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The microscopic effective reaction theory is applied to deuteron-induced reactions. A reaction model space
characterized by a p + n + A three-body model is adopted, where A is the target nucleus, and the nucleon-target
potential is described by a microscopic folding model based on an effective nucleon-nucleon interaction in nuclear
medium and a one-body nuclear density of A. The three-body scattering wave function in the model space is
obtained with the continuum-discretized coupled-channels (CDCC) method, and the eikonal reaction theory
(ERT), an extension of CDCC, is applied to the calculation of neutron removal cross sections. Elastic scattering
cross sections of deuteron on 58Ni and 208Pb target nuclei at several energies are compared with experimental
data. The total reaction cross sections and the neutron removal cross sections at 56 MeV on 14 target nuclei are
calculated and compared with experimental values.
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I. INTRODUCTION

Projectile-breakup reactions have been utilized for studying
the structures of nuclei, in the field of physics of unstable
nuclei in particular. One of the most successful models for
describing breakup processes of a nucleus into a few frag-
ments is the continuum-discretized coupled-channels (CDCC)
method [1–3]. The theoretical foundation of CDCC through
its relation to the distorted-wave Faddeev theory was given
in Refs. [4,5]. Recently, progress has been made to construct
scattering potentials employed in the CDCC calculation from
a microscopic point of view. This attempt can be interpreted
as an application of the microscopic reaction theory [3],
which is based on the multiple scattering theory for nucleus-
nucleus scattering [6], to reaction processes involving a weakly
bound projectile, by setting an appropriate model space. Very
recently, a microscopic description of the projectile wave
function also has been reported [7]. Such a microscopic
description of breakup processes is crucial for quantitative
determination of structure of unstable nuclei from reaction
observables.

In this work, we discuss the breakup of a deuteron, the
simplest composite nucleus, to examine the microscopic effec-
tive reaction theory, i.e., CDCC with an appropriate reaction
model space and the microscopic nucleon-nucleus (N -A)
optical potentials. Nowadays, N -A scattering observables
can be described microscopically with no free adjustable
parameter [8–10]. It is thus expected that the microscopic
CDCC calculation can describe deuteron elastic scattering
data that have successfully been reproduced by CDCC with
phenomenological N -A optical potentials [1]. It should be
pointed out that the model in the present study differs
from a fully microscopic calculation such as those of the
ab initio method [11]. The limitation of the three-body model
description compared with a many-body reaction theory can
be seen in, e.g., Ref. [12]. Nevertheless, the deuteron elastic
scattering and its elastic breakup processes have successfully
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been described by CDCC, a three-body reaction model,
with phenomenological optical potentials. The purpose of the
present study is to implement microscopic optical potentials
in the usual CDCC calculation. This can be regarded as an
effective microscopic reaction model based on a three-body
model.

It should be noted that the deuteron breakup states in the
intermediate channel, i.e., the virtual breakup of the deuteron,
were shown to be crucial for describing the deuteron elastic
scattering [1,2]. Convergence of the CDCC results with respect
to the p-n relative orbital angular momentum � (including
odd partial waves) is discussed as well as the Coulomb
breakup contribution. Furthermore, we apply the eikonal
reaction theory (ERT) [13] with microscopic optical potentials,
microscopic ERT, to the calculation of the total reaction cross
sections σR and the neutron removal cross sections σ−n on
various target nuclei measured at 28 MeV/nucleon [14]. ERT
is an extension of CDCC for inclusive breakup observables and
can be interpreted as also the extension of the Glauber model
to explicitly take into account the p-A Coulomb interaction,
hence the Coulomb breakup effects on those observables.

In Sec. II, we describe the method of microscopic CDCC,
followed by the methodology used to extract inclusive neutron
removal cross section using ERT. The numerical results of
microscopic CDCC and ERT are presented in Sec. III. In
Sec. IV we give a summary.

II. FRAMEWORK

As deuteron is well known to be a weakly bound nucleus
consisting of proton (p) and neutron (p), deuteron-induced
nuclear reactions are, as a result of an appropriate choice of the
reaction model space, often treated as a p + n + A three-body
system. The total wave function � satisfies the Schrödinger
equation

(H − E)�(R,r) = 0, (1)

where the coordinates R and r are defined as shown in Fig. 1
and the total Hamiltonian H is the sum of the relative kinetic
operators and the potentials in the center-of-mass frame. In the
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FIG. 1. Schematics of deuteron-induced nuclear reaction system.

three-body system, the total potential is written as Vpn(r) +
Up(Rp) + VC(Rp) + Un(Rn); Vpn is the interaction between
p and n, Up (Un) is the nuclear potential between p (n) and A,
and VC is the Coulomb potential between p and A. A general
overview of the microscopic construction of potentials Up and
Un is given in Ref. [3]. According to that, in the present work,
we adopt the microscopic nucleon-target potentials obtained
by folding the Melbourne g-matrix interaction [8] with a target
density in the same manner as in Ref. [15]. Target densities
used in the folding procedure are obtained by the Hartree-
Fock calculation with the Gogny D1S force as explained in
Ref. [16]. The validity of the microscopic optical potentials
for proton elastic scattering is shown in Refs. [15] and [16].
Then Eq. (1) with the microscopic optical potentials is solved
by CDCC [1–3].

In our microscopic optical potential the nonlocality coming
from knock-on exchange process is taken into account properly
with the localization method by Brieva and Rook [16] but the
potential is still energy dependent. We adopt the choice of
Ed/2 as the energy of optical potentials in the present study.
This prescription is valid for elastic scattering as discussed
in Refs. [17,18]. For deuteron stripping reaction (d,p),
Timofeyuk and Johnson suggested that a different choice of
the energy of optical potentials is needed [18], as mentioned
above. It is nontrivial whether the energy dependence of
optical potential is crucial or not for other reaction observables.
However, we can expect that the energy dependence coming
from a nonlocal effect is not essential for elastic breakup and
neutron removal reactions since such reactions are determined
by the asymptotic behavior of scattering wave functions.

We denote the neutron removal cross section from the
deuteron as σ−n. It can be written as the sum

σ−n = σEB + σn:STR, (2)

where σEB is the elastic breakup cross section and σn:STR is
the neutron stripping cross section; in the elastic breakup A
stays in the ground state, whereas in the stripping A is excited
to unspecified states. σEB is calculated with CDCC and σn:STR

with ERT [13,19]. The essence of ERT is that the scattering
matrix is divided into the proton and neutron parts, Sp and
Sn, respectively, by using the adiabatic approximation to only
Un [19]. With Sp and Sn thus separated, we can define σn:STR

as

σn:STR = 2π

∫
〈0| |Sp|2(1 − |Sn|2)|0〉b db, (3)

where b is the impact parameter and |0〉 is the ground state of
deuteron. Equation (3) has the simple interpretation regarding

projectile deuteron; it is the joint probability of the proton
being scattered off (survival probability) and the neutron
being absorbed out of the model space (absorption probability)
simultaneously. From Eq. (3), one sees [19] that

σn:STR = σR − σEB − [σR(p) − σEB(p)], (4)

where σR(p) and σEB(p) are the total reaction and elastic
breakup cross sections, respectively, obtained by solving
Eq. (1) without Un. Thus Eq. (2) becomes

σ−n = σR − σR(p) + σEB(p). (5)

Equation (5) gives the prescription formula to obtain the
inclusive neutron removal cross section from deuteron, whose
components can be obtained with CDCC.

III. RESULTS AND DISCUSSION

In the description of the p-n system, we adopt a one-range
Gaussian interaction [20] as Vpn. The intrinsic spin S of the
deuteron is assumed to be zero for simplicity; the effect of such
nonzero intrinsic spin will be discussed later for high-energy
case. The p-n breakup states with s, p, d, f , g, h, and i
partial waves are included. Each of them is discretized by
the momentum-bin method with an equal increment �k =
0.1 fm−1 to a maximum of kmax = 1.0 fm−1. The maximum
values of r and R are 100 and 250 fm, respectively.

A. Deuteron elastic scattering

Figure 2 shows the elastic differential cross sections of
deuteron scattering on 58Ni at 80 MeV. Figure 3 shows the
elastic scattering result of 56 MeV deuteron on 12C and 58Ni,
while Fig. 4 shows the elastic scattering of 52 MeV deuteron
on 16O. The microscopic calculations show good agreement
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FIG. 2. Deuteron elastic scattering differential cross section
normalized to the Rutherford cross section at 80 MeV on 58Ni. The
solid line denotes the result of the microscopic CDCC calculation.
The experimental data are taken from Ref. [21].
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FIG. 3. Deuteron elastic scattering differential cross section
normalized to the Rutherford cross section at 56 MeV on 12C and
58Ni. The solid lines denote the results of the microscopic CDCC
calculation. The experimental data are taken from Ref. [23].

with the experimental data [21] up to the large angles without
any free parameters. At these energies, the microscopic
CDCC calculation shows better agreement than the previous
calculation [22] with the phenomenological potential, even
though the tensor coupling between the deuteron s and d states
is not included here.

However, the microscopic calculation (solid line) at
21.6 MeV cannot reproduce the data at backward angles
(Fig. 5). This may indicate that the microscopic optical

10-2

10-1

100

101

102

0  30  60  90  120

σ/
σ R

θd
c.m. (deg)

Hinterberger et al.
CDCC

FIG. 4. Deuteron elastic scattering differential cross section
normalized to the Rutherford cross section at 52 MeV on 16O. The
solid line denotes the result of the microscopic CDCC calculation.
The experimental data are taken from Ref. [24].
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FIG. 5. Same as Fig. 2 but at 21.6 MeV. The dashed line
corresponds to the result of CDCC without the Coulomb breakup.
The experimental data are taken from Ref. [30].

potentials are invalid at such low energies (around 10 MeV for
nucleon energy). This will be reasonable because in the folding
model calculation adopted, only the knock-on exchange is
taken into account. In other words, the total wave function
of the nucleon-nucleus system is not fully antisymmetrized.
As discussed in Ref. [25], at higher energies this treatment
is justified. At low energies, however, other complicated
exchange processes will become important and the present
folding model procedure will lose ustification.
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FIG. 6. Same as Fig. 2 but at 200 and 400 MeV. The dashed line
is the result of microscopic CDCC with the spin-orbit interaction.
The experimental data are taken from Ref. [31].
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FIG. 7. Same as Fig. 5 but at 56 MeV on 208Pb. The experimental
data are taken from Ref. [23].

The advantage of the present calculation compared to
previous studies is twofold. First, we include not only even
but also odd partial � waves of the p-n breakup states which
are previously ignored in Refs. [22,26,27]. The odd partial
waves contribute mainly to the Coulomb breakup processes
that are expected to be important at lower incident energies.
Second, we clarify the role of � > 2 to the elastic and breakup
cross section which is not taken into account by previous
studies such as those in Refs. [28,29]. In particular, we can

confirm that �max = 2 is sufficiently convergent for the elastic
scattering cross section but not for breakup observables, which
will be discussed in more detail in Sec. III B.

We show by the dashed line in Fig. 5 the result of
microscopic CDCC without Coulomb breakup. One sees that
the difference is very small except at backward angles. This
is also confirmed in the case on 208Pb at 56 MeV, as shown
in Fig. 7 below. Therefore, we can conclude that the Coulomb
breakup effects are negligibly small for deuteron elastic
scattering, which validates the previous studies [22,26–29].
It should be noted, however, that the Coulomb breakup effects
are significant for breakup cross sections as shown in Sec. III B.

Figure 6 shows the elastic scattering cross sections of
deuteron at higher energies, 200 and 400 MeV, on 58Ni.
The microscopic CDCC calculation (solid line) can reproduce
the data fairly well at 200 MeV but it undershoots the data
at 400 MeV. As mentioned above, the spin-orbit part of
the microscopic optical potential has been ignored in the
present study. However, it is well known that, at hundreds
of MeV/nucleon, the effect of the spin-orbit potential becomes
more apparent. Therefore, at 400 MeV, we perform CDCC
calculation including the spin-orbit potential; we assume
S = 1 and include the s-, p-, and d-wave breakup states. The
result is shown by the dashed line in Fig. 6. One can find
that the effect of the spin-orbit potential gives good agreement
between the calculated and measured cross sections, at forward
angles in particular. We have confirmed that the effect of the
spin-orbit interaction is small in other reactions discussed in
the present study.

Figure 7 shows the result at 56 MeV on 208Pb. The
microscopic CDCC is quite successful in reproducing the
experimental data, as in Fig. 3. Even with the 208Pb target,
as mentioned above, the contribution of the Coulomb breakup
is very small on the elastic cross section.

TABLE I. Decomposition of elastic breakup cross section into partial wave contributions from s wave to i wave. All cross sections are in
units of mb.

Target Energy (MeV) σEB s p d f g h i

58Ni 21.6 72.82 10.27 19.78 17.78 5.56 7.56 2.67 9.20
58Ni 56 149.01 24.76 42.96 39.28 4.75 17.92 2.12 17.22
58Ni 80 157.54 27.32 48.36 51.72 5.42 15.61 1.95 7.15
58Ni 200 111.73 19.35 46.95 38.74 2.34 3.51 0.26 0.59
58Ni 400 53.21 6.89 31.87 13.25 0.30 0.76 0.04 0.10
12C 56 105.51 22.48 4.14 57.91 0.83 14.31 0.31 5.52
25Mg 56 121.29 24.47 11.95 52.55 1.95 18.72 0.76 10.89
27Al 56 115.38 22.66 13.55 48.93 2.12 17.15 0.81 10.15
48Ti 56 137.84 25.21 29.56 42.67 3.45 19.06 1.54 16.35
51V 56 139.88 25.31 31.29 41.65 3.65 19.41 1.61 16.96
54Fe 56 146.45 24.93 38.64 40.22 4.54 18.93 1.98 17.20
89Y 56 170.15 27.14 64.12 37.40 6.53 14.91 2.78 17.27
90Zr 56 172.69 27.27 66.62 37.44 6.77 14.68 2.83 17.08
118Sn 56 191.22 29.52 84.69 37.59 9.57 12.25 3.47 14.12
159Tb 56 231.43 36.51 111.69 43.42 14.15 10.47 4.31 10.88
181Ta 56 257.84 41.71 125.48 48.41 17.00 10.44 4.86 9.94
197Au 56 277.90 45.78 135.73 52.63 19.15 10.35 5.22 9.04
208Pb 56 287.50 49.47 139.75 55.38 18.65 10.40 5.08 8.77
209Bi 56 288.93 48.01 141.80 55.05 20.36 10.10 5.41 8.20
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FIG. 8. Angular distribution of the total elastic breakup cross
section at 56 MeV on 208Pb. The solid line denotes the result of full
CDCC, whereas the dashed line denotes CDCC without Coulomb
breakup.

B. Breakup observables

In Table I we show the total elastic breakup cross section
σEB and its decomposition into the contributions σEB;� from
p-n partial waves for each reaction system discussed in
Sec. III A and below. As mentioned, the odd waves contribute
to σEB mainly through the Coulomb breakup. Among them,
the p-wave contribution σEB;1 is dominant because of the
properties of the multipoles of the p-A Coulomb interaction.
The contributions from � = 3 and 5 are much smaller than
σEB;1, showing a clear convergence of the result with respect
to odd �. On the other hand, for even partial waves, the
convergence is very slow at 56 MeV and lower energies. At

21.6 MeV on 58Ni, σEB;6 is even larger than σEB;4. Nevertheless,
fortunately, it is found that adding � = 8 gives a very small
change in σEB; typically it is less than about 2% and, at
maximum, it is 4.5% for the reaction at 56 MeV on 208Pb.
Thus we conclude that our CDCC calculation converges at
�max = 6 within a few percent error. To determine the role of
higher partial waves � > 2 on elastic breakup cross section, we
found that at 56 MeV on 208Pb, σEB at �max = 2 differs from
that at �max = 6 by about 8%, while at 21.6 MeV on 58Ni their
difference becomes larger by about 26%. We conclude that
elastic breakup cross section does not sufficiently converge at
�max = 2, especially at lower energies.

At higher energies, one can directly see a clear convergence
with � from the values shown in Table I. Another important
finding is that the Coulomb breakup plays an important
role also for the light targets. In fact, the Coulomb breakup
contributes as much as 18% (30%) to σEB at 56 MeV on 12C
(58Ni). To see the role of the Coulomb breakup in more detail,
we show in Fig. 8 the angular distribution of the total elastic
breakup cross section at 56 MeV on 208Pb. The solid line is
the result of the full CDCC calculation and the dashed line is
that without the p-A Coulomb interaction. As expected, the
Coulomb breakup is dominant at forward angles; neglecting
the Coulomb breakup decreases the breakup cross section by
an order of magnitude at around 5◦. Finally, we show in Table II
and Fig. 9 the results of the total reaction cross sections σR and
the neutron removal cross sections σ−n of 56 MeV deuteron
on 14 target nuclei. One can see that the results agree fairly
well with experimental data, for σR in particular.

IV. SUMMARY

We have carried out CDCC calculation by employing
microscopic scattering potentials, and showed that the ob-
servables obtainable from this method agree fairly well with
experimental data in a wide range of energies without the
need for artificial normalization or any arbitrary parameters.

TABLE II. Total reaction cross sections and neutron removal cross sections of 56 MeV deuteron on 14 target elements.
Experimental data are taken from Ref. [14]. All values shown are in units of mb.

Target Total reaction cross section, σR Neutron removal cross section, σ−n

CDCC data CDCC data

12C 832 876 347 209
25Mg 1182 1162 422 299
27Al 1234 1198 432 309
48Ti 1577 1528 488 458
51V 1609 1570 491 481
54Fe 1637 1610 519 550
58Ni 1692 1662 524 582
89Y 2055 2021 580 661
90Zr 2065 2032 590 705
118Sn 2349 2310 620 735
159Tb 2680 2671 708 847
181Ta 2791 2848 761 1011
197Au 2881 2972 799 1055
209Bi 2978 3061 810 1082
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(dashed) with the experimental data [14].

The Coulomb breakup is explicitly taken into account and
its contribution to the total elastic breakup cross section σEB

turned out to be significant at forward angles in the case of

56 MeV incident deuteron energy on 208Pb. Furthermore, its
contribution to σEB was shown to be somewhat large even for
light target nuclei. On the other hand, the Coulomb breakup
effect on the elastic cross section was found to be negligible
in all the cases investigated in the present study. The total
reaction cross sections and the inclusive nucleon removal
cross sections provided by ERT also agree fairly well with
the experimental data, demonstrating the possible use case for
other nucleon-removal cross section studies in future.

In conclusion, the microscopic CDCC, which is a micro-
scopic effective reaction theory for deuteron-induced reac-
tions, has been shown to be able to describe the existing
experimental data for many reaction systems with no free
parameters. The success of the microscopic CDCC will
be of great importance for proceeding with further studies
on deuteron-induced reactions in which unstable nuclei are
involved.
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