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Investigating α clustering on the surface of 120Sn via the ( p, pα) reaction, and the validity
of the factorization approximation
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The 120Sn(p,pα)116Cd reaction at 392 MeV is investigated with the distorted wave impulse approximation
(DWIA) framework. We show that this reaction is very peripheral, mainly because of the strong absorption of α

by the reaction residue 116Cd, and the α clustering on the nuclear surface can be probed clearly. We investigate
also the validity of the so-called factorization approximation that has frequently been used so far. It is shown that
the kinematics of α in the nuclear interior region is significantly affected by the distortion of 116Cd, but it has no
effect on the reaction observables because of the strong absorption in that region.
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I. INTRODUCTION

Nuclear clustering has been one of the main subjects in
nuclear physics; for a recent review, see Ref. [1]. As a new
topic, α clustering on the surface of heavy nuclei, Sn isotopes,
is theoretically predicted in Ref. [2]. This result itself is
interesting and important because it has been believed that α
clustering is developed mainly in light nuclei, although some
indication for α clustering in 40Ca and 44Ti was discussed [3].
Furthermore, the result gives a significant impact on the
nuclear equation of state [2].

As emphasized in Ref. [1], however, one should keep it in
mind that a large spectroscopic factor of α does not necessarily
indicate the α clustering, because of the duality of the mean-
field-type structure and the cluster structure [4]. On the other
hand, the localization of α in the nuclear surface region is
direct evidence of the α clustering in a nucleus. In this view,
the α transfer reaction, (6Li ,d) in particular, has been utilized
for investigating the α clustering. Very recently, a three-body
reaction model with a microscopic cluster wave function was
applied to the 16O(6Li ,d)20Ne reaction and the transfer cross
section was shown to be sensitive to the α distribution on the
nuclear surface of 20Ne [5].

In the present study, as an alternative way to the α transfer
reaction, we consider the proton-induced α knockout reaction
on 120Sn, and investigate how clearly it can probe the α
distribution in the surface region of 120Sn, i.e., the α clustering
of 120Sn. We adopt the distorted wave impulse approximation
(DWIA) framework to describe the (p,pα) reaction; DWIA
has successfully been used in the analysis of various nucleon
knockout [6–11] and α knockout [12–18] experiments. In
many preceding studies, however, the so-called factorization
approximation, which factors out the nucleon-nucleon (NN )
transition amplitude in the evaluation of the total transition
matrix element of the knockout process, has been adopted.
In this paper we explicitly examine the validity of the fac-
torization approximation by means of the local semiclassical
approximation (LSCA) [19,20] to the distorted waves. It
was argued in Ref. [6] that the factorization approximation
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becomes questionable when the distortion effect is large. It
is thus important to examine its validity for the α knockout
process for a heavy nucleus, in which the distortion on α by
the reaction residue is expected to be very strong.

In Sec. II we describe the DWIA formalism for the (p,pα)
reaction, introducing the LSCA that is a key prescription for
discussing the accuracy of the factorization approximation. In
Sec. III first we show the comparison between the present cal-
culation and the experimental data. Next we discuss the validity
of the factorization approximation in the 120Sn(p,pα)116Cd
reaction at 392 MeV. We then show that the 120Sn(p,pα)116Cd
reaction probes the α distribution in the surface region with
high selectivity. The dependence of these findings on the α
wave function is also discussed. Finally, a summary is given
in Sec. IV.

II. FORMALISM

We consider the A(p,pα)B reaction in normal kinematics
in the DWIA framework. The incoming proton in the initial
channel is labeled as particle 0, and the outgoing proton
and α are particles 1 and 2, respectively. A (B) denotes the
target (residual) nucleus. K i and �i (i = 0,1,2) represent the
momentum and its solid angle, respectively, and Ei (Ti) is
the total (kinetic) energy of particle i. All quantities with and
without superscript L indicate that they are evaluated in the
laboratory (L) and center-of-mass (c.m.) frame, respectively.

The transition amplitude in the DWIA formalism is given
by

T
nljm
K 0 K 1 K 2

= 〈
χ

(−)
1,K 1

(R1)χ (−)
2,K 2

(R2)|tpα(s)|χ (+)
0,K 0

(R0)ϕnljm
α (R2)

〉
, (1)

where χ0, χ1, and χ2 are the scattering wave functions of the
p-A, p-B, and α-B systems, respectively, tpα is the transition
interaction between p and α, and ϕ

nljm
α is the α-cluster wave

function. n, l, j , and m are, respectively, the principal quantum
number, the orbital angular momentum, the total angular
momentum, and its third component of α in the nucleus A. The
superscripts (+) and (−) specify the outgoing and incoming
boundary conditions on χi , respectively. The definition of the
coordinates is given in Fig. 1.
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FIG. 1. Coordinates of A(p,pα)B reaction.

By using

R = 1

Aα + 1
R1 + Aα

Aα + 1
R2, (2)

s = R1 − R2, (3)

Ri are written by

R0 = R1 − Aα

A
R2 =

(
1 − Aα

A

)
R + α0

Aα

Aα + 1
s, (4)

R1 = R + Aα

Aα + 1
s, (5)

R2 = R − 1

Aα + 1
s, (6)

where Aα = 4 and α0 = (A + 1)/A with A being the mass
number of A. We make the LSCA [19,20] that describes the
propagation of the scattering wave for a short distance �R by
a plane wave, i.e.,

χi,K i
(R + �R) ≈ χi,K i

(R) ei K i (R)·�R. (7)

The norm of the local momentum K i(R) is given by

|K i(R)| = Re
[
K C

i (R)
]
, (8)

where the complex momentum K C
i (R) is determined so as to

satisfy the local energy conservation:

(�K i)2

2μi

=
[
�K C

i (R)
]2

2μi

+ Ui(R) (9)

with μi and Ui(R) being the reduced mass of the scattering
particles and the distorting potential for particle i, respectively.
The direction of K i(R) is taken to be parallel to the flux of
χi,K i

(R). The validity of the LSCA is discussed in Sec. III C.
Equation (1) is then reduced to

T
nljm
K 0 K 1 K 2

≈
∫

d R FK 0 K 1 K 2 (R) ϕnljm
α (R)t̃pα[κ ′(R),κ(R)],

(10)

where FK 0 K 1 K 2 (R) and t̃pα[κ ′(R),κ(R)] are defined by

FK 0 K 1 K 2 (R) ≡ χ
∗(−)
1,K 1

(R) χ
∗(−)
2,K 2

(R)χ (+)
0,K 0

(R)

× e−i K 0(R)·RAα/A, (11)

t̃pα[κ ′(R),κ(R)] ≡
∫

ds e−iκ ′(R)·s tpα(s) eiκ(R)·s. (12)

Here, κ(R) [κ ′(R)] is the p-α relative momentum in the initial
(final) channel:

κ(R) ≡ α0
Aα

Aα + 1
K 0(R) − 1

Aα + 1
Kα(R), (13)

κ ′(R) ≡ Aα

Aα + 1
K 1(R) − 1

Aα + 1
K 2(R). (14)

Kα(R) is determined by the momentum conservation of the
p-α system:

Kα(R) = K 1(R) + K 2(R) − α0 K 0(R). (15)

In taking the squared modulus of Eq. (10), we make the
on-the-energy-shell (on-shell) approximation to t̃pα:

μ2
pα

(2π�2)2
|t̃pα[κ ′(R),κ(R)]|2 ≈ dσpα

d�pα

[θpα(R),Epα(R)], (16)

where θpα(R) is the angle between κ(R) and κ ′(R), i.e., the
local p-α scattering angle, and Epα(R) is the local scattering
energy defined by

Epα(R) = �
2[κ ′(R)]2

2μpα

. (17)

In Eqs. (16) and (17) μpα is the reduced mass of the p-α
system.

With the LSCA and the on-shell approximation, the triple
differential cross section (TDX) of the (p,pα) reaction is given
by

d3σ

dEL
1 d�L

1 d�L
2

= SαFkinC0

∑
m

∣∣T̄ nljm
K 0 K 1 K 2

∣∣2
, (18)

where Sα is the spectroscopic factor of the α cluster and the
kinematical factor Fkin is defined by

Fkin ≡ JL
K1K2E1E2

�4c4

[
1 + E2

EB
+ E2

EB

K 1 · K 2

K2
2

]−1

(19)

with JL being the Jacobian from the c.m. frame to the L frame,
and

C0 = E0

(hc)2K0

1

(2
 + 1)

�
4

(2π )3μ2
pα

. (20)

The reduced transition amplitude is given by

T̄
nljm
K 0 K 1 K 2

=
∫

d R

√
dσpα

d�pα

[θpα(R),Epα(R)]

×FK 0 K 1 K 2 (R) ϕnljm
α (R). (21)

In the preceding studies on knockout reactions [6–11],
further simplification of T̄

nljm
K 0 K 1 K 2

was made by replacing
K i(R) with the asymptotic momentum K i . We then obtain

d3σ

dEL
1 d�L

1 d�L
2

→ FkinC0
dσpα

d�pα

(θpα,Epα)

×
∑
m

∣∣∣∣
∫

d R FK 0 K 1 K 2 (R) ϕnjlm
α (R)

∣∣∣∣
2

,

(22)
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where θpα and Epα are given in the same way as for θpα(R)
and Epα(R), respectively, but with using the asymptotic p-α
relative momenta:

κ ≡ α0
Aα

Aα + 1
K 0 − 1

Aα + 1
Kα, (23)

κ ′ ≡ Aα

Aα + 1
K 1 − 1

Aα + 1
K 2. (24)

This prescription is called the factorization approximation.
One sees that this approximation is equivalent to use the
asymptotic momentum K i instead of the local momentum
K i(R) in Eq. (7), i.e.,

χi,K i
(R + �R) ≈ χi,K i

(R) eK i ·�R, (25)

which we call the asymptotic momentum approximation
(AMA). Therefore the accuracy of the factorization approxi-
mation can be judged, in principle, by that of the AMA.

III. RESULTS AND DISCUSSION

A. Numerical inputs

For the bound-state wave function ϕ
nljm
α , we assume that

the α particle is bound in the 4S orbit in a Woods-Saxon
potential V (R) = V0/{1 + exp[(R − r0A

1/3)/a0]} with r0 =
1.27 fm and a0 = 0.67 fm. The depth of the potential V0 is
adjusted so as to reproduce the α separation energy of 120Sn,
4.81 MeV. In the calculation shown below, the α spectroscopic
factor Sα for 120Sn is taken to be 0.022 [21]. It should be noted
that the purpose of the present study is not to determine Sα but
to understand the property of the (p,pα) knockout reaction
and to examine the reliability of DWIA with the factorization
approximation.

One of the most important ingredients of the present
DWIA is the p-α differential cross section dσpα/d�pα that
determines the transition strength of the (p,pα) process.
Because d�pα for various scattering energies and angles are
needed, we adopt the microscopic single folding model [22]
with implementing the phenomenological nuclear density of
α and the Melbourne NN g-matrix interaction [23]. As shown
in Fig. 2, with no free parameter, the calculated dσpα/d�pα

agrees very well with the experimental data [24,25] at 297 and
500 MeV.

As for the distorting potential for α in the final channel,
for consistency, we employ the double-folding model [26]
using the same ingredients as used in the p-α calculation;
we use the nuclear density of 116Cd calculated by the
Hartree-Fock method in the same way as Ref. [27]. It is
known that to phenomenologically determine a low-energy
scattering potential of α is quite difficult because of the
discrete ambiguities [28,29]. In fact, there have been many
attempts [30–32] to microscopically determine an α potential
with the double-folding model approach. It should be noted,
however, that in the present study we evaluate both the
real and imaginary parts of the α potential with no free
adjustable parameter, in contrast to those preceding studies.
For the distorting potential of proton in the initial and final
channels, we use the EDAD1 parameter set of the Dirac
phenomenology [33]. The Coulomb terms of the distorting

FIG. 2. Comparison between the dσpα/d�pα calculated by the
single-folding model calculation and the experimental data [24,25] at
297 and 500 MeV.

potentials are constructed by assuming that the target (residual)
nucleus is a uniformly charged sphere with the radius of
r0A

1/3 (r0B
1/3).

The effect of the nonlocality of the proton and α dis-
torting potentials is taken into account by multiplying the
scattering waves by the Perey factor [34] FP (R) = [1 −
μβ2/(2�

2)U (R)]−1/2, where μ is the reduced mass between
the two scattering particles. The range of nonlocality β for
p (α) is taken to be 0.85 fm (0.2 fm) [35].

We take the following kinematical condition on the
120Sn(p,pα)116Cd reaction at 392 MeV; the Madison con-
vention is adopted. The kinetic energy of particle 1 is fixed at
328 MeV and its emission angle is set to (θ1,φ1) = (43.2◦,0◦).
As for particle 2, φ2 is fixed at 180◦ and θ2 is varied around 61◦;
the kinetic energy T2 changes around 59 MeV and θpα ∼ 56◦,
Epα ∼ 385 MeV, accordingly [36]. We always adopt the
relativistic kinematics for all the scattering particles in this
study.

B. Test of the present calculation

We test the present model calculation by comparing the
calculated result of the energy sharing cross section, which
is a TDX with fixed d�L

1 and d�L
2 , as a function of T1

for 66Zn(p,pα)62Ni reaction with measured experimental
data [12]; the incident energy is 101.5 MeV. The present result
and the experimental data are shown in Fig. 3. The EDAD
parameter set are used for the distorting potential of p-66Zn and
p-62Ni, and the double-folding model is adopted for α-62Ni,
in the same way as in III A. According to Ref. [12], we assume
that the α particle is bound in the 6S state in a Woods-Saxon
potential with r0 = 1.30 fm and a0 = 0.67 fm, and the depth of
the potential V0 is adjusted so as to reproduce the α separation
energy 4.58 MeV.

One can see that the present calculation well reproduces
the observed energy-sharing cross section; the deduced α
spectroscopic factor is 0.84, which is sizably larger than the
value 0.42 obtained in the previous study [12]. It should
be noted, however, that the double-folding model for the
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FIG. 3. Calculated energy sharing cross section of
66Zn(p,pα)62Ni reaction at 101.5 MeV. The experimental
data are from Ref. [12].

distorting potential of α-62Ni will have some ambiguities
due to the relatively low scattering energy of T2 ∼ 30 MeV.
Furthermore, the calculated result in Ref. [12] showed quite
large ambiguities (∼50%) of the deduced α spectroscopic
factors due to the α-62Ni potential. Considering these facts,
it can be concluded that the present result is consistent with
the experimental data and its analysis.

C. Validity of the LSCA and the AMA

The validity of the LSCA for the scattering of nucleon has
been examined in Refs. [20,27] and it was concluded that
at energies higher than about 50 MeV, the LSCA works for
the propagation within 1.5 fm. Furthermore, at those energies
the AMA is found to work at almost the same level as
the LSCA [27]. Considering the aforementioned kinematical
condition on particles 0 and 1, one may conclude that for
proton both the LSCA and the AMA are valid in the description
of the 120Sn(p,pα)116Cd reaction. On the other hand, such a
validation for particle 2, the knocked out α particle, has not
been done before.

In Fig. 4 we show the validity of the LSCA and the AMA
for χ

(−)
2,K 2

with (θ2,φ2) = (61◦,180◦), which corresponds to
the quasifree condition; i.e., the residual nucleus 116Cd is at
rest in the L frame. Figures 4(a) and 4(b) correspond to the
propagation from Ra ≡ (7 fm, 61◦, 180◦) and Rb ≡ (7 fm, 29◦,
0◦), respectively, in the spherical coordinate representation.
In each panel the solid, dashed, and dotted lines show,
respectively, the real part of the exact wave function, that with
the LSCA and that with the AMA. Since Ra (Rb) corresponds
to the foreside (left side) of 116Cd with respect to the outgoing
α, the distortion effect on α at Ra (Rb) is weak (strong).

With weak distortion, as shown in Fig. 4(a), both approxi-
mations work well within about 0.5 fm of the propagation. It

FIG. 4. The test of the LSCA and the AMA. The real part of
χ

∗(−)
2,K 2

with no approximation (solid line), with the LSCA (dashed
line), and with the AMA (dotted line) are plotted. In Figs. 4(a)
and 4(b), the propagation from (7 fm, 61◦, 180◦) and (7 fm, 29◦,
0◦) are investigated, respectively; (θ2,φ2) = (61◦,180◦) is chosen for
the kinematics of the α particle.

should be noted that, with considering the range of the p-α
interaction of about 2 fm and the constant 1/(Aα + 1) = 1/5
in front of s in Eq. (6), the LSCA and the AMA are required
to be valid for the propagation of about 0.4 fm. The two
approximations are thus validated for the propagation from Ra .
In the case of the strong distortion, as shown in Fig. 4(b) and
suggested in Ref. [6], the AMA cannot describe the behavior
of the exact scattering wave function; since the radial direction
from Rb is almost orthogonal to the direction of the asymptotic
momentum K 2, the dotted line is almost constant, whereas the
solid line shows clear variation. On the other hand, the LSCA
reproduces well the exact solution at almost the same level
as in the case of weak distortion. Thus, one sees that the
kinematics of α at Rb is significantly changed from that in
the asymptotic region by the distorting potential of 116Cd; this
kinematical change is well traced by using the LSCA, i.e., the
local momentum of the α particle.

Therefore one can conclude that the LSCA works for the α
scattering wave function that is strongly distorted, whereas the
AMA not. This may cast doubt on the use of the factorization
approximation for the (p,pα) reaction investigated in the
present study. In the following subsections we discuss this
in view of the TDX.
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FIG. 5. TDX as a function of the recoil momentum. The solid
(dashed) line corresponds to the calculation without (with) the
factorization approximation. The TDX calculated with the PWIA
divided by 200 is also shown by the dotted line.

D. TDX for the 120Sn( p, pα)116Cd reaction at 392 MeV

The calculated TDX is shown in Fig. 5 as a function of the
recoil momentum pR defined by

pR = �KL
B

KL
Bz∣∣KL
Bz

∣∣ . (26)

The solid and dashed lines represent the results without
and with the factorization approximation, respectively. One
sees from the good agreement between the solid and dashed
lines that the factorization approximation, or equivalently, the
AMA, affects the TDX very little, although the AMA for α
is shown to be invalid around Rb. This is due to the strong
absorption of α in that region as shown in Sec. III E.

The dotted line in Fig. 5 represents the result of the plane
wave impulse approximation (PWIA) calculation divided by
200. The renormalization factor 1/200 shows the strong
absorption mainly caused by the α-116Cd distorting potential.
In the PWIA, the TDX is essentially proportional to the
absolute square of the Fourier transform of the α distribution
ϕ

nljm
α inside 120Sn. Since we take a 4S state, the dashed line

in Fig. 6 shown below, the TDX calculated with the PWIA
shows an oscillation pattern accordingly. The shape of the TDX
calculated with the DWIA is quite different from that with the
PWIA. The widening of the width of the TDX caused by
distortion suggests that, because of the uncertainty principle,
only a limited region of ϕ

nljm
α is probed by the (p,pα) reaction,

as shown in Sec. III E. It should be noted that the slight shift of
the peak of the TDX with the DWIA from pR = 0 is understood
by the shift of the momentum of particles 2 due to the real part
of the distorting potential [37].

E. Probed region of α in 120Sn by the ( p, pα) reaction

In Fig. 6, we show by the solid line the absolute value of the
integrand on the right-hand side of Eq. (21) after integration

FIG. 6. |I (R)| at pR = 0 (solid line), the same but calculated with
only the α-116Cd distorting potential Uα (dashed line), and the result
with PWIA (dotted line). The results are normalized to unity at the
peak position.

over the solid angle � of R:

I (R) ≡
∫

d�R2

√
dσpα

d�pα

[θpα(R),Epα(R)]

×FK 0 K 1 K 2 (R) ϕnjlm
α (R); (27)

the plotted result corresponds to pR = 0, i.e., the quasifree
condition. The dashed line shows |I (R)| calculated with
including only Uα , the distorting potential of the α-116Cd
system in the final state, and the dotted line shows that
with PWIA. Each line is normalized to unity at the peak
position. One sees that the magnitude of I (R) is strongly
suppressed in the interior region, R � 6 fm, mainly because
of the absorption due to the α-116Cd distorting potential. The
slight shift of the peak position is due to the suppression in the
interior region. It should be noted, however, that the product
of the oscillating three distorted waves and a bound-state wave
function can make nontrivial cancellation. This property also
may contribute to the aforementioned suppression.

Furthermore, in Fig. 7 the TDXs calculated with changing
the minimum value Rmin of the integration over R are shown;
we take Rmin = 0, 6, 6.5, 7, and 8 fm. It is found that the calcu-
lated TDX does not change for Rmin = 0–5.5 fm, and decreases
drastically for Rmin = 6–8 fm. The slight increase of TDX with
Rmin = 6 fm is due to the interference of the integrand. This
result shows that the (p,pα) reaction on heavy nuclei probes
the α-cluster wave function on the nuclear surface with high
selectivity, as required for the reaction to be a good probe for
α clustering. With this peripherality of the (p,pα) reaction,
one can understand naturally the mechanism that makes the
width of the TDX wider when the distortion is taken into
account.
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FIG. 7. Same as Fig. 5 but with changing Rmin. The solid, dashed,
dotted, dot-dashed, and two-dot-dashed lines correspond to Rmin =
0, 6, 6.5, 7, and 8 fm, respectively.

For more detailed analysis, the absolute value of the
integrand on the right-hand side of Eq. (21)

J (R) ≡
√

dσpα

d�pα

[θpα(R),Epα(R)]FK 0 K 1 K 2 (R)ϕnljm
α (R) (28)

on the z-x plane for y = 0, 1, 3, 5, 6, and 7 fm are shown in
Figs. 8(a)–8(f). For y = 0, 1, and 3 fm, it is clearly seen that
the amplitude is located in the foreside region with R = 6–9
fm, where χ

(−)
2,K 2

(R) is not absorbed and ϕα(R) has a finite
amplitude. For y � 5 fm, the localization of the amplitude
becomes rather vague, because the absorption property of

χ
(−)
2,K 2

(R) does not strongly depend on z and x for such values
of y. Nevertheless, one may see that the main part of |J (R)|
exist in the foreside region. Figures 8(a)–8(f) therefore show
that the (p,pα) reaction has selectivity not only in the radius
but also the direction of the target nucleus.

It is found that the peak at the rear side on y = 0 plane,
around R = (6–8 fm,120◦,0◦) in Fig. 8(a) comes from the
focus of χ

∗(−)
2,K 2

due to the attraction of the distorting potential
and the increase in dσpα/d�pα caused by that. It should be
noted that this rear-side peak exists only at around y = 0 as
shown in Fig. 8, and makes no major contribution to the TDX.
In fact, it is found that about 90% of the TDX comes from
the x < 0 region. This means that the possible interference
between the amplitudes in the fore-side and rear-side regions
is very small, which realizes an intuitive picture that the (p,pα)
reaction of our interest takes place in a limited region of space.
These features support idea that the AMA is valid for the
calculation of the TDX.

F. Discussion of α-cluster wave function

Since a very naive model for ϕα is adopted in the present
study, it is important to see the ϕα dependence of the findings
discussed above. It is obvious that the validity of the LSCA
itself has nothing to do with ϕα . Thus, we discuss the ϕα

dependence of the TDX as well as effect of the AMA on that.
In Fig. 9 the solid (dotted) line shows the TDX calculated
with ϕα with increasing (decreasing) the range parameter r0

by 10%, r0 = 1.40 (1.14) fm; these results are obtained by
using the LSCA. The dashed line is the same as the solid line
in Fig. 5. One can see that the 10% difference of r0 changes

FIG. 8. |J (R)| on the z-x plane for y = 0, 1, 3, 5, 6, and 7 fm. The kinematical condition is the same as in Fig. 6.
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FIG. 9. The TDXs with different r0. The solid (dotted) line is the
TDX with r0 = 1.40 (1.14) fm. The dashed line is the same as in
Fig. 5 for comparison.

the magnitude of the TDX significantly, i.e., by about a factor
of three difference. This is also understood by the absorption
in the interior region. Since only the surface region contributes
to the TDX, small extension of ϕα to the exterior region
changes the magnitude of TDX drastically. It is found that
the TDX at pR = 0 calculated with the AMA differs from
that with the LSCA by only 6% at most. Furthermore, the
qualitative features shown in Figs. 7 and 8 turned out to be
independent of r0.

IV. SUMMARY

We have examined the 120Sn(p,pα)116Cd reaction at
392 MeV in the DWIA framework. To show the validity of
the DWIA model, we have demonstrated that it reproduces the
observed energy sharing cross section data of 66Zn(p,pα)62Ni
at 101.5 MeV. It was clarified that the so-called factorization
approximation adopted in many preceding studies is equivalent

to the AMA to the distorted waves, which is a further
simplification of the LSCA. Although the AMA does not
work for the propagation of α in the region where the nuclear
deflection is significant, it does not affect the TDX because
of the strong absorption in that region. In other words, the
integrand of the transition matrix has a contribution only
in the region where the AMA works well. As a result, the
factorization approximation was verified for the calculation of
the TDX of the (p,pα) reaction. It should be kept in mind,
however, that the inaccuracy of the AMA may affect the TDX
if a scattering particle feels a potential having a strong real
part and a weak imaginary part; this can be realized, for
instance, for nucleon scattering at lower energies. The strong
absorption due to the α-116Cd distorting potential makes the
(p,pα) reaction very peripheral, which allows one to clearly
probe the α-clustering of nuclei. Furthermore, the (p,pα)
reaction has high selectivity also in the direction of the target
nucleus; only the fore-side region with respect to the emitting
α with the radius of 6–9 fm is probed. It is also shown that
the factorization approximation and the peripherality of the
reaction are valid for different choices of ϕα , but the magnitude
of TDXs are strongly dependent on them. This result suggests
that it is essential to employ a reliable α-cluster wave function
for the qualitative discussion.

Validation of the on-shell approximation to the p-α transi-
tion amplitude will be important for more reliable description
of the knockout processes.
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(2010).

[32] T. Furumoto and Y. Sakuragi, Phys. Rev. C 74, 034606 (2006).
[33] S. Hama, B. C. Clark, E. D. Cooper, H. S. Sherif, and R. L.

Mercer, Phys. Rev. C 41, 2737 (1990); E. D. Cooper, S. Hama,
B. C. Clark, and R. L. Mercer, ibid. 47, 297 (1993).

[34] G. Perey and B. Buck, Nucl. Phys. 32, 353 (1962).
[35] TWOFNR, UserManual, http://www.nucleartheory.net/NPG/

codes/twofnr.pdf.
[36] T. Uesaka (private communication).
[37] K. Ogata, K. Yoshida, and K. Minomo, Phys. Rev. C 92, 034616

(2015).

044604-8

http://dx.doi.org/10.1016/S0375-9474(98)00432-1
http://dx.doi.org/10.1016/S0375-9474(98)00432-1
http://dx.doi.org/10.1016/S0375-9474(98)00432-1
http://dx.doi.org/10.1016/S0375-9474(98)00432-1
http://dx.doi.org/10.1103/PhysRevC.43.2367
http://dx.doi.org/10.1103/PhysRevC.43.2367
http://dx.doi.org/10.1103/PhysRevC.43.2367
http://dx.doi.org/10.1103/PhysRevC.43.2367
http://dx.doi.org/10.1103/PhysRevC.59.2136
http://dx.doi.org/10.1103/PhysRevC.59.2136
http://dx.doi.org/10.1103/PhysRevC.59.2136
http://dx.doi.org/10.1103/PhysRevC.59.2136
http://dx.doi.org/10.1016/0375-9474(79)90021-6
http://dx.doi.org/10.1016/0375-9474(79)90021-6
http://dx.doi.org/10.1016/0375-9474(79)90021-6
http://dx.doi.org/10.1016/0375-9474(79)90021-6
http://dx.doi.org/10.1103/PhysRevC.88.054602
http://dx.doi.org/10.1103/PhysRevC.88.054602
http://dx.doi.org/10.1103/PhysRevC.88.054602
http://dx.doi.org/10.1103/PhysRevC.88.054602
http://dx.doi.org/10.1007/b115020
http://dx.doi.org/10.1007/b115020
http://dx.doi.org/10.1007/b115020
http://dx.doi.org/10.1007/b115020
http://dx.doi.org/10.1103/PhysRevC.63.034618
http://dx.doi.org/10.1103/PhysRevC.63.034618
http://dx.doi.org/10.1103/PhysRevC.63.034618
http://dx.doi.org/10.1103/PhysRevC.63.034618
http://dx.doi.org/10.1103/PhysRevC.45.2578
http://dx.doi.org/10.1103/PhysRevC.45.2578
http://dx.doi.org/10.1103/PhysRevC.45.2578
http://dx.doi.org/10.1103/PhysRevC.45.2578
http://dx.doi.org/10.1103/PhysRevC.89.064611
http://dx.doi.org/10.1103/PhysRevC.89.064611
http://dx.doi.org/10.1103/PhysRevC.89.064611
http://dx.doi.org/10.1103/PhysRevC.89.064611
http://dx.doi.org/10.1088/0954-3899/37/8/085011
http://dx.doi.org/10.1088/0954-3899/37/8/085011
http://dx.doi.org/10.1088/0954-3899/37/8/085011
http://dx.doi.org/10.1088/0954-3899/37/8/085011
http://dx.doi.org/10.1103/PhysRevC.36.1312
http://dx.doi.org/10.1103/PhysRevC.36.1312
http://dx.doi.org/10.1103/PhysRevC.36.1312
http://dx.doi.org/10.1103/PhysRevC.36.1312
http://dx.doi.org/10.1103/PhysRevC.70.041602
http://dx.doi.org/10.1103/PhysRevC.70.041602
http://dx.doi.org/10.1103/PhysRevC.70.041602
http://dx.doi.org/10.1103/PhysRevC.70.041602
http://dx.doi.org/10.1016/j.nuclphysa.2009.12.009
http://dx.doi.org/10.1016/j.nuclphysa.2009.12.009
http://dx.doi.org/10.1016/j.nuclphysa.2009.12.009
http://dx.doi.org/10.1016/j.nuclphysa.2009.12.009
http://dx.doi.org/10.1103/PhysRevC.74.034606
http://dx.doi.org/10.1103/PhysRevC.74.034606
http://dx.doi.org/10.1103/PhysRevC.74.034606
http://dx.doi.org/10.1103/PhysRevC.74.034606
http://dx.doi.org/10.1103/PhysRevC.41.2737
http://dx.doi.org/10.1103/PhysRevC.41.2737
http://dx.doi.org/10.1103/PhysRevC.41.2737
http://dx.doi.org/10.1103/PhysRevC.41.2737
http://dx.doi.org/10.1103/PhysRevC.47.297
http://dx.doi.org/10.1103/PhysRevC.47.297
http://dx.doi.org/10.1103/PhysRevC.47.297
http://dx.doi.org/10.1103/PhysRevC.47.297
http://dx.doi.org/10.1016/0029-5582(62)90345-0
http://dx.doi.org/10.1016/0029-5582(62)90345-0
http://dx.doi.org/10.1016/0029-5582(62)90345-0
http://dx.doi.org/10.1016/0029-5582(62)90345-0
http://www.nucleartheory.net/NPG/codes/twofnr.pdf
http://dx.doi.org/10.1103/PhysRevC.92.034616
http://dx.doi.org/10.1103/PhysRevC.92.034616
http://dx.doi.org/10.1103/PhysRevC.92.034616
http://dx.doi.org/10.1103/PhysRevC.92.034616



