denote the diffusion coefficients of proton and
neutron exchanges.

III. QUANTAL DIFFUSION COEFFICIENTS
FOR NUCLEON EXCHANGE

The quantal expressions of the proton and neutron diffusion
coefficients are determined by the correlation function of the
stochastic part of the drift coefficients according to [38,39]

Dαα(t) =
∫ t

0
dt ′δvλ

α(t)δvλ
α(t ′). (10)

From Eq. (4), the stochastic parts of the drift coefficients are
given by

δvλ
α(t) = �

m

∑
ij∈α

∫
d3rg(x) Im

[
	∗

j (�r,t)∇x	i(�r,t)δρλ
ji

]
. (11)

In determining the stochastic parts of the drift coefficients,
we impose a physical constraint on the summations over
single-particle sates. The transitions among single-particle
states originating from the projectile or target nuclei do not
contribute to the nucleon exchange mechanism. Therefore,
in Eq. (11) we restrict the summation as follows: when the
summation i ∈ T runs over the states originating from target
nucleus, the summation j ∈ P runs over the states originating
from the projectile, and vice versa. The main postulate of
the SMF approach is that the stochastic part of the elements
of the initial density matrix δρλ

ji have uncorrelated Gaussian
distributions with zero mean values and second moments
determined by [31]

δρλ
jiδρ

λ
i ′j ′ = 1

2
δii ′δjj ′[ni(1 − nj ) + nj (1 − ni)], (12)

where nj are the average occupation numbers of the single-
particle states. Using this result, we can calculate the correla-
tion functions of the stochastic part of the drift coefficients. At
zero temperature, since the average occupation factor is 0 or
1, we find that the correlation functions are given by

δvλ
α(t)δvλ

α(t ′) = Re

⎡
⎣ ∑

p∈P,h∈T

Aα
ph(t)A∗α

ph(t ′)

+
∑

p∈T ,h∈P

Aα
ph(t)A∗α

ph(t ′)

⎤
⎦. (13)

We note that, because of orthogonality, the particle states p and
the hole states h must carry the same spin and isospin labels.
The summation runs over the complete set of the particle
and hole states of protons and neutrons. The matrix Aα

ph(t)

is determined from the particle-hole states of the mean-field
Hamiltonian,

Aα
ph(t) = �

2m

∫
d3rg(x)

[
	∗α

p (�r,t)∇x	
α
h(�r,t)

−	α
h(�r,t)∇x	

∗α
p (�r,t)]. (14)

With the help of partial integration we can express this matrix
element as

Aα
ph(t) = �

m

∫
d3r	∗α

p (�r,t)g(x)

[
∇x	

α
h(�r,t)− x

2κ2
	α

h(�r,t)
]
.

(15)

In order to calculate the correlation function Eq. (13) directly,
in addition the occupied hole states, we need to evolve a
complete set of particle states. This is a very difficult task to
accomplish. In a previous work, we carried out an approximate
description of the correlation function by calculating it with
a set of particle-hole states and increasing the volume of
the particle-hole space step by step [40]. We observed that
the convergence of such a calculation was very slow and
required ever increasing computational time to proceed. Even
the results obtained with sufficiently large particle-hole spaces
did not compare favorably with the results of the semiclassical
calculations.

Here, we introduce a different approach to evaluate the
correlation function Eq. (13). In the first term of the right-hand
side of Eq. (13), we add and subtract the hole contributions to
give ∑

p∈P,h∈T

Aα
ph(t)A∗α

ph(t ′) =
∑

a∈P,h∈T

Aα
ah(t)A∗α

ah(t ′)

−
∑

h′∈P,h∈T

Aα
h′h(t)A∗α

h′h(t ′). (16)

Here, the summation a is over the complete set of states
originating from the projectile. In the first term, we cannot
use the closure relation to eliminate the complete set of
single-particle states, because the wave functions are evaluated
at different times. However, we note that the time-dependent
single-particle wave functions during short time intervals
exhibit nearly a diabatic behavior [41]. In another way of
stating, that during short time intervals the nodal structure of
time-dependent wave functions do not change appreciably. The
most dramatic diabatic behavior of the time-dependent wave
functions is apparent in the fission dynamics. The Hartree-Fock
solutions force the system to follow the diabatic path, which
prevents the system from breaking up into fragments. As a
result of these observations, during the short time interval
τ = t − t ′ evolutions, on the order of the correlation time, a
diabatic approximation for the time-dependent wave functions
can be done by shifting the time backward (or forward)
according to

	a(�r,t ′) ≈ 	a(�r − �uτ,t), (17)

where �u denotes a suitable flow velocity of nucleons. Now, we
can employ the closure relation∑

a

	∗
a(�r1,t)	a(�r2 − �uτ,t) = δ(�r1 − �r2 + �uτ ), (18)
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where the summation a runs over the complete set of states
originating from target or projectile, and the closure relation is
valid for each set of the spin-isospin degrees of freedom. The
flow velocity �u( �R,T ) may depend on the mean position �R =
(�r1 + �r2)/2 and the mean time T = (t + t ′)/2. Employing the
closure relation in the first term of the right-hand side of
Eq. (16), we find

∑
a∈P,h∈T

Aα
ah(t)A∗α

ah(t ′) =
∑
h∈T

∫
d3r1d

3r2δ(�r1 − �r2 + �uhτ )

×Wα
h (�r1,t)W

∗α
h (�r2,t

′). (19)

In this manner the complete set of single-particle states is
eliminated and the calculation of the expression is greatly
simplified. In fact, in order to calculate this expression, we
only need the hole states originating from target which are
provided by the TDHF description. Rather than the mean
flow velocity, we take local flow velocity �uh( �R,T ) of each
hole state across the window for each term in the summation.
The local flow velocity of each wave function is specified by
the usual expression of the current density divided by the
particle density as given in Eq. (A6) in the Appendix. The
quantity Wα

h (�r1,t) becomes

Wα
h (�r1,t) = �

m
g(x1)

[
∇1	

α
h(�r1,t) − x1

2κ2
	α

h(�r1,t)
]
, (20)

and W ∗α
h (�r2,t

′) is given by a similar expression. A detailed
analysis of Eq. (19) under a certain approximation is presented
in the Appendix. The result of this analysis as given by Eq. (16)
is ∑

a∈P,h∈T

Aα
ah(t)A∗α

ah(t ′) = G(τ )
∫

d3r g̃(x)J T
X,α(�r,t − τ/2).

(21)

Here J T
x,α(�r,t − τ/2) represents the sum of the magnitude of

the current densities due to wave functions originating from
the target and it is given by Eq. (A17). The quantity G(τ )
is the average value of the memory kernels Gh(τ ) given by
Eq. (A18). It is possible to carry out a similar analysis on the
second term in the right side of Eq. (13), which yields,

∑
a∈T ,h∈P

Aα
ah(t)A∗α

ah(t ′) = G(τ )
∫

d3r g̃(x)JP
x,α(�r,t − τ/2).

(22)

In a similar manner, JP
x,α(�r,t − τ/2) is determined by the sum

of the magnitude of the current densities due to wave functions
originating from projectile, and it is given by an equation
similar to Eq. (A17). In Eqs. (21) and (22) we use lower-case
�r instead of a capital letter. As a result, the quantal expressions
of the proton and neutron diffusion coefficients are given
by

Dαα(t) =
∫ t

0
dτ G(τ )

∫
d3r g̃(x)

[
J T

x,α(�r,t − τ/2)

+ JP
x,α(�r,t − τ/2)

]

−
∫ t

0
dτ Re

[ ∑
h′∈P,h∈T

Aα
h′h(t)A∗α

h′h(t − τ )

+
∑

h′∈T ,h∈P

Aα
h′h(t)A∗α

h′h(t − τ )

]
. (23)

To our knowledge, such a quantal expression for the nucleon
diffusion coefficient in heavy-ion collisions is given here for
the first time from a microscopic basis. There is a close analogy
between the quantal expression and the classical diffusion
coefficient in a random-walk problem [2,38,39]. The first line
in the quantal expression gives the sum of the nucleon currents
from the target-like fragment to the projectile-like fragment,
which is integrated over the memory. This is analogous to the
random walk problem, in which the diffusion coefficient is
given by the sum of the rate for the forward and backward
steps. The second line in the quantal diffusion expression
stands for the Pauli blocking effect in the nucleon transfer
mechanism, which does not have a classical counterpart. It
is important to note that the quantal diffusion coefficients are
entirely determined in terms of the occupied single-particle
wave functions obtained from the TDHF solutions.

In the calculations carried out for the present study, we find
that the average nucleon flow speed across the window between
the colliding nuclei is around ux ≈ 0.05c. Using the expression
τ 0 = κ/|ux | given below Eq. (A18), with a dispersion κ =
1.0 fm, we find the memory time to be around τ0 ≈ 20 fm/c.
In the nuclear one-body dissipation mechanism, it is possible to
estimate the memory time in terms of a typical nuclear radius
and the Fermi speed as τ0 ≈ R/vF . If we take R ≈ 5.0 fm
and vF ≈ 0.2c, we find the same order of magnitude for the
memory time, τ0 ≈ 25 fm/c. Since it is much shorter than a
typical interaction time of collisions at sub-barrier energies,
τ0 
 400 fm/c, we find that the memory effect is not very
effective in the nucleon exchange mechanism. We neglect the
memory effect in the first line of the diffusion coefficient. The
time integration of the memory kernel alone becomes

G̃(t) =
∫ t

0
dτ G(τ ) =

∫ t

0
dτ

1√
4πτ0

e−(τ/2τ0)2

= 1

2
erf (t/2τ0). (24)

Because of the same reason, the memory effect is not very
effective in the Pauli blocking terms as well; however, in the
calculations we keep the memory integrals in these terms.

IV. RESULTS OF CALCULATIONS

Employing the quantal diffusion mechanism described in
the previous section, we investigate the nucleon exchange
mechanism in central collisions of 28O +28O, 40Ca +40Ca,
48Ca +48Ca, and 56Ni +56Ni systems at bombarding energies
slightly below the fusion barriers. Calculations were done in
a three-dimensional Cartesian geometry with no symmetry
assumptions [42] and using the Skyrme SLy4d interaction [43].
The three-dimensional Poisson equation for the Coulomb
potential is solved by using fast Fourier transform techniques
and the Slater approximation is used for the Coulomb
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TABLE I. The fusion barriers and bombarding energies of the
systems. The energies are given in MeV units.

System Fusion barrier Bombarding energy

28O +28O 8.8 8.7
40Ca +40Ca 53.2 52.7
48Ca +48Ca 51.0 50.7
56Ni +56Ni 100.7 100.0

exchange term. The box size used for all the calculations
was chosen to be 60 × 30 × 30 fm3, with a mesh spacing
of 1.0 fm in all directions. These values provide very accurate
results due to the employment of sophisticated discretization
techniques [44].

In Table I, we present the fusion barriers and the bombard-
ing energies at which the calculations are carried out for these
systems. During the reactions, colliding ions stick together
with a visible neck for some time, and separate without
forming a compound nucleus. Because of the symmetry, the
mean values of proton and neutron numbers of the separated
fragments remain equal to their initial values. However, proton
and neutron numbers of the outgoing fragments have distribu-
tions around their mean values with variances determined by
diffusion coefficients as

σ 2
αα(t) = 2

∫ t

0
dt ′Dαα(t ′). (25)

In a number of previous studies, we carried out calculations
by employing the semiclassical approximation of the diffusion
coefficient. We can obtain the semiclassical approximation of
the diffusion coefficient by taking the Wigner transform of
Eq. (23). In this manner, it is possible to express diffusion
coefficients in terms of the phase-space distribution functions
associated with single-particle wave functions originating
from target and projectile nuclei. The semiclassical diffusion
coefficients have a similar form that is familiar from the nu-
cleon exchange transport model [2]. In order to avoid negative
regions of the phase-space functions, an averaging procedure is
carried out as outlined in [34–36]. Such an averaging procedure
is particularly important for an accurate description of the Pauli
blocking effects. In our presentation, we compare the quantal
diffusion coefficients and the quantal variances for neutron
and proton distributions of the outgoing fragments with
their semiclassical approximation corresponding to the same
reactions. The results of calculations of diffusion coefficients
and variances for the systems investigated are presented in
Figs. 1–4. The upper panels (a) of the figures show diffusion
coefficients and the lower panels (b) illustrate variances as a
function of times for the systems investigated. Solid lines and
long-dashed lines indicate the quantal results for neutrons and
protons, respectively. Similarly, short-dashed lines and dotted
lines show the semiclassical results for neutrons and protons,
respectively. The observed differences between the quantal and
the semiclassical calculations originate from three different
sources. The quantal calculations naturally include shell
effects while in the semiclassical calculations the shell effects
are washed out. In the mean-field description of the TDHF
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FIG. 1. Quantal and semiclassical neutron and proton diffusion
coefficients (a) and corresponding variances (b) in central collisions
of 28O +28O at Ec.m. = 8.7 MeV.

approach the collective motion is treated in near classical
approximation, but the single-particle motion is treated in a
fully quantal manner. Therefore, in the quantal calculations,
the barrier penetration of nucleons across the window is
fully accounted for. On the other hand, in the semiclassical
calculations only those nucleons above the barrier are allowed
to cross the window. Particularly at low energies the barrier
penetration in nucleon transfer can make a big difference for
both protons and neutrons. In Table II, we list the asymptotic
values of the proton and neutron variance for the systems
investigated. We refer to the contribution by the part of the

TABLE II. Effect of Pauli blocking on fragment neutron and
proton variances. The bombarding energies of all systems are given in
Table I. Abbreviations Q and SC stand for quantal and semiclassical,
respectively. PB stands for Pauli blocking and  is the difference
between the variances with and without Pauli blocking.

σ 2
nn(t → ∞) σ 2

pp(t → ∞)

with PB no PB nn with PB no PB pp

28O Q 7.66 9.57 −1.91 0.12 0.28 −0.16
SC 8.10 8.72 −0.62 0.18 0.15 0.03

40Ca Q 0.67 1.51 −0.84 0.68 1.52 −0.84
SC 1.03 1.11 −0.08 1.04 1.12 −0.08

48Ca Q 1.77 3.17 −1.4 0.54 1.21 −0.67
SC 1.97 2.35 −0.38 0.70 0.72 −0.02

56Ni Q 3.46 5.44 −1.98 3.23 5.25 −2.02
SC 3.98 4.20 −0.22 3.84 4.09 −0.25
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variances arising from the first line in the diffusion coefficient
in Eq. (23) as the direct term, and we refer to the term due to
the second line as the blocking term.

We observe by comparing the second column for neutrons
and the second column for protons in Table II that the direct
contributions in the variances in the quantal calculations
are larger than the semiclassical results (mainly as a result
of the barrier penetration). The third important difference
between the quantal and the semiclassical results arises from
the Pauli blocking terms in the diffusion coefficient. In the
quantal calculations the Pauli blocking terms are calculated
exactly. On the other hand, the Pauli blocking effects in the
semiclassical limit are treated in an approximate manner. By
comparing the third column for neutrons and the third column
for protons in Table II, we notice large differences in the
magnitude of the Pauli blocking terms between the quantal
and the semiclassical calculations. In fact,for some situations
the averaging procedure to eliminate the negative regions of the
phase-space functions may not work very well; consequently
the sign of the Pauli blocking terms can become positive
rather than negative. Because of these different effects, the
asymptotic values of the proton and neutron variances for the
quantal calculations may be smaller or larger that the result
of the semiclassical calculations. Even the small differences
in the variances can have a large effect on the production
of rare neutron-rich isotopes by the diffusion mechanism.
It is important to note, not only are the quantal diffusion
calculations more accurate, but also the quantal calculations
take less numerical effort than their semiclassical counterparts.

From Figs. 1–4, we observe that in the collisions of neutron-
rich nuclei, 28O +28O and 48Ca +48Ca, the neutron variances
are larger than the proton variances, while in the collisions
of 40Ca +40Ca and 56Ni +56Ni nuclei the variances are nearly
equal. In neutron-rich nuclei, due to the halo structure, the
tail of neutron distribution extends further outward, while the
proton distribution, particularly in the 28O nucleus, behaves
like an inert core. This structure effect leads to more neutron
exchanges during the collision. Hence the outgoing fragments
have broader neutron number distributions. We also notice
from Figs. 2 and 3 that the quantal variances in the system
40Ca +40Ca are nearly 40% smaller than the semiclassical
variances, while in the 48Ca +48Ca system the quantal and
the semiclassical variances are nearly the same. We believe
that this difference appears partly as a result of the more
compact quantal structure of 40Ca than that of the neutron-
rich isotope 48Ca. Also, the Pauli blocking effect is partly
responsible for this behavior: As seen from Table II, the Pauli
blocking in the 40Ca +40Ca system is poorly described in
the semiclassical approximation for both proton and neutron
transfers, leading to larger variances in the semiclassical
calculations. Unfortunately, we are not able to compare the
present calculations with data. However, currently we are
investigating quantal diffusion mechanisms in heavy-ion colli-
sions with finite impact parameters. This study will allow us to
analyze experimental data on multinucleon transfer processes
in deep-inelastic collisions and quasifission reactions. We
should mention that there are a number of other investigations
of the dispersion of fragment mass distribution in nuclear
reactions [45,46] by employing the variational approach of
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FIG. 2. Quantal and semi classical neutron and proton diffusion
coefficients (a) and corresponding variances (b) in central collisions
of 40Ca +40Ca at Ec.m. = 52.7 MeV.
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of 56Ni +56Ni at Ec.m. = 100 MeV.

Balian-Veneroni [47] and number projection techniques [48].
We should note also that, as demonstrated in [31], it is possible
to recover the dispersion formula of Balian-Veneroni, in the
special case of small amplitude fluctuations from the SMF
approach.

V. CONCLUSIONS

In the standard mean-field approach, the collective motion
is treated semiclassically. The SMF approach improves the
standard description by incorporating thermal and quantal
fluctuations in the initial states. In this manner, the SMF
approach provides an approximate description of the quantal
fluctuation dynamics of collective motion at low energies
where collisional dissipation is not very effective. Under
certain circumstances, the fluctuation dynamics can be approx-
imately described in terms of transport coefficients associated
with the collective variables. In this work, we consider central
collisions of symmetric nuclei below the fusion barrier and
study the nucleon exchange mechanism in the SMF approach.
Since binary structure is maintained during the collision, it is
possible to determine macroscopic variables by a geometric
projection procedure. The SMF approachgives rise to a
Langevin description for evolution of macroscopic variables.
In this work, we consider the nucleon exchange mechanism
in central collisions of symmetric nuclei and extract quantal
expression for the diffusion coefficients of proton and neutron
exchanges. We carry out calculations of proton and neutron
variances in central collisions of 28O +28O, 40Ca +40Ca,
48Ca +48Ca, and 56Ni +56Ni systems at bombarding energies

slightly below the fusion barriers, and compare the quantal
results with the corresponding semiclassical calculations.
There are important differences between the quantal and
the semiclassical calculations due to mainly three different
mechanisms. First of all the quantal calculations involve
shell effects, while the shell effects are smoothed out in
the semiclassical calculations. The barrier penetration of
protons and neutrons during the transfer across the window
is properly taken into account in the quantal description. In
the semiclassical calculations, nucleon transfers are totally
blocked below the barrier of the mean-field potential. More
importantly, in the quantal description, the Pauli blocking
effect in the transfer mechanism is taken into account exactly,
while in the semiclassical calculations it is taken into account
in an approximate manner. The quantal calculations provide
a more accurate description of the diffusion coefficients,
but surprisingly they require less numerical effort than the
semiclassical calculations.
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APPENDIX: ANALYSIS OF THE CLOSURE RELATION

We rewrite Eq. (16) as

∑
a∈P,h∈T

Aα
ah(t)A∗α

ah(t ′) =
∑
h∈T

∫
d3R d3rδ(�r + �uhτ )

×Wα
h (�r1,t)W

∗α
h (�r2,t

′), (A1)

where we introduce the coordinate transformation

�R = (�r1 + �r2)/2, �r = �r1 − �r2, (A2)

and its reverse as

�r1 = �R + �r/2, �r2 = �R − �r/2. (A3)

For clarity, we present quantities Wα
h (�r1,t) and W ∗α

h (�r2,t
′) here

again:

Wα
h (�r1,t

′) = �

m
g
(
X + x

2

)[
∇Xiαh

(
�R + �r

2
,t ′

)

− X + x/2

2κ2
	α

h

(
�R + �r

2
,t ′

)]
(A4)

and

W ∗α
h (�r2,t

′) = �

m
g
(
X − x

2

)[
∇X	∗α

h

(
�R − �r

2
,t ′

)

− X − x/2

2κ2
	∗α

h

(
�R − �r

2
,t ′

)]
. (A5)
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The local flow velocity of the wave function 	α
h( �R,T ) is

calculated in the standard manner,

�uα
h( �R,T ) = �

m

1

|	α
h( �R,T )|2 Im

[
	∗α

h ( �R,T ) �∇	α
h( �R,T )

]
, (A6)

with T = (t + t ′)/2 = t − τ/2. Because of the delta function
in the integrand of Eq. (A1), we make the substitution �r =
−�uα

h( �R,T )τ in the wave functions and introduce the backward
diabatic shift to obtain

	α
h( �R + �r/2,t) = 	α

h( �R − �uα
hτ/2,t) ≈ 	α

h( �R,T ) (A7)

and

	α
h( �R − �r/2,t ′) = 	α

h( �R + �uα
hτ/2,t ′) ≈ 	α

h( �R,T ). (A8)

After making this substitution, Eq. (A1) becomes

m2

�2

∑
a∈P,h∈T

Aα
ah(t)A∗α

ah(t ′)

=
∑
h∈T

∫
d3R g̃(X)

Gh(τ )∣∣uh
X( �R,T )

∣∣
[∣∣∇X	α

h( �R,T )
∣∣2

− X

2κ2
∇X

(∣∣	α
h( �R,T )

∣∣2) + X2 − (
uh

Xτ/2
)2

4κ4

∣∣	α
h( �R,T )

∣∣2
]
.

(A9)

In this expression g̃(X) is sharp as Gaussian smoothing
function centered on the window with a dispersion κ = 0.5 fm,

g̃(X) = 1√
πκ

exp[−(X/κ)2], (A10)

and Gh(τ ) indicates the memory kernel,

Gh(τ ) = 1√
4π

1

τh
o

exp
[ − (

τ/2τh
o

)2]
, (A11)

with the memory time τh
0 = κ/|uh

X|. Due to the fact that g̃(X)
is centered at X = 0, the second term in Eq. (A9) is nearly
zero. In the third term, after carrying out an average over the
memory, the factor in the middle becomes

X2 − (
uh

xτ/2
)2 → X2 − (κ/2)2. (A12)

Since the Gaussian g̃(X) is sharply peaked around X = 0 with
a variance (κ/2)2, the third term in Eq. (A9) is expected to

be very small, as well. Neglecting the second and third terms,
Eq. (A9) becomes

m2

�2

∑
a∈P,h∈T

Aα
ah(t)A∗α

ah(t ′)

=
∑
h∈T

∫
d3R g̃(X)

Gh(τ )

|uh
X( �R,T )|

∣∣∇X	α
h( �R,T )

∣∣2
. (A13)

Furthermore, it is useful to express the wave function in terms
of its magnitude and its phase as [49]

	α
h( �R,T ) = ∣∣	α

h( �R,T )
∣∣ exp

[
iQα

h( �R,T )
]
. (A14)

The phase factor Qα
h( �R,T ) behaves as the velocity potential

of the flow velocity of the wave. Using the definition given
by Eq. (A6), we observe that the flow velocity is given by
�uα

h( �R,T ) = (�/m) �∇Qα
h( �R,T ). In the vicinity of the window,

in the perpendicular direction, the phase varies faster than the
magnitude of the wave function. Neglecting the small variation
of the magnitude |	h( �R,T )|, we can express the gradient of
the wave function in Eq. (A13) as

∇X	α
h( �R,T ) ≈ i	α

h( �R,T )∇XQα
h( �R,T ). (A15)

As a result, Eq. (A1) becomes∑
a∈P,h∈T

Aα
ah(t)A∗α

ah(t ′)

= G(τ )
∫

d3R g̃(X)J T
X,α( �R,t − τ/2). (A16)

Here, the quantity J T
X,α( �R,t − τ/2) in the integrand represents

the sum of the magnitude of the current densities due to wave
functions originating from the target:

J T
X,α( �R,t − τ/2)

= �

m

∑
h∈T

|Im[	∗
h( �R,t − τ/2)∇X	h( �R,t − τ/2)]|. (A17)

In obtaining Eq. (A16), we introduced a further approximation
by replacing the individual memory kernels Gh(τ ) by its
average value taken over the hole states,

G(τ ) = 1√
4π

1

τ0
exp[−(τ/2τ0)2], (A18)

with the memory time determined by the average speed uX as
τ0 = κ/|uX|.
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