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Thermal and transport properties in central heavy-ion reactions
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The thermalization process of nuclear matter in the central fireball region of heavy-ion collisions is investigated
by employing an extended Boltzmann-Uehling-Uhlenbeck model, namely, the van der Waals Boltzmann-Uehling-
Uhlenbeck (VdWBUU) model. The temperature (T ) is extracted by the quantum fermion fluctuation approach
and other thermodynamic quantities, such as the density (ρ), entropy density (s), shear viscosity (η), isospin
diffusivity (DI ), and heat conductivity (κ), are also deduced. The liquidlike and gaslike phase signs are discussed
through the behavior of the shear viscosity during the heavy-ion collision process in the VdWBUU model.
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I. INTRODUCTION

Heavy-ion collision provides a unique tool for understand-
ing the properties of nuclear matter at different nuclear tem-
peratures and densities and determining the nuclear equation
of state (EoS) [1,2]. Many observables are required to learn
the properties of the nuclear matter, such as thermodynamic
variables and transport coefficients. A core observable is the
nuclear temperature, which has been extensively investigated
by theories and experiments using different approaches [3]
like the double ratio of the isotopic yield [4,5], kinetic ap-
proaches [6–12], the isospin thermometer [13,14], the double
Fermi sphere [15], the classical fluctuation method [16],
and the quantum fluctuation method [17,18]. Nevertheless,
there is no consensus as to the best thermometer for the
nuclear system [3]. One motivation for determining the
temperature is to investigate the liquid-gas phase transition
in nuclear matter. In previous work [4,19–24], many authors
have made efforts to study the liquid-gas phase transition in
heavy-ion reactions. Classical liquid has the feature that the
shear viscosity decreases with increasing temperature [25–29].
However, the situation with gas is the opposite [29,30]. For a
microsystem, investigation of the shear viscosity of nuclear
matter is an exciting subject.. In addition, the ratio of shear
viscosity to entropy density (η/s) seems to have the bound of
�/(4π ), proposed by Kovtun-Son-Starinets (KSS) in certain
supersymmetric gauge theory [31]. For years, attention was
paid to this value of quark-gluon matter produced at relativistic
energies [32–41]. However, studies on the shear viscosity
of nuclear matter formed at lower energies are very limited
[42–50]. In addition, in contrast with the viscosity coefficient,
other transport coefficients like the heat conductivity and
isospin diffusion are still less mentioned for nuclear matter.
Considering the above situations, the present work focuses
on studies of transport coefficients in intermediate-energy
heavy-ion collisions.
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The paper is organizied as follows: In Sec. II, the simulation
model and calculated formalism are introduced. In Sec. III,
thermal and transport results on central nuclear matter are
extracted, and signals of liquidlike and gaslike phases are
discussed bywith regard to the temperature-dependent shear
viscosity. Finally, the conclusion is in Sec. IV.

II. THE VAN DER WAALS
BOLTZMANN-UEHLING-UHLENBECK (VDWBUU)

MODEL AND FORMALISM

A. van der Waals Boltzmann-Uehling-Uhlenbeck MODEL

The Boltzmann-Uehling-Uhlenbeck (BUU) model is a
popular tool for describing intermediate-energy heavy-ion
collisions [51,52]. As a one-body mean-field theory based on
the Boltzmann equation [53], the BUU equation reads [54]

∂f

∂t
+ υ∇rf − ∇rU∇pf

= 4

(2π )3

∫
d3p2d

3p3d�
dσNN

d�
υ12 × [f3f4(1 − f )(1−f2)

−ff2(1−f3)(1−f4)]δ3(p + p2−p3−p4), (1)

where f = f (r,p,t) is the phase-space distribution function,
which can be solved using the method of Bertsch and Das
Gupta [55]; dσNN

d�
is the in-medium nucleon-nucleon cross

section; and υ12 is the relative velocity for colliding nucleons.
U is the mean-field potential including the isospin-dependent
symmetry energy term,

U (ρ,τz) = a

(
ρ

ρ0

)
+ b

(
ρ

ρ0

)κ

+ 2as

(
ρ

ρ0

)γ

τzI, (2)

where ρ0 = 0.168 fm−3 is the normal nuclear matter density;
I = (ρn − ρp)/ρ, with ρ, ρn, and ρp being the densities
of nucleons, neutrons, and protons, respectively; τz = 1 for
neutrons and τz = −1 for protons; as is the coefficient of the
symmetry energy term; γ describes the density dependence;
and a, b, and κ are parameters for the nuclear equation of state.
In this paper, we use two typical sets of mean-field parameters:
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the hard EoS, with a compressibility K of 380 MeV (a =
−124 MeV, b = 70.5 MeV, κ = 2); and the soft EoS, with a
K of 200 MeV (a = −356 MeV, b = 303 MeV, κ = 7/6). In
the model, the Coulomb interaction is also considered.

There are different versions of the BUU model. The main
differences are the extension of improvement potential and
degree of freedom of isospin, which is explicitly taken into
account [56]. Here we use the version of the VdWBUU model
which was developed by Veselský and Ma [57]. The pressure
(p) changes in the thermodynamical EoS, as a measure of
nonideality of a neutron or a proton gas, can be defined as

p = ρ2 ∂U
∂ρ

, (3)

where U is the thermodynamic potential. When U is evaluated
as the sum of the single-particle contributions of neutrons and
protons, shown in Eq. (2), Eq. (4) can be obtained,

p =
(

f5/2(z)

f3/2(z)

)
ρT +aρ2+bκρ1+κ +2γ asρ0

(
ρ

ρ0

)1+γ

τzI,

(4)

where z = exp(μ/T ) is the fugacity value of nucleons,
with μ being the chemical potential and T the temperature;
and f5/2(z)

f3/2(z) is a factor, a fraction of the Fermi integrals

fn(z) = 1

(n)

∫ ∞
0

xn−1

z−1ex+1dx. Based on the van der Waals EoS,
using the particle density ρ, one can obtain

(p + a′ρ2)(1 − ρb′) =
(

f5/2(z)

f3/2(z)

)
ρT , (5)

where a′ is related to the attractive interaction among particles
and b′ denotes the proper volume of the constituent particle,
which can be related geometrically to its cross section for
interaction with other particles. Comparing Eq. (4) with
Eq. (5), one has

a′ = −a, (6)

b′ =
bκρκ + 2γ as

(
ρ
ρ0

)1+γ
τzI( f5/2(z)

f3/2(z)

)
ρT + bκρ1+κ + 2γ asρ0

(
ρ
ρ0

)1+γ
τzI

. (7)

In a system composed of nucleons, the proper volume can be
used to estimate its cross section within the nucleonic medium,

σ =
(

9π

16

)1/3

b′2/3, (8)

which can be implemented into the collision term of the BUU
equation. In this way, the BUU can be simulated with both
isospin-dependent mean-field and nucleon-nucleon cross sec-
tions, which are correlated with each other. This is the so-called
VdWBUU equation. More details can be found in Ref. [57].

B. Evaluated formalism

In this paper, the thermodynamic and transport properties
of a nuclear system are investigated in the framework of the
VdWBUU approach. Thermodynamic quantities are extracted
with different formalisms.

The concept of nuclear temperature was proposed by
Bethe [58] and Weisskopf [59]. Different thermometer meth-
ods to extract the nuclear temperature are given in Ref. [3].
In Refs. [15] and [46], the hot Thomas-Fermi formalism was
used to calculate the temperature. In this paper, a method based
on quantum fluctuation of fermions is applied to calculate the
temperature, proposed in Ref. [17]. The quadrupole Qxy =
p2

x − p2
y is defined and the variance 〈σ 2

xy〉 is given in Ref. [16],

〈
σ 2

xy

〉 =
∫

d3p
(
p2

x − p2
y

)2
n(p), (9)

where n(p) is the momentum distribution of particles. In
heavy-ion collisions, protons, neutrons, and tritium follow
Fermi statistics, thus the Fermi-Dirac distribution can be used
in Eq. (9) [16]. Using the Fermi-Dirac distribution n(p), we
have

〈
σ 2

xy

〉 =
∫

d3p
(
p2

x − p2
y

)2
n(p)∫

d3pn(p)

= (2mT )2 4

15

∫ ∞
0 y

5
2

1
z−1ey+1dy∫ ∞

0 y
1
2

1
z−1ey+1dy

= (2mT )2FQC(z), (10)

where z = exp(μ/T ), and FQC(z) is the quantum correction
factor. The chemical potential (μ) can be extracted using the
following equation [47]:

ρτ = g

(2π�)3

∫
nτ (p)d3p

= 1

2π2

(
2m

�2

) 3
2
∫ ∞

0

√
y

z−1
τ ey + 1

dy. (11)

Here g (=2) is the spin degeneracy of the nucleon and τ
denotes n for neutron or p for proton. With the variance 〈σ 2

xy〉,
chemical potential, and density calculated using data from the
spatial distribution of test particles, the temperature of the
nuclear system can be extracted. The entropy density can be
obtained by a given density and temperature [60],

s = U − A

T

1

V
=

[
5

2

f5/2(z)

f3/2(z)
− ln z

]
ρ, (12)

where U is the internal energy and A is the Helmholtz free
energy [61].

In order to learn more about the properties of hot nuclei
during heavy-ion collisions or the nuclear EoS, the transport
coefficients are evaluated, including the shear viscosity (η),
isospin diffusivity (DI ), and heat conductivity (κ). In hydro-
dynamics, internal friction occurs when relative motions exist
in a fluid (liquid or gas), and this is called viscosity. The shear
viscosity depends on many factors of the fluid species: the
velocity gradient, temperature, and density. The diffusivity is
a measure of the rate at which particles or heat or fluids can
spread. Here, the isospin diffusivity represents the capability
of isospin diffusion in nuclear matter. The heat conductivity
represents the ability of a material to conduct heat. These
three transport coefficients are important for the nucleonic
transport process of nuclear matter and were discussed in

044622-2



THERMAL AND TRANSPORT PROPERTIES IN CENTRAL . . . PHYSICAL REVIEW C 94, 044622 (2016)

Ref. [62] for a two-component nuclear Fermi system. By
solving the Boltzmann-equation set such as used in reaction
simulations [55], the numerical results for the coefficients have
been obtained,

η(ρ,T ,I ) = (1 + 0.10I 2)

[
856

T 1.10

(
ρ

ρ0

)1.81

− 240.9

T 0.95

(
ρ

ρ0

)2.12

+ 2.154T 0.75

]
, (13)

DI (ρ,T ,I ) = (1 − 0.19I 2)

[
11.34

T 2.38

(
ρ

ρ0

)1.54

+1.746

T

(
ρ

ρ0

)0.56

+ 0.00585T 0.913

(
ρ

ρ0

)]
, (14)

κ(ρ,T ,I ) = (1 + 0.10I 2)

[
0.235

T 0.755

(
ρ

ρ0

)0.951

− 0.0582

(
ρ

ρ0

)0.0816

+ 0.0238T 0.5627

(
ρ

ρ0

)0.0171]
, (15)

where T is the temperature in MeV, η is the shear viscosity
in MeV/(fm2 c), DI is the isospin diffusivity in fm · c, the
heat conductivity κ is in c/fm2; and I = ρn−ρp

ρ
is the isospin

asymmetry. More details can be found in Ref. [62]. The
numerical results for these coefficients are calculated by using
the experimentally measured nucleon-nucleon cross section
σfree = 40 mb. More accurately, we have to modify these
transport coefficients by the in-medium N-N cross sections
(σ ) that we adopted in Ref. [46], which can be extracted with
Eqs. (7) and (8):

η(ρ,T ,I,σ ) = η(ρ,T ,I )

σ/σfree
, (16)

DI (ρ,T ,I,σ ) = DI (ρ,T ,I )

σ/σfree
, (17)

κ(ρ,T ,I,σ ) = κ(ρ,T ,I )

σ/σfree
. (18)

III. RESULTS AND DISCUSSION

Central collisions (b = 0 fm) of 197Au + 197Au are simu-
lated at beam energies of 100–300 MeV/nucleon, employing
the VdWBUU model with the hard EoS and soft EoS. The
central region is defined as a [−5,5]3 fm3 or [−3,3]3 fm3 box
with its center located in the c.m. We denote that t = 0 fm/c
is at the point where two nuclei touch initially.

A. Properties of thermodynamic quantities

Figure 1 shows the time evolution of the average density
in the central region, [−5,5]3 fm3 or [−3,3]3 fm3, at incident
energies of 100–300 MeV/nucleon with the hard or soft EoS.
One sees that the average density is 1.2–1.6 times the normal
nuclear matter density, with larger maxima at earlier times with
higher beam energies. At the expansion stage, higher beam
energies lead rapidly to lower densities. At the same incident
energy, comparing Fig. 1(a) with Fig. 1(c), the densities of
the hard EoS and soft EoS are similar; however, comparing
Fig. 1(a) with Fig. 1(b), or Fig. 1(c) with Fig. 1(d), the density
is higher in the smaller region at the maximum point. The
reason is that the density of the zone far from the center is
lower than that of the close one.

The time evolution of the average temperature is shown in
Fig. 2. At the initial stage the average temperature is nearly
0 because the two nuclei are cold with Fermi momenta at
the beginning of the collision. As the two nuclei come close
to each other, with increasing nucleon-nucleon collisions, the
temperature increases and reaches a maximum of 13–48 MeV,
and it is higher at higher incident energies. At the expansion
stage, the temperature decreases and falls more rapidly at
higher incident energies. Comparing Fig. 2(a) with Fig. 2(c),
the maximum temperature with the hard EoS is lower than that
with the soft EoS. This indicates that the collision with the
soft EoS is compressed more easily than that with the hard one
and more beam motions are transformed into thermal motions.
Along the time scale of the collision, the maximumtemperature
points at different beam energies in Fig. 2(a) or Fig. 2(c)
are delayed in comparison with the maximum density points
in Fig. 1(a) or Fig. 1(c), indicating that nucleon-nucleon
collisions are still frequent when the maximum compression is
reached. The features in Fig. 2(c) are similar to those reported
by Zhou et al. [46], who used the Thomas-Fermi method to

FIG. 1. Time evolution of the average density at different incident energies for (a) the hard EoS in the region of X[−5,5], Y [−5,5],
Z[−5,5]; (b) the hard EoS in the region of X[−3,3], Y [−3,3], Z[−3,3]; (c) the soft EoS in the region of X[−5,5], Y [−5,5], Z[−5,5]; and (d)
the soft EoS in the region of X[−3,3], Y [−3,3], Z[−3,3].
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FIG. 2. Time evolution of the average temperature at different incident energies. The conditions are the same as in Fig. 1.

obtain the temperature with the isospin-dependent quantum
molecular dynamics (IQMD) model for a central spherical
region with a radius of 5 fm. Of course, the quantitative value
of the temperature depends on the model and thermometer.
Meanwhile, in Figs. 2(b) and 2(d) in the [−3,3]3 fm3 region,
the average temperature remains saturated near the peak point.
The size effect is obvious. A smaller central region has
fewer nucleons, thus more interaction information may not be
included. So if one wants to extract the information from the
central region, a suitable size should be considered. To simplify
the structure of the present paper, we present the following
calculation results just with the soft EoS. Of course, the case
with the hard EoS maintains similar qualitative behaviors.

Time evolutions of the average entropy density and entropy
per nucleon are shown in Fig. 3. Since the system is an open
system with nonfixed nucleon numbers, the information on the
entropy per nucleon will be interesting. During the compres-
sion process between two nuclei, the nucleon number in the
region and state numbers of the system will increase natrally,
hence the increase in average entropy density. Conversely,
it decreases at the expansion stage. The time evolution of
the average entropy density is similar to the case for the
average temperature, i.e., a higher beam energy leads to a
higher entropy density at the maximum value of 0.1–0.7 fm−3.
This shows that the higher the beam energy and the higher
the internal energy in the central region, the greater the state
numbers and entropy will be. However, at different incident
energies, the average entropy densities reach the maximum
earlier than the average temperatures (discussed later). At the
expansion stage, the average entropy density decreases. And
the entropy per nucleon more or less shows saturation at a
higher beam energy, but it shows a slight increase with time
at a lower one, indicating the potential of the open system to
convert slowly to internal energy after maximum compression
for the lower incident energy. In other words, the central fireball
tends to equilibration more rapidly at a higher incident energy.

The shear viscosity, isospin diffusivity, and heat con-
ductivity are shown in Fig. 4. The shear viscosity, isospin
diffusivity, and heat conductivity decrease drastically in the
initial compression stage (0–20 fm/c). The shear viscosity and
isospin diffusivity tend to an asymptotic value after 20 fm/c,
respectively, while the heat conductivity shows a peak around
20 fm/c, indicating that the compressed nuclear matter has

a greater heat conduction capability at the stage of higher
temperature and higher density.

In Fig. 5, the ratio of shear viscosity to entropy density
also decreases drastically in the initial compression stage
(0–20 fm/c) and tends to an asymptotic value after 20 fm/c. It
is noted that the lower value of the ratio of shear viscosity
to entropy density is found at a higher incident energy
during early time evolution. Overall, η/s values approximate
asymptotic values above the KSS bound of ∼ �

4π
at the

expansion stage.

FIG. 3. Time evolution of the average entropy density (a) and
entropy per nucleon (b) at different incident energies for the soft EoS
in the region of X[−5,5], Y [−5,5], and Z[−5,5].

044622-4



THERMAL AND TRANSPORT PROPERTIES IN CENTRAL . . . PHYSICAL REVIEW C 94, 044622 (2016)

FIG. 4. Time evolution of the shear viscosity (a), isospin diffu-
sivity (b), and heat conductivity (c) at different incident energies for
the soft EoS in the region of X[−5,5], Y [−5,5], and Z[−5,5].

FIG. 5. Time evolution of the ratio of shear viscosity to entropy
density at different incident energies for the soft EoS in the region of
X[−5,5], Y [−5,5], and Z[−5,5].

FIG. 6. Time evolution of the isospin asymmetry at different
incident energies (a) and various reduced densities (ρn, ρp , and ρ

represent the neutron, proton, and total densities, respectively; x is
n or p) at 100 MeV/nucleon (b) for the soft EoS in the region of
X[−5,5], Y [−5,5], and Z[−5,5].

In Fig. 6(a), the isospin asymmetry (I ) changes little before
20 fm/c but drops to a minimum at ∼60 fm/c and then
increases again. At lower energies, the valley of I is a relative
shallow. This valley is associated with the density evolutions of
neutrons and protons. For instance, the evolutions of reduced
density of neutrons and protons over the total density at an
incident energy of 100 MeV/nucleon are shown in Fig. 6(b).
Obviously, the reduced density of neutrons generally decreases
before ∼60 fm/c and vice versa for the reduced density of
protons. Therefore, the isospin, defined as (ρn − ρp)/ρ, shows
a dip around 60 fm/c in Fig. 6(a). This dip point induces an
inflection point of isospin diffusivity versus isospin asymmetry
as shown in Fig. 7.

In the above figures, peaks or valleys of some quantities ob-
served during their time evolution are more or less related to the
transformation from the compression stage to the expansion
stage in heavy-ion collisions. To compare the corresponding
times at which the peaks or valleys for various observables,
such as density, temperature, entropy density, and isospin
asymmetry, reach a maximum or minimum, we can compare
different time orders of these quantities. Figure 8 shows the
corresponding times at the peak or valley of these quantities as
a function of the beam energy. One can roughly see that every
above quantity decreases with increasing incident energy.
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FIG. 7. Isospin diffusivity as a function of the isospin asymmetry
at t = 15–100 fm/c at different incident energies for the soft
EoS in the region of X[−5,5], Y [−5,5], and Z[−5,5]. Solid and
dotted arrows indicate the early and later processes of expansion,
respectively.

Note that the time point at which the temperature reaches
its maximum at different incident energies is later than that
at which the maximum density is reached. This indicates that
even when the maximum compressed state is reached, frequent
nucleon-nucleon collisions are still occurring and therefore
the system is still heating. The time points at which the
entropy density reaches its maximum are between those of the
maximum density and maximum temperature. This indicates
that when the system reaches the maximum compression stage
in the central region, the internal energy increases with the NN
collision leading to increasing numbers of states and therefore
the entropy density is still increasing at that time. In contrast,
the isospin asymmetry reaches its minimum much later in

FIG. 8. Time points of the maximum average density (filled
squares), maximum average entropy density (open triangles), max-
imum average temperature (filled circles), and minimum isospin
asymmetry (open diamonds) as a function of the beam energy for
the soft EoS in the region of X[−5,5], Y [−5,5], and Z[−5,5].

FIG. 9. Shear viscosity as a function of isospin diffusivity at
different incident energies for the soft EoS in the region of X[−5,5],
Y [−5,5], Z[−5,5].

comparison with other observables since it is mostly due to
the isospin transport process and not directly related to the
compression-expansion process.

As shown in Fig. 9, the isospin diffusivity shows a
monotonic dependence on the shear viscosity, indicating that
the viscous nuclear matter favors isospin diffusion. In Fig. 10,
the heat conductivity increases as the temperature at the
compression stage, which is similar to classical behavior [62].
Finally, heat conductivity drops at the expansion stage. During
the compression stage, more frequent NN collisions lead to
a hotter and higher heat conductivity of the system. At the
expansion stage, however, the system cools down with a lower
heat conductivity.

FIG. 10. Heat conductivity as a function of temperature at
different incident energies for the soft EoS in the region of X[−5,5],
Y [−5,5], and Z[−5,5]. Filled and dotted arrows indicate the
compression process and expansion process, respectively.
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FIG. 11. Shear viscosity as a function of temperature at different
incident energies for the soft EoS in the region of X[−5,5], Y [−5,5],
and Z[−5,5]. Filled and dotted arrows indicate the compression
process and expansion process, respectively.

B. The signature of liquidlike and gaslike phases

The relationship between shear viscosity and temperature
differs in liquid and gas of common substances. In the present
study on a matter system, we find similar behaviors of
liquidlike and gaslike phases in the quantities we extracted.
It should be mentioned that, in Fig. 11, the branch above
the inflection point at different beam energies represents the
compression process, and the bottom branch the expansion
process. One finds that in the compression process, the shear
viscosity decreases with increasing temperature, while in
the expansion process the behavior is inverse. We also note
that in classical liquid, as the temperature gets higher, a
decrease in shear viscosity [26] also occurs. On the contrary,
the shear viscosity of gas [30] and meson gas [63] drops
with a decrease in temperature as the collision probability
becomes lower. More information can be obtained from
Refs. [25,27,28,64,65]. In this context, it is analogous that
nuclear matter is in the liquidlike phase during the compression
process, while it is in the gaslike phase during the later
expansion process. Around the inflection point the system is
in a kind of mixedlike phase.

C. η/s versus temperature or beam energy

As shown in Fig. 5, η/s reaches an asymptotic value which
is above the KSS bound at the later stage when the system is
fully expanded. Figure 12 shows the ratio of shear viscosity
to entropy density as a function of the temperature. It is noted
that when the system reaches the maximum temperature, there
exists a turning point of η/s. This behavior is qualitatively
consistent with the feature of η as a function of the temperature
(Fig. 11). Furthermore, if we observe the behavior of η/s
values at the point of maximum temperature (dashed red line
in the figure), it shows that these ratios show a fast drop at a
higher beam energy and reach a plateau about six times the
KSS bound as other models show [45].

FIG. 12. Ratio of the shear viscosity to the entropy density, in
units of �

4π
, as a function of the temperature at different incident

energies for the soft EoS in the region of X[−5,5], Y [−5,5], and
Z[−5,5]. The dashed red line shows the trend of the η/s value at the
turning point with the temperature.

IV. CONCLUSIONS

In summary, thermal and transport quantities for nuclear
matter formed in central Au + Au collisions at a few
hundred MeV/nucleon are obtained from the VdWBUU
model. The properties of the central region of the nuclear
reaction are discussed with some quantities for different
fireball sizes and nuclear equations of state. Time evolutions of
the density, temperature, entropy density, isospin diffusivity,
shear viscosity, heat conductivity, etc., are presented, which
provide information on the nuclear matter of the collision
system. The peak or valley behavior in the time evolution
of the density, temperature, entropy, and isospin is more or
less related to the compression and expansion process in
heavy-ion collisions, with different time delays for the above
different observables after the most compressed state. The
time order of the quantities has been reported. The sign of
liquidlike and gaslike phases is given by relations of the
shear viscosity as a function of the temperature. The values of
η/s at the maximum temperature for different beam energies
demonstrate decreasing behavior and tends to an asymptotic
value of ∼6 �

4π
.
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