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Abstract. A stochastic approach based on four-dimensional Langevin equations was applied to calculate the
anisotropy of fission fragment angular distributions, average prescission neutron multiplicity, and the fission
probability in a wide range of fissile parameters for the compound nuclei 197Tl ,225Pa ,248Cf, and 264Rf produced
in fusion reactions. Three collective shape coordinates plus the projection of total spin of the compound nucleus
to the symmetry axis K were considered in the four-dimensional dynamical model. In the dynamical calculations,
nuclear dissipation was generated through the chaos-weighted wall and window friction formula. Furthermore,
in the dynamical calculations the dissipation coefficient of K,γk was considered as a free parameter, and its
magnitude inferred by fitting measured data on the anisotropy of fission fragment angular distributions for the
compound nuclei 197Tl ,225Pa ,248Cf, and 264Rf. Comparison of the calculated results for the anisotropy of fission
fragment angular distributions with the experimental data showed that the results of the calculations are in good
agreement with the experimental data by using values of the dissipation coefficient of K equal to (0.185–0.205),
(0.175–0.192), (0.077–0.090), and (0.075–0.085) (MeV zs)−1/2 for the compound nuclei 197Tl ,225Pa ,248Cf, and
264Rf, respectively. It was also shown that the influence of the dissipation coefficient of K on the results of the
calculations of the prescission neutron multiplicity and fission probability is small.
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I. INTRODUCTION

The fission of highly excited compound nuclei formed
in heavy-ion-induced fusion reactions is a topic of great
interest in nuclear physics. Different features of heavy-ion
fusion-fission reactions can be studied by using dynamical
or statistical models (see, for example, Refs. [1–18]). During
the past three decades the dynamical models based on the set
of multidimensional Langevin equations or multidimensional
Fokker-Planck equation have been extensively and rather
successfully used to solve many problems of collective nuclear
dynamics in heavy-ion fusion-fission reactions. The Fokker-
Planck equation is a partial differential equation, and it can be
solved on the basis of numerical methods only by considering
various assumptions, but Langevin equations can be solved
without considering additional assumptions.

Many authors for the description of different features of
fusion-fission reactions in statistical or dynamical models
assumed that compound nuclei have zero spin about the
symmetry axis (K = 0) where this assumption is not consistent
with the statistical model and with dynamical treatment of
the orientation degree of freedom, the K coordinate, as first
pointed out by Lestone in Ref. [19]. The authors in Ref. [20]
also stressed that a large volume of heavy-ion-induced fission
data needs to be reanalyzed using a dynamical treatment of the
orientation degree of freedom K .

In the present paper, I use the four-dimensional dynamical
model based on Langevin equations to simulate the
dynamics of nuclear fission of the compound nuclei
197Tl ,225Pa ,248Cf, and 264Rf produced in the reactions
16O + 181Ta,16O + 209Bi,16O + 232Th, and 16O + 248Cm,
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respectively. In my simulations, I consider the effect of the
evolution of the K coordinate on the results of dynamical
calculations. Furthermore, in my dynamical calculations, I
consider the dissipation coefficient of K,γk as a free parameter,
and its magnitude is inferred by fitting measured data on the
anisotropy of fission fragment angular distributions for the
compound nuclei 197Tl ,225Pa ,248Cf, and 264Rf. It should be
stressed that the observable determined by the dynamical
evolution of the K coordinate is the fission fragment angular
distribution. Therefore, in the present paper I study the fission
fragment angular distributions for the compound nuclei
197Tl ,225Pa ,248Cf, and 264Rf.

The present paper has been arranged as follows. In Sec. II,
I describe the models and basic equations. The results of the
calculations are presented in Sec. III. Finally, the concluding
remarks are given in Sec. IV.

II. DETAILS OF THE MODELS AND BASIC EQUATIONS

In the four-dimensional (4D) dynamical calculations, I use
the three-dimensional Langevin dynamical model that was
developed in Refs. [21–23] by adding the orientation degree of
freedom (K coordinate) to three collective coordinates {c,h,α}
[24]. K is the projection of the total spin I to the symmetry
(elongation) axis of the nucleus. The coordinate c describes
the elongation of a nucleus; the coordinate h determines the
change in the neck thickness at a given elongation, whereas the
coordinate α specifies the mass ratio for would be fragments.
In cylindrical coordinates the surface of the nucleus is given
by

ρ2
s (z) =

{
(c2 − z2)(As + Bz2/c2 + αz/c), B � 0,

(c2 − z2)(As + αz/c) exp(Bcz2), B < 0,
(1)
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where ρs is the radial coordinate of the nuclear surface and z
is the coordinate along the symmetry axis. The quantities As

and B can be determined as follows:

B = 2h + c − 1

2
, (2)

As =
⎧⎨
⎩

c−3 − B
5 , B � 0,

− 4
3

B

exp(Bc3)+
(

1+ 1
2Bc3

)√−πBc3erf(
√−Bc3)

, B < 0, (3)

where erf(x) is the error function.
The evolution of the above-mentioned shape coordinates

can be calculated by the coupled Langevin equations of
motion,

q̇i = μijpj ,

ṗi = −1

2
pjpk

∂μjk

∂qi

− ∂F

∂qi

− γijμjkpk + θij ξj , (4)

where q = (c,h,α) are the collective coordinates, p =
(pc,ph,pα) are the momenta conjugate to them, mij (‖μij‖ =
‖mij‖−1) is the tensor of inertia, F (q,K) = V (q,K) − a(q)T 2

is the Helmholtz free energy, V (q,K) is the potential energy,
γij is the friction tensor, θij ξj is a random force, θij is its
amplitude, and ξj is a random variable that possesses the
following statistical properties 〈ξi〉 = 0 and 〈ξi(t1)ξj (t2)〉 =
2δij δ(t1 − t2). The heat bath temperature T can be determined
within the Fermi-gas model as T = √

Eint/a(q), where Eint

is the intrinsic excitation energy of the nucleus and a(q)
is the level-density parameter. The deformation dependence
of the level-density parameter can be determined as a(q) =
avA + asA

2/3Bs(q) where A is the mass number of the fissile
nucleus and Bs is the dimensionless functional of the surface
energy in the liquid-drop model. In the present paper, I employ
the coefficients av = 0.073 and as = 0.095 MeV−1, which
were proposed by Ignatyuk and his coauthors in Ref. [25].
In the present calculations, I use the variables q = (q1,q2,q3)
as collective coordinates which are connected with the shape
parameters c,h, and α as follows:

q1 = c,

q2 =
(

h + 3

2

)/(
5

2c3
+ 1 − c

4
+ 3

2

)
,

q3 = α/(As + B), if B � 0,

q3 = α/As, if B < 0. (5)

The advantage of using the collective coordinates q =
(q1,q2,q3) instead of the (c,h,α) parameters was discussed
in Ref. [26].

In my dynamical calculations, I start modeling fission
dynamics from the ground state with the excitation energy
E∗ of the compound nucleus. The initial conditions for the
compound nucleus can be generated by the Neumann method.
The initial spin for each Langevin trajectory can be sampled
from the spin distribution as in Ref. [27],

σ (I ) = 2π

k2

2I + 1

1 + exp
(

I−Ic

δI

) , (6)

where k,Ic, and δI are the wave number, the critical spin
for fusion, and the diffuseness, respectively. Ic and δI values

FIG. 1. The cross sections for the reactions 16O + 181Ta → 197Tl
and 16O + 232Th → 248Cf as a function of spin and at projectile
energies of 100 and 130 MeV.

can be defined according to the scaled prescription [27].
Figures 1(a) and 1(b) show the cross sections for 197Tl and
248Cf as a function of spin and, for example, at projectile
energies of 100 and 130 MeV in the center-of-mass system.
It is clear from Figs. 1(a) and 1(b) that as the energy of the
projectile increases, the value of the spin of the compound
nucleus formed increases.

The initial K value can also be generated using the Monte
Carlo method from uniform distribution in the interval (−I,I ).
During a random walk along the Langevin trajectory in
the space of the collective coordinates, the conservation of
energy is satisfied by E∗ = Eint(t) + Ecoll(q, p) + V (q,K) +
Eevap(t), where E∗ is the total excitation energy of the nucleus,
Eint is the intrinsic energy, Ecoll is the kinetic energy of the
collective motion of the nucleus, which can be determined
by the formula Ecoll = 0.5μij (q)pipj ,V (q,K) is the potential
energy of the compound nucleus, and Eevap(t) is the energy
carried away by evaporated particles by time t . The potential
energy is calculated on the basis of the liquid-drop model
with a finite range of nuclear forces [28] using the parameters
from Ref. [29]. Figures 2(a) and 2(b) show the Helmholtz free
energy calculated for the compound nuclei 197Tl and 248Cf
as a function of the collective coordinate q1 and K values at
T = 2 MeV.

It can be seen from Figs. 2(a) and 2(b) that the inclusion of
the K coordinate not only changes the fission barrier height,
but also affects the saddle-point configuration. Moreover, the
inclusion of the K coordinate in the calculation of the potential
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FIG. 2. The Helmholtz free energies for the compound nuclei
197Tl and 248Cf as a function of the collective coordinates q1 and
K at T = 2 MeV and I = 40�. The dashed line curves show the
dependence of saddle-point deformations on K. The numbers on the
contour lines represent the potential-energy surface values in MeV.

energy shifts the saddle point toward the scission point. It
is also clear from Fig. 2(a) that for the lighter nucleus 197Tl
the saddle point is closer to the scission point. It should be
mentioned that in the present paper the potential energy is
calculated on a macroscopic basis via the liquid-drop model.
To have a complete picture of the fission phenomenon, it
is necessary to add the microscopic corrections (shell and
pairing) to the potential energy. Although, it is possible to
neglect shell effects and the nucleon-pairing effect at high
excitation energies. This is because the possible correction
magnitude of the potential energy is about a couple of MeV
for shell and pairing effects. The influence of shell corrections
on fission was also treated within microscopic models, such as
the deformed two-center potential ones in Refs. [30,31].

In the calculations, nuclear dissipation is generated through
the chaos-weighted wall and window friction formula. For
small elongation before neck formation, I use the chaos-
weighted wall formula, and after neck formation, I use the

chaos-weighted wall and window friction formula [32–34],

γij=
{

μ(q)γ wall
ij for nuclear shapes featuring no neck,

μ(q)γ wall
ij +γ win

ij for nuclear shapes featuring a neck,

(7)

where

γ win
ij = 1

2
ρmv̄

{(
∂R

∂qi

∂R

∂qj

)
�σ

}
(8)

for nuclear shapes featuring no neck,

γ wall
ij = πρm

2
v̄

∫ zmax

zmin

(
∂ρ2

s

∂qi

)(
∂ρ2

s

∂qj

)

×
[
ρ2

s +
(

1

2

∂ρ2
s

∂z

)2
]−1/2

dz, (9)

and for nuclear shapes featuring a neck,

γ wall
ij = πρm

2
v̄

{∫ zN

zmin

(
∂ρ2

s

∂qi

+ ∂ρ2
s

∂z

∂D1

∂qi

)(
∂ρ2

s

∂qj

+ ∂ρ2
s

∂z

∂D1

∂qj

)

×
[
ρ2

s +
(

1

2

∂ρ2
s

∂z

)2
]−1/2

dz

+
∫ zmax

zN

(
∂ρ2

s

∂qi

+ ∂ρ2
s

∂z

∂D2

∂qi

)

×
(

∂ρ2
s

∂qj

+ ∂ρ2
s

∂z

∂D2

∂qj

)[
ρ2

s +
(

1

2

∂ρ2
s

∂z

)2
]−1/2

dz

}
,

(10)

where ρm is the mass density of the nucleus, ρs is the radial
coordinate of the nuclear surface, zN is the position of the neck
plane that divides the nucleus into two parts, zmin and zmax are
the left and right ends of the nuclear shape, v̄ is the average
nucleon speed inside the nucleus, D1 and D2 are the positions
of the mass centers of the two parts of the fissioning system
relative to the center of mass of the whole system, R is the
distance between the centers of mass of future fragments, and
�σ is an area of the window between two parts of the system.

In Eq. (7), the chaoticity μ is a measure of chaos in the
single-particle motion and depends on the shape of the nucleus.
The magnitude of chaoticity μ changes from 0 to 1 as the
nucleus evolves from a spherical to a deformed shape.

The inertia tensor is calculated in the Werner-Wheeler
approximation for the incompressible and irrotational flows
[35]. It was shown in Ref. [36] that this method makes it
possible to calculate accurately the components of the tensor
of inertia for all shapes of the nucleus undergoing fission with
the exception of the zero neck radius configurations. It should
be mentioned that the Werner-Wheeler approximation does
not include the changes within the energy-level scheme with
deformation. In theoretical calculations, this simplification can
increase the fission probability. Furthermore, this simplifica-
tion can slightly decrease the prescission neutron multiplicity
and anisotropy of fission fragment angular distributions for
excited nuclei.
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The decay widths for emission n,p,α,γ are calculated at
each Langevin time step �t . The probabilities of decay via
different channels can be calculated by using a standard Monte
Carlo cascade procedure where the kind of decay is selected
with the weights �v/�tot with v = n,p,α,γ and �tot = ∑

v �v .
After the particle type is randomly chosen, the kinetic-energy
εv of the emitted particle is also generated via a Monte Carlo
procedure. Then the intrinsic excitation energy, mass, and spin
of the residual compound nucleus are recalculated, and the
dynamics is continued. The loss of angular momentum is
taken into account by assuming that each neutron, proton, or
γ quanta carries away 1� whereas the α particle carries away
2�. In the simulation of the evolution of a fissile nucleus a
Langevin trajectory either reaches the scission point in which
case it is counted as a fission event, or if the excitation energy
for a trajectory which is still inside the saddle reaches the
value Eint + Ecoll < min(Bv,Bf ), the event is counted as an
evaporation residue (Bv is the binding energy of the particle
v = n,p,α, and Bf is the fission barrier height).

The average values of the prescission neutron multiplicity
can be determined by using the following relation:

〈O〉 =
∑I=Icr

I=0

∑α=αf
α=0 〈O〉Iα(2I + 1)PI∑
I,α (2I + 1)PI

, (11)

where αf and Icr are the maximum asymmetry parameter and
the critical spin for fusion, respectively. PI is the probability of
a particle crossing the fission barrier, which depends upon spin,
and is calculated using PI = Nf /N . The quantities Nf and N
are the number of trajectories which undergo fission for given
α,I , and the total number of trajectories, respectively. In the
calculations, it is assumed that the separation of a compound
nucleus into two fragments occurs at a neck radius of 0.3R0 on
average [24,37,38] (R0 is the radius of the spherical nucleus).

In the present paper, I use the 4D dynamical model
and standard transition state model [39–41] to analyze the
fission fragment angular distributions. In analyzing the fission
fragment angular distributions, it is usually assumed that
fission fragments travel in the direction of the symmetry axis
of the nucleus. Consequently, the fission fragment angular
distributions can be determined by three quantum numbers: I,
M, and K, where I is the total spin of a compound nucleus, M
is the projection of the total spin on the axis of the projectile
ion beam, and K is the projection of I on the symmetry axis
of the nucleus. In the case of fusion of spinless ions, one finds
M = 0. Furthermore, in the case of heavy-ion-induced fission
reactions, the spin of the compound nucleus is usually much
larger than the ground-state spins of the target and projectile
and is perpendicular to the beam axis so that M = 0. Hence,
the fission fragment angular distributions can be obtained by
the following relation [39,40]:

W (θ,I,K) = (I + 1/2)
∣∣DI

M=0,K (θ )
∣∣2

, (12)

where θ is the angle with respect to the space fixed axis
and DI

M,K (θ ) is the symmetric-top-wave function [39]. In
the dynamical calculations, the fission fragment angular
distributions can be obtained by averaging the expression

Eq. (12) over the ensemble of Langevin trajectories as follows:

W (θ ) = 1

Nf

Nf∑
i=1

(I i + 1/2)
∣∣DIi

0,Ki (θ )
∣∣2

, (13)

where upper index i determines the value of the corresponding
quantity at the scission point for the ith Langevin trajectory
and Nf is the number of trajectories reaching the scission
surface.

The fission fragment angular distributions can also be
calculated on the basis of the standard transition state model
[39–41]. This model assumes that there is a certain transition
configuration for a fissile system that one can use to determine
the fission fragment angular distributions. There are two
assumptions on the position of the transition state, and
consequently one can consider two variants of the transition
state model. These models are the saddle-point transition
model (SPTS) [39–41] and the scission-point transition model
(SCTS) [42–44]. Important assumptions of the saddle-point
transition model are as follows: (1) the mean time of stay of a
nucleus in the saddle-point region is sufficiently larger than a
characteristic time of the equilibration of the K mode, (2) the
mean time of the descent of a nucleus from the saddle point to
the scission point is short in comparison with the characteristic
time of the equilibration of the K mode, and (3) a Gaussian
distribution can be considered for K in the saddle point. In the
standard transition state model at high values of I,W (θ,I,K)
can be approximated as

W (θ,I,K) ≈ I + 1/2

π
[(I + 1/2)2 sin 2θ − K2]1/2. (14)

The fission fragment angular distributions can be calculated
by averaging expression Eq. (14) with the distributions of I and
K as follows:

W (θ ) =
∞∑

I=0

σI

I∑
K=−I

P (K)W (θ,I,K), (15)

where σI and P (K) are the distributions of compound nuclei
with respect to the total spin and its projection, respectively. In
order to calculate the angular distributions of compound nuclei,
it is necessary to specify the type of the distribution σI and
P (K) of the compound nuclei over I and K, respectively. In the
saddle-point transition state model, an equilibrium distribution
of K values is assumed at the saddle point. This distribution
can be determined by the Boltzmann factor exp(−Erot/T ) [41].
Therefore, the equilibrium distribution with respect to K has
the form

Pep(K) = exp
[−K2

/(
2K2

0

)]
∑I

K=−I exp
[−K2

/(
2K2

0

)] , (16)

where the variance of the equilibrium K distribution K0 is
given by the following relation:

K2
0 = T

�2
Jeff, Jeff = J||J⊥

J⊥ − J||
, (17)

where T, J||, and J⊥ are the nuclear temperature and the parallel
and perpendicular moments of inertia taken at the transition
state. One can obtain an expression for the fission fragment
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angular distributions for a fixed I by averaging Eq. (14) as
follows:

W (θ,I ) = (I + 1/2)

∑I
K=−I

∣∣DI
0,K (θ )

∣∣ exp
(−K2

/
2K2

0

)
∑I

K=−I exp
(−K2

/
2K2

0

)
≈

√
2p

π

exp(−p sin2 θ)J0(−p sin2θ )

erf(
√

2p)
, (18)

where J0 is a Bessel function of zero order and p =
(I + 1/2)2/(4K2

0 ). The anisotropy of fission fragment angular
distributions can be defined as

A = 〈W (0◦)〉
〈W (90◦)〉 . (19)

In the case of p � 1 the anisotropy of fission fragment
angular distributions can be obtained by the approximate
relation,

A ≈ 1 + 〈I 2〉
4K2

0

. (20)

An expression similar to Eq. (18) can also be used in
the scission-point transition model, but factors determined
by Eq. (17) should be calculated at the scission point. In
the scission-point model, it is assumed that the characteristic
time of the equilibration of the K mode is much shorter than
the descent time from the saddle point to the scission point.
In this case the equilibration of the K degree of freedom is
supposed to be at the scission point. It should be noted that,
for the calculation of the anisotropy of fission fragment angular
distributions, W (θ ) was obtained either from the 4D dynamical
model using Eq. (13) or from the transition state model using
Eq. (15).

In the present dynamical calculations, I do not use any
approximation about the relaxation time for the K coordinate
to analyze the fission fragment angular distributions according
to Eq. (13). Instead, I directly treat the relaxation time for the
K coordinate using the following equation [45]:

dK = −γ 2
KI 2

2

∂V

∂K
dt + γKIξ (t)

√
T dt, (21)

and take into account the influence of the actual evolution of the
K value on the dynamics of the shape parameters (q1,q2,q3).
In Eq. (21) the dissipation coefficient of K,γK is a parameter
controlling the coupling between the orientation degree of
freedom K and the heat bath, and ξ (t) has the same meaning
as in Eq. (4). The authors in Refs. [20,45], based on the works
of Døssing and Randrup [46] and Randrup [47], have shown
that in the case of a dinucleus, γK can be obtained as

γK = 1

RRN

√
2π3n0

√
JR|Jeff|J||

J 3
⊥

, (22)

where n0 = 0.0263 MeV zs fm−4 is the bulk flux in the stan-
dard nuclear matter [46], R is the distance between the centers
of mass of the nascent fragments, and RN is the neck radius.
JR = M0R

2/4 for a reflection symmetric shape, and Jeff is
the effective moment of inertia. The inverse of the effective
moment of inertia is J−1

eff = J−1
|| − J−1

⊥ . The rigid body
moments of inertia about and perpendicular to the symmetry

axis can be determined as in Ref. [48]. It should be mentioned
that the Langevin equation for the K coordinate Eq. (21) and
the Langevin equations Eq. (4) are connected through the
potential energy. The rotational part of the potential energy is
calculated by

Erot(q,I,K) = �
2I (I + 1)

2J⊥(q)
+ �

2K2

2Jeff(q)
. (23)

By averaging Eq. (21), it can be shown that

d〈K〉
dt

= −γ 2
KI 2

2

〈
∂V

∂K

〉
. (24)

From the expression for the rotational energy Eq. (23), it
follows that:

d〈K〉
dt

= −γ 2
KI 2

�
2

2Jeff
〈K〉. (25)

By assuming a constant γK , the solution of this equation is

〈K(t)〉K0
= K0 exp

[
−γ 2

KI 2
�

2

2Jeff
(t − t0)

]
, (26)

which gives the following expression for the relaxation time
as:

τK = 2Jeff

γ 2
KI 2�2

. (27)

It is clear from Eq. (27) that the relaxation time of the K
coordinate decreases with increasing γK .

III. RESULTS AND DISCUSSIONS

In the present paper, a stochastic approach based on
4D Langevin equations has been used to calculate the
anisotropy of fission fragment angular distributions, average
prescission neutron multiplicity, and the fission probability for
the compound nuclei 197Tl ,225Pa ,248Cf, and 264Rf produced
in the reactions 16O + 181Ta,16O + 209Bi,16O + 232Th, and
16O + 248Cm, respectively. In the 4D dynamical calculations,
the dissipation coefficient of K,γk has been considered as a
free parameter, and its magnitude inferred by fitting measured
data on the anisotropy of fission fragment angular distribu-
tions for the compound nuclei 197Tl ,225Pa ,248Cf, and 264Rf.
Figures 3(a)–3(d) show the results of anisotropy of the fission
fragment angular distributions calculated with the 4D dynam-
ical model and by using values of the dissipation coefficient
of K equal to (0.185–0.205), (0.175–0.192), (0.077–0.090),
and (0.075–0.085) (MeV zs)−1/2 for the compound nuclei
197Tl ,225Pa ,248Cf, and 264Rf, respectively. Figures 3(a)–3(d)
also show the results of the transition state model for the
anisotropy of fission fragment angular distributions calculated
at the saddle and scission points.

It can be seen from Figs. 3(a)–3(d) that the increase
in γK increases the anisotropy of fission fragment angular
distributions. It can be explained by considering Eq. (27)
for the relaxation time of the K collective coordinate. The
larger γK value causes a faster relaxation time of the K
coordinate and a narrower K distribution, which corresponds
to the large A values as can be seen from Eq. (20). It can
also be seen from Figs. 3(a)–3(d) that neither the saddle-point
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FIG. 3. The anisotropy of fission fragment angular distributions
for the compound nuclei 197Tl ,225Pa ,248Cf, and 264Rf as a function
of projectile energy in the laboratory system. The filled circles are the
experimental data [49–53]. The dashed and dotted curves correspond
to fitted values calculated with the 4D dynamical model and by using
different values of γK . The dashed-dotted and dashed-double-dotted
curves correspond to fitted values calculated by the SPTS and SCTS
models, respectively.

transition state model nor the scission-point state model is
able to provide a satisfactory description on the anisotropy

of fission fragment angular distributions for the compound
nuclei 197Tl ,225Pa ,248Cf, and 264Rf. Therefore, the existing

FIG. 4. The anisotropy of fission fragment angular distributions
for the compound nuclei 225Pa and 248Cf as a function of the scattering
angle and at different values of projectile energy in the laboratory
system. The curves correspond to fitted values calculated with the
4D dynamical model and by using different values of γK . The
experimental data (filled circles) are taken from Refs. [53,54].
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FIG. 5. The average prescission neutron multiplicity for the
compound nuclei 197Tl and 248Cf as a function of excitation energy
and different values of γK . The experimental data (filled circles) are
taken from Refs. [55,56].

uncertainty in the position of the transition state indicates that
it is necessary to take into account dynamical features of the
formation of angular distributions and it is necessary to treat K
as an independent collective coordinate. In the present paper, I
have also calculated the anisotropy of fission fragment angular
distributions as a function of scattering angle and at different
values of projectile energy for the compound nuclei 225Pa
and 248Cf. Figures 4(a)–4(d) show the results of anisotropy
of the fission fragment angular distributions as a function
of the scattering angle calculated with the 4D dynamical
model and by using values of the dissipation coefficient of
K equal to (0.175–0.192) and (0.077–0.090) (MeV zs)−1/2 for
the compound nuclei 225Pa and 248Cf, respectively. It is clear
from Figs. 4(a)–4(d) that the results of the 4D dynamical model
are compatible with the experimental data.

In the present paper, I have also studied the effect of
the dissipation coefficient of K on the average prescission
neutron multiplicity and fission probability for the compound
nuclei 197Tl ,225Pa ,248Cf, and 264Rf. Figures 5(a) and 5(b)
show the results of average prescission neutron multiplicity
for the compound nuclei 197Tl and 248Cf, and Fig. 6 shows the
results of fission probability calculated with the 4D dynamical
model and by using values of the dissipation coefficient
of K equal to (0.185–0.205), (0.175–0.192), (0.077–0.090),
and (0.075–0.085) (MeV zs)−1/2 for the compound nuclei
197Tl ,225Pa ,248Cf, and 264Rf, respectively.

It is clear from Fig. 5(b) that the results of neutron
multiplicity for 248Cf lay somewhat below the experimental

FIG. 6. Results of the calculations for fission probabilities as a
function of the parameter Z2/A. The open squares and open circles
are the calculated results calculated with the 4D dynamical model and
by using different values of γK which were extracted in the present
paper for the compound nuclei 197Tl ,225Pa ,248Cf, and 264Rf. The
closed symbols are the experimental data [57–59].

data at high excitation energies. It can be concluded that for
heavy nuclei the strength of the nuclear dissipation needs to
be increased to reproduce the measured prescission neutron
multiplicity. It can also be seen from Figs. 5(a), 5(b), and 6
that the differences between the calculated data obtained with
different values of γK are small.

Finally, it would be useful to compare the extracted values
of the dissipation coefficient of K for the compound nuclei
197Tl ,225Pa ,248Cf, and 264Rf which are studied in the present
paper. Figure 7 shows the extracted values of the dissipation
coefficients of K as a function of compound nucleus mass
number.

IV. CONCLUSIONS

The anisotropies of the fission fragment angular
distributions have been calculated in the framework of the 4D
dynamical model for the compound nuclei 197Tl ,225Pa ,248Cf,

FIG. 7. The extracted values of the dissipation coefficient of K

(solid lines) for the compound nuclei 197Tl ,225Pa ,248Cf, and 264Rf.
The shaded area represents the variation of the best-fit values of the
dissipation coefficient of K with the compound nucleus mass number.
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and 264Rf produced in fusion reactions, and the results of the
calculations have been compared with the experimental data.
The chaos-weighted wall and the window friction formulas
have been used in Langevin equations. Furthermore, in the
calculations the dissipation coefficient of K,γk is considered
as a free parameter, and its magnitude inferred by fitting
measured data on the anisotropy of fission fragment angular
distributions for the compound nuclei 197Tl ,225Pa ,248Cf, and
264Rf. Comparison of the theoretical results for the anisotropy
of fission fragment angular distributions with the experimental
data showed that the results of the calculations are in good
agreement with the experimental data by using values of the
dissipation coefficient of K equal to (0.185–0.205), (0.175–
0.192), (0.077–0.090), and (0.075–0.085) (MeV zs)−1/2

for the compound nuclei 197Tl ,225Pa ,248Cf, and 264Rf,
respectively.

The effect of the dissipation coefficient of K has also
been investigated on the estimation of the average prescission
neutron multiplicity and fission probability for the above-
mentioned nuclei. It was shown that the difference between
the results of the calculations calculated with different values
of the dissipation coefficient of K is small. It was also
shown that at high excitation energies the results of neutron
multiplicities for the heavy nucleus 248Cf are slightly lower
than the experimental data. According to the obtained results,
it can be concluded that, for heavy nuclei, the strength of the
nuclear dissipation needs to be increased.
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