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Effects of microscopic transport coefficients on fission observables
calculated by the Langevin equation
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Nuclear fission is treated by using the Langevin dynamical description with macroscopic and microscopic
transport coefficients (mass and friction tensors), and it is elucidated how the microscopic (shell and pairing)
effects in the transport coefficients, especially their dependence on temperature, affects various fission
observables. We found that the microscopic transport coefficients, calculated by linear response theory, change
drastically as a function of temperature: in general, the friction increases with growing temperature while
the mass tensor decreases. This temperature dependence brings a noticeable change in the mass distribution
and kinetic energies of fission fragments from nuclei around 236U at an excitation energy of 20 MeV. The
prescission kinetic energy decreases from 25 MeV at low temperature to about 2.5 MeV at high temperature.
In contrast, the Coulomb kinetic energy increases as the temperature increases. Interpolating the microscopic
transport coefficients among the various temperatures enabled our Langevin equation to use the microscopic
transport coefficients at a deformation-dependent local temperature of the dynamical evolution. This allowed us
to compare directly the fission observables of both macroscopic and microscopic calculations, and we found
almost identical results under the conditions considered in this work.

DOI: 10.1103/PhysRevC.94.044602

I. INTRODUCTION

Nuclear fission continues to be an interesting subject from
a basic research point of view, since it involves large-scale col-
lective motion leading to violent rearrangement of nucleons,
exhibiting a strong quantum nature (shell and pairing effects)
in the low-energy region. Nuclear fission is also the basic
phenomenon in many applications such as nuclear technology
and medicine. There are many observables associated with
fission: excitation function, angular distribution of fission
fragments, mass and charge (or isotopic) distribution of fission
fragments, their kinetic energies, pre- and post-fission particle
emissions, and so on. All these observables are correlated
to each other, and hence should be considered or treated in
a consistent manner. This requires a deep understanding of
nuclear fission.

Statistical approaches in terms of reproducing the results of
fission observables have seen success [1–5], although most
of them include phenomenology to a great extent, or the
range of their applicability is limited. The dynamical studies
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of fission—typical reviews are given in Refs. [6,7]-have had
a good measure of success in recent years in reproducing
the results of experimental data. Comparison of dynamical
results is often made for the mass yield distribution of fission
fragments and the associated kinetic energy [8–13]. The
attention given to the dynamical study of fission is due to
possible insights it offered into our deeper understanding of
fission phenomena with less phenomenology or assumption.
For example, the role of shell effects is essential in fission
at low excitation energy, with special attention given to the
production of a double-humped shape of the mass and charge
distributions of fission fragments. It has often been shown
that by excluding shell effects, one will obtain a single-peak
result. Shell effects [14,15] are introduced here by using a
shell correction to the potential energy surface [11–13]. In the
literature, one often encounters the use of mass and friction,
which are referred to as “transport coefficients” in general,
inspired from the macroscopic concepts for the calculation
of the Langevin equation [10–13]. Most common is the use
of hydrodynamical mass [16,17] and friction [18,19]. These
“macroscopic” transport coefficients are used mainly because
of the simplicity of calculating them in most of the previous
works on fission. However, they do not contain any quantum
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effects even though it was found that, as explained above,
quantum effects in the potential energy surface are essential to
understand the double-humped structure of mass (or charge)
distribution of fission fragments for low-energy fission of many
actinides. Furthermore, the microscopic transport coefficients
reveal strong temperature dependence, a feature which is
completely missing in the macroscopic transport coefficients.
The microscopic transport coefficients have been discussed
in many textbooks and review articles; see, for example,
[20–25]. However, up to now the microscopic mass and
friction tensors were employed in the Langevin calculation
of the fusion-fission (or quasifission) process only in works by
the Omsk-Dubna-Kiev group [26,27]. The so-called diagonal
component of the microscopic mass tensor was used in [28,29]
for the description of fusion reactions within the concept of a
dinuclear system.

In the present work, we seek to improve the current
understanding of the fission process of actinides at lower
excitation energy region, where quantum (shell and pairing)
effects are essential, by introducing microscopic effects into
the mass and friction as well as in the potential energy for use
in the Langevin equation.

Incorporating microscopic effects into the mass and friction
is done by means of linear response theory and local harmonic
approximation [30]. Linear response theory is commonly used
to analyze the response to external disturbances on the system.
The application of the theory is wide ranging; the most obvious

uses are in signal analysis and radio transducers. It extends
almost to any system that we can describe as an oscillator.
In quantum theory applications, the theory is introduced by
Kubo [31] to describe the fluctuation and dissipation theorem
in a many-particle system.

This paper is organized as follows. In Sec. II, we will de-
scribe how the nuclear shape and potentials are parametrized.
In Sec. III, the way to calculate transport coefficients, both in
macroscopic and microscopic models, is described, and typical
results of both types of calculations are compared. In Sec. IV,
we perform the Langevin calculation by using both types of
transport coefficients, and discuss how the quantum effects,
especially the temperature dependence of the microscopic
transport coefficients, will affect various observables in nuclear
fission. Section V is devoted to concluding remarks.

II. THE SHAPE PARAMETRIZATION AND THE
POTENTIAL ENERGY

In present work we use the two-center shell model sug-
gested by Maruhn and Greiner [32] and the code developed by
Suekane, Iwamoto, Yamaji, and Harada [33,34]. In this model
the mean-field potential includes the central part V (ρ,z), ls,
and l2 terms. The potential V (ρ,z) in the two-center shell
model consists of two oscillator potentials smoothly connected
together (see Fig. 1),

V (ρ,z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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with

f1(z,zi) = 1 + ci(z − zi) + di(z − zi)
2,

(2)
f2(z,z2) = 1 + gi(z − zi)

2.

The potential (1)–(2) contains 12 parameters. By imposing
conditions that parts of the potential are joined smoothly at
z = z1, z = z2, and z = 0, the number of parameters is reduced
to 5. These are the elongation parameter z0 ≡ z2 − z1, the
mass asymmetry α = (V1 − V2)/(V1 + V2) (V1 and V2 are the
volumes to the left and right from z = 0), the deformations δi of
the left and right oscillator potentials, and the neck parameter
ε. The neck parameter ε is given by the ratio of the potential
height E at z = 0 to the value E0 of left and right harmonic
oscillator potentials at z = 0 (which should be the same); see
Fig 1. All the parameters appearing in (1) can be expressed in
terms of these five deformation parameters.

The ratio of oscillator frequencies ωρ/ωz or the ratio of
semi-axes in ρ and z directions is related to the deformation

parameters δi as

ωρi

ωzi

≡ Bi = 3 + δi

3 − 2δi

. (3)

FIG. 1. The two-center shell model potential (1) for ρ = 0.
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FIG. 2. The shape of a nuclear surface calculated with the two-
center shell model parametrization (δ = 0.2, ε = 0.35, solid lines)
and the modification (6) (dashed lines).

The shape of the nuclear surface within TCSM is identified
with the surface of constant potential (1), V (ρ(z),z) = V0.
The constant V0 is found from the requirement that the volume
inside the equipotential surface is equal to the volume of a
spherical nucleus.

Few examples of the profile function ρ(z) are shown in
Fig. 2 (solid curves). In the left part of the figure one sees
the well known drawback of the restricted (δ1 = δ2 ≡ δ) two-
center shell model shape parametrization: for z0 = 0 the profile
function is discontinuous for α �= 0. This difficulty can be
overcome imposing the condition

ρ(z = z1) = ρ(z = z2). (4)

From the definition of the profile function ρ(z) it can be
shown in a formal way that condition (4) is fulfilled if B1/B2 =
(1 + α)/(1 − α). The last relation offers the introduction of the
α-dependent deformation parameters B1 and B2,

B1(δ,α) = B0(1 + α),

B2(δ,α) = B0(1 − α), (5)

with B0 = (3 + δ)/(3 − 2δ).

It is clear that condition (4) should hold true only for small
values of z0. At large values of z0 the profile function ρ(z) is
quite smooth and B1,B2 should turn into B0 (in the case that
δ1 = δ2). This is achieved by introducing a weighting function
f (z0) that guaranties the smooth transition from B1,B2 to B0

as z0 becomes large:

B1(δ,α) = f (z0)B0(1 + α) + [1 − f (z0)]B0,
(6)

B2(δ,α) = f (z0)B0(1 − α) + [1 − f (z0)]B0,

with

f (z0) = 1/{1 + exp [(z0 − z00)/�z0]}. (7)

The parameters z00 and �z0 are fixed in the present work as
z00 = R0 and �z0 = 0.2R0. So, the factor f (z0) is close to 1
at small values of z0 and is negligibly small for large values of
z0. As one can see from Fig. 2 the discontinuity of the profile
function ρ(z) at small values of z0 disappears.

The potential energy surface is one of the most important
ingredients of the Langevin equation. At low excitation energy
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FIG. 3. The deformation energy of 236U as function of elongation
(the distance R12 between the centers of mass of left and right parts
of the nucleus) and the mass asymmetry α.

the collective motion is slow and the dynamical trajectories
follow mainly the bottom of the potential energy valley.
Looking at the potential energy, one can estimate roughly the
most probably masses of the fission fragments.

As in [35], in the present work we calculate the potential en-
ergy within the macroscopic-microscopic method [20,36,37].
In this method the deformation energy is represented as the
sum of the macroscopic part ELD

def and the shell correction δE
(including the shell correction to the pairing energy):

Edef = ELD
def + δE with δE =

∑
n,p

(
δE

(n,p)
shell + δE(n,p)

pair

)
.

(8)

The summation in (8) is carried out over the protons (p)
and neutrons (n). The ELD

def in (8) is the macroscopic part of
the deformation energy, ELD

def = ELD − E
(sph)
LD . The ELD was

calculated with the finite-range liquid drop model [38] as the
sum of the surface energy ES and the Coulomb energy EC,
and E

(sph)
LD is the liquid-drop energy for spherical shape.

The δEshell was calculated from the single-particle levels of
the two-center shell model potential [32–34] as the difference
between the sum of single-particle energies of occupied states
and the averaged quantity. The pairing correlation energy Epair

was evaluated in the BCS approximation following [20].
The calculated deformation energy Edef (8) of the nucleus

236U is shown in Fig. 3 as function of elongation R12 (the
spherical shape corresponds to R12 = 0.75R0) and the mass
asymmetry α. The energy was minimized with respect to the
deformation of fragments (δ1 = δ2 = δ) keeping fixed R12 and
α. One can clearly see the ground state, the mass-asymmetric
saddle, and the scission region.

III. TRANSPORT COEFFICIENTS FOR SLOW
COLLECTIVE MOTION

A. Macroscopic friction and mass parameters

The Langevin equations are often solved with the so-
called macroscopic transport coefficients. The macroscopic

044602-3



M. D. USANG, F. A. IVANYUK, C. ISHIZUKA, AND S. CHIBA PHYSICAL REVIEW C 94, 044602 (2016)

mass tensor MWW
μν is usually defined in the Werner-Wheeler

approximation [16]

MWW
μν = πρ0

∫
ρ2(z)

[
Aμ(z)Aν(z) + ρ2(z)

8
A′

μ(z)A′
ν(z)

]
dz,

(9)

with

Aμ(z; Q) = 1

ρ2(z,Q)

∂

∂Qμ

∫ zmax

z

ρ2(z′,Q)dz′. (10)

The popular expression for the macroscopic friction is the
so called wall formula for friction [19]. According to [19],
friction coefficient γ wall is proportional to the squared normal
velocity u2

n(s) of the surface, integrated over the nuclear
surface. Following [19] this may be deduced from the loss
of collective energy, which is given by

Ė = 3

4
ρ0vF

∮
u2

n(s)ds =
∑
μν

γ wall
μν q̇μq̇ν, (11)

where vF and ρ0 are the Fermi velocity and the nucleon density,
ρ0 = A/(4πR3

0/3). For axial symmetric shapes the surface
velocity un(s) can be expressed in terms of derivatives of the
profile function ρ(z; Q), and the wall friction coefficient turns
into

γ wall
μν = 3π

4
ρ0vF

∫
∂ρ2

∂Qμ

∂ρ2

∂Qν

[
4ρ2 +

(
∂ρ2

∂z

)2]−1/2

dz.

(12)

The expression (12) was derived for a semi-infinite system, so
for the Fermi momentum �kF = mvF we use here the estimate
from the infinite Fermi gas, kF R0 = (9πA/4)1/3.

From the derivation of the wall formula it is clear that un is
the velocity of the surface with respect to the bulk of the gas.
When applied to a rotating or translating nucleus un has to be
measured with respect to a comoving or corotating frame. For
configurations close to scission it seems natural to associate
the average velocity of particles in each of the two fragments
with the center-of-mass velocity of the fragment. The friction
tensor then becomes [39] (see also [23])

γ wall 2
μν = 3π

4
ρ0vF

(∫ 0

zmin

IL(z)dz +
∫ zmax

0
IR(z)dz

)
, (13)

with

IL,R(z) =
(

∂ρ2

∂Qμ

+ ∂ρ2

∂z

∂zcm(L,R)

∂Qμ

)

×
(

∂ρ2

∂Qν

+ ∂ρ2

∂z

∂zcm(L,R)

∂Qν

)[
4ρ2 +

(
∂ρ2

∂z

)2]−1/2

.

(14)

It was also suggested [40] that close to scission the wall friction
should be corrected by the “window term”

γ window
μν = 1

2
ρ0v̄

[
�σ

(
∂R12

∂Qμ

∂R12

∂Qν

)
+ 32

9�σ

∂VL

∂Qμ

∂VL

∂Qν

]
,

(15)

so that the “wall friction” turns into “wall-and-window”
friction tensor

γ w+w
μν = γ wall 2

μν + γ window
μν . (16)

One expects a smooth transition between the regime in which
the wall formula applies and the part of fission path where
wall-and-window friction should be used. For this Nix and
Sierk [41] proposed the phenomenological ansatz

γ total
μν = sin2(πα/2)γ wall

μν + cos2(πα/2)γ w+w
μν , (17)

with α = (rneck/Rmin)2, where Rmin is the minimal semi-
axis of two outer ellipsoids in three-quadratic-surfaces shape
parametrization.

Equations (9) and (12) provide rather simple expressions for
the tensors of frictions and inertia. The macroscopic transport
coefficients depend only on the shape (deformation) of the
system. They do not contain any quantum effects which should
be important at least at low excitation energies.

B. Microscopic friction and mass parameters

The so-called microscopic transport coefficients can be
defined within the linear response approach and the local
harmonic approximation [30]. This approach is based on
the microscopic nuclear Hamiltonian. Thus, many quantum
effects, such as the shell and pairing effects and the dependence
of the collisional width of single-particle states on the excita-
tion energy, are taken into account. The two main ingredients
of this approach are the mean-field Hamiltonian and the
account of the collisional width of single-particle states. For
the mean-field Hamiltonian we use here the two-center shell
model. For the collisional width of single-particle states in
the presence of pairing effects we use the expression derived
in [42].

The precise expressions for the friction γμν and mass
tensors Mμν one can find in [43]. These are

γμν(0) = 2�

′∑
jk

(
nT

k − nT
j

)
ξ 2
kj

E−
kj�kj[

(E−
kj )2 + �2

kj

]2 Fkj
μ F jk

ν

+ 2�

∑
jk

(
nT

k +nT
j −1

)
η2

kj

E+
kj�kj[

(E+
kj )2 + �2

kj

]2 Fkj
μ F jk

ν ,

(18)

Mμν(0) = �
2

′∑
jk

(
nT

k − nT
j

)
ξ 2
kj

E−2
kj [E−

kj − 3�kj ][
(E−

kj )2 + �2
kj

]3 Fkj
μ F jk

ν

+ �
2
∑
jk

(
nT

k +nT
j −1

)
η2

kj

E+2
kj [E+

kj − 3�kj ][
(E+

kj )2 + �2
kj

]3 Fkj
μ F jk

ν .

(19)

Here Ek,Ej are the energies of quasiparticle states in the
BCS approximation, E−

kj ≡ Ek − Ej , E+
kj ≡ Ek + Ej , nT

k ≡
1/[1 + exp(Ek/T )], ηkj = ukυj + ujυk , ξkj = ukuj − υkυj ,
and uk,υk are the coefficients of Bogoliubov-Valatin transfor-
mation. The operator F̂μ, which appears in (18)–(19), is the
derivative of the single-particle Hamiltonian with respect to the
deformation parameter Qμ. The quantity �kj is the average
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width of the two-quasiparticle states, �kj = [�(Ek,�,T ) +
�(Ej ,�,T )]/2. The calculation of �kj for the system with
pairing is explained in detail in [42].

In (18)–(19) the summation is carried out over the single-
particle states |k〉 and |l〉. More precisely, the contributions to
the first sums in (18)–(19) come only from the nondiagonal
matrix elements F

kj
μ . The first sums are different from zero

only for T �= 0 (for T = 0 all nT
k are equal to zero). The

second sums in (18)–(19) are finite also in case T = 0. Both
diagonal and nondiagonal matrix elements F

kj
μ contribute to

these sums.
As in the case of the cranking mass parameter calculated

within the BCS approximation, the diagonal contribution
to (19) is proportional to 1/�2; see [20]. So, at the deformation
points where the density of single-particle states at the Fermi
energy is very small, or close to the critical temperature where
the pairing gap disappears, the the diagonal contribution to (19)
becomes unreasonably large. Luckily, at the same deformation
point the friction tensor is large too for the same reason. The
quantity that is essential for the Langevin equations is the
ratio γμν/Mμν . This ratio is a much smoother function of
deformation compared to both γμν and Mμν . So, large diagonal
contributions to γμν and Mμν do not cause many problems in
solving the Langevin equations.

The expressions (18)–(19) were derived within the quantum
approach with the shell and pairing effects taking into account.
In what follows we will call these expressions microscopic
transport coefficients.

C. Numerical results for the transport coefficients

A comparison of the z0z0 component of microscopic trans-
port coefficients calculated for several values of temperature
Ttr is shown in Fig. 4. Here, the quantity Ttr is referred
to as the microscopic transport temperature and denotes
the thermodynamical temperature at which the microscopic
transport coefficients are calculated.

Like in the previous calculation [35,42] the deformation
dependence of both friction and mass tensors shows sharp
peaks at avoided crossings of single-particle energies close
to the Fermi energy. For several reasons it was claimed
in [42] that to a large extent such fluctuations are shortcomings
of the underlying shell model. It was suggested to overcome
these difficulties by averaging the transport coefficients over
deformation. The averaging interval should be large enough
to smooth out the rapid oscillations, as well as the fine details
of the shell structure, but at the same time small enough to
preserve gross shell effects. The microscopic friction and mass
tensors (18)–(19) shown in Fig. 4 were averaged in elongation
z0 on the interval �z0 = 0.1R0. The averaging procedure is
described in detail in [35].

As we can see from Fig. 4, the microscopic mass tensor de-
creases with increasing Ttr while the friction tensor increases as
Ttr increases. At large temperatures both microscopic friction
and mass coefficients look similar to macroscopic friction and
mass. At small temperatures the microscopic and macroscopic
transport coefficients deviate from each other very much. Thus,
the results of dynamical calculations with the microscopic and
macroscopic transport coefficients can deviate from each other
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2.0MeV
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5MeV

236U α=0.2,δMicroscopic mass =0.2

α=0.2,δ=0.2

Werner-Wheeler
Macroscopic mass

FIG. 4. Comparison of the z0z0 component of the microscopic
mass tensor (19) calculated at several values of Ttr with the Werner-
Wheeler approximation (9) (top) and a similar comparison of the z0z0

component of the microscopic friction tensor (18) for several values
of Ttr with the macroscopic approximation (17) (bottom).

at, e.g., the saddle, where the temperature can be quite small.
The comparison of the microscopic and macroscopic transport
coefficients calculated within the two-center shell model shape
parametrization can be found also in [35].

The components of the mass tensor (19) calculated for
the typical temperature T = 1 MeV and fixed δ = 0.2 are
shown as function of elongation z0/R0 and mass asymmetry
α in Fig. 5. It turns out that the diagonal and nondiagonal
components of the mass tensor do not differ much in
magnitude. That means that equations for the time variation of
deformation parameters in (20) are strongly coupled to each
other. All three parameters change at more or less the same
speed. One can not say that, for example, the motion in z0/R0

is fast and motion in δ is slow.
The frequency of fluctuations in the deformation depen-

dence of the mass tensor is approximately the same as in the
case of potential energy. So, these fluctuations can be related
to the shell structure. It is difficult, however, to say what is
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FIG. 5. The components of the microscopic mass tensor (19) calculated for δ = 0.2 and T = 1 MeV.

the effect of these fluctuations on the fission observables.
Many trajectories in the multidimensional deformation space
contribute to the final results and the effects of fluctuations
should be averaged somehow.

At T = 1 MeV all components of mass tensor (19) are
several times larger that these calculated within the Werner-
Wheeler approximation. So, in principle, the macroscopic and
microscopic descriptions of the fission process can lead to
different results.

IV. LANGEVIN EQUATION

The Langevin equation for the description of fissioning
nuclei are defined as a system of first-order differential
equations,

dqμ

dt
= (m−1)μνpν

dpμ

dt
= − ∂V

∂qμ

− 1

2

∂

∂qμ

(m−1)νσpνpσ

− γμν(m−1)νσpσ + gμνRν(t), (20)

where the collective coordinates, {qi} = (z0/R0,δ,α) were
introduced in the previous section. As a brief reminder, z0 is
the elongation of the nucleus, R0 is the radius of the spherical
compound nucleus, δ is the deformation of fragments, and α
is the mass asymmetry. The parameters δ1 and δ2 are assumed
to be the same, δ1 = δ2 = δ, and the neck parameter is kept
constant, ε = 0.35.

The smaller number of dynamical variables allows one to
reduce the computation time to a manageable level. Here, as
in the previous works, we use the value ε = 0.35, which was
recommended in Ref. [44] for the fission process. Keeping
ε fixed does not mean that the neck radius is fixed. The neck
radius within the two-center shell model shape parametrization
depends on all five deformation parameters.

Even keeping the neck parameter ε fixed one gets a
quite reasonable variety of fission shapes from the sphere
to the two separated fragments; see Fig. 10 of [11]. The
deformation energy calculated with ε = 0.35 is rather close
the that obtained with the optimal shapes [45]. Keeping ε
fixed in dynamical calculations means that the neck radius is
assumed to adjust itself infinitely fast to the equilibrium value
defined by the other deformation parameters. Eventually, all
the results obtained in the present work and previous dynamical
calculations with constant ε confirm that fixed ε is quite a
meaningful approximation for the fission process.

The momentum conjugate to each of the collective coor-
dinates is denoted as pμ. The symbol (m−1)μν denotes the
inverse of mass tensor, and γμν is the friction tensor.

The Langevin random force gμνRν(t) is the product of white
noise Rν(t) and the temperature-dependent strength factors
gμν . The factors gμν are related to the temperature and friction
tensor via the Einstein relation,

∑
σ

gμσgσν = T γμν. (21)

The temperature, T in this context is related to the excitation
energy Ex and internal energy Eint,

Eint = Ex − 1
2 (m−1)μνpμpν − V (q,Eint) = aT 2, (22)

where a is the level density parameter. The temperature defined
in this way will be referred to as “local temperature” in the
following. The potential, V (q) used here was calculated by
the two-center shell model. The shell corrections δEshell and
δEpair, see (8), were calculated for T = 0. We account for the
temperature dependence of the shell and pairing effects as

V (q,Eint) = ELD
def + �sh(Eint)δEshell + �pair(Eint)δEpair .

(23)
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We adopted functions for the temperature dependence of shell
and pair corrections described by Randrup and Möller [14]:

�(Eint)sh,pair = 1 + eE1/E0

eEint/E0 + eE1/E0
. (24)

This form can be reduced to the description of Ignatyuk [15]
by setting eE1/E0 = 0. The parameter E0 is interpreted as the
shell damping energy, and E1 as an energy shift, as explained
in Ref. [14].

The mass tensor mμν and friction tensor γμν used in the
Langevin equations were calculated both by macroscopic and
microscopic models. In the macroscopic models, the mass
tensor was calculated by the Werner-Wheeler approxima-
tion (9), and the friction tensor by a modified wall-and-window
formula (17). In the microscopic calculation, the mass tensor
mμν is calculated within the linear response theory (19).
Similarly, the microscopic friction tensor is given by Eq. (18).

The Langevin calculation was started at either the potential
minimum (the ground state) or around the second minimum.
As far as the results presented in this work are concerned, both
choices gave identical results. Initially, the momentum pμ’s
were set to be zero, and Langevin motions were initiated by
the conservative and random forces. Such calculations were
continued until the trajectories reached scission points, which
are defined as points where the neck radius becomes zero.
Calculations were repeated typically 105 to 106 times, then
final phase-space data were stored on a disk, and various
quantities were calculated after all the Langevin calculations
were finished.

V. FISSION PRODUCT YIELD

A. Macroscopic results

We describe in this paper the fission of the compound
nucleus 236U at the excitation Ex = 20 MeV and compare the
calculated results with JENDL/FPY-2011 data [46] for 14 MeV
neutron induced fission of 235U. Prior to using microscopic
calculations, we verified our code by using the macroscopic
transport coefficients (see Fig. 6). All macroscopic results
are calculated with (E0,E1) = (15 MeV, 30 MeV) in (24)
for the damping of shell and pair corrections with increasing
excitation energy.

The averages of mass yields for light and heavy fission
fragments, which we denote as 〈AL〉 and 〈AH 〉 henceforth,
respectively are 94.4 and 135.2 each for the JENDL data.
In our macroscopic calculation we obtained 〈AL〉 = 96.7 and
〈AH 〉 = 135.3. As we can see, the agreement of the calculated
mass yield and JENDL evaluated mass yield is reasonably
good.

We have also calculated the mass yield with macroscopic
transport coefficients including effects of multichance fission.
For this purpose, we superposed mass distributions from 236U,
235U, and 234U with fission probabilities calculated by GEF

code [5] by successively reducing excitation energy, and
obtained the multichance fission product yield as shown in
Fig. 7. The multichance fission product yield shows aresult
very similar to a pure first-chance result for the mass yield,
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F
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Y

236U 

Ex = 20 MeV
Macro. Calc. 

FIG. 6. The fission product yield (FPY) of 236U at the excitation
energy Ex = 20 MeV. The circles denote the experimental data from
the library JENDL/FPY-2011 [46], while the present results obtained
by using macroscopic transport coefficients are shown as a histogram.
The error bars mark the statistical uncertainty of present results. The
yield is normalized to 2.

and the averages for light and heavy mass fission fragments
are 〈AL〉 = 94.8 and 〈AH 〉 = 136.3, respectively. The largest
change may be a slight reduction of the symmetric component,
due to contributions of fission channels with reduced excitation
energy. We expect that further adjustment of shell corrections
could improve the current results, but still we can conclude that
the multichance fission does not alter the main characteristics
of the fission observables in the current condition. Therefore,
all the results to be shown in the following were obtained
as results of the calculation corresponding to the first-chance
fission.
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Y

1st chance

Multi-chance

FIG. 7. The comparison of fission product yield of the multi-
chance fission calculation (blue histogram), the first-chance fission
calculation (black histogram), and JENDL data (red circles). The cal-
culations were performed with the macroscopic transport coefficients.
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B. Microscopic results

Contrary to the macroscopic results, all microscopic results
are calculated with full shell correction, namely, �sh,pair = 1.
This is because we can adjust the combination of the shell
correction parameters (E0,E1) to reproduce the experimental
mass yields in various ways as shown in Ref. [14]. In this
subsection, we would like to clarify the effect of microscopic
transport coefficients by excluding ambiguities due to shell
correction.

By using microscopic transport coefficients, we have to
adjust them to the local temperature T defined in Eq. (22) as
fission evolves.

By interpolating the microscopic transport coefficients
calculated at several microscopic transport temperature, we
can determine the microscopic transport coefficients at the
local temperature given at each deformation; i.e., defining
the temperature according to Eq. (22). We call such a
calculation the microscopic local temperature calculation.
In Fig. 8 we show the mass distribution obtained with mi-
croscopic local temperature including temperature-dependent
microscopic effects on transport coefficients in the Langevin
equation. We notice that the overall agreement with the data
given JENDL/FPY-2011 is very close to what we got with
macroscopic transport coefficients.

Similar calculations were performed for compound nuclei
234U and 240Pu at an excitation energy of 20 MeV, and are
compared in Figs. 9 with data given in JENDL-4, which
correspond respectively to 233U +n and 239Pu +n reactions
at a neutron energy of 14 MeV. The agreement with the
data given in JENDL-4 is almost equivalent to that of 236U
shown in Figs. 6 and 8; namely, both the calculations with
macroscopic transport coefficients, which are independent of
temperature, and that with microscopic transport coefficients,
which depends on local temperature, can reproduce experi-
mental information given in JENDL-4.
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Ex = 20 MeV

FIG. 8. The fission product yield for the 236U compound nucleus
at an excitation energy of 20 MeV calculated with the microscopic
transport coefficients, which depend on deformation-dependent local
temperature.
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FIG. 9. The fission product yield for 234U (top) and 240Pu (bottom)
compound nuclei at an excitation energy of 20 MeV calculated
with the temperature-independent macroscopic (broken blue his-
togram) and microscopic (black histogram) transport coefficients at
deformation-dependent local temperature compared with data given
in JENDL-4 (red circles).

It is frequently argued that the pairing effect damps much
faster than the shell effect. We have set the damping energy for
the pairing effect to 5, 10, 20, 30 MeV and also set �pair = 1
while keeping the shell correction factor �sh, and compared
mass distributions for 236U in Fig. 10 for macroscopic (top)
and deformation-dependent microscopic (bottom) transport
coefficients. We can see that the change brought by different
pairing correction factors is not significant. There seems to
be a slight difference of sensitivity to the different choices
of pairing correction between the results with macroscopic
and microscopic transport coefficients in the symmetric
component. However, the difference is well within the range
of statistical uncertainty. Therefore, we can conclude that
the pairing effect to the potential energy does not affect the
mass distribution of the fission fragments noticeably in this
fissioning nuclei region and excitation energy region.

VI. KINETIC ENERGY OF FISSION FRAGMENTS

Apart from the mass yields, additional important results are
the prescission kinetic energy of fission fragments, Coulomb
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FIG. 10. The fission product yield for 236U at an excitation energy
of 20 MeV. The top figure compares the Langevin calculation
with different choices of pairing correction energy (or factor) to
the potential energy with macroscopic transport coefficients, while
the bottom figure compares those calculated with microscopic
transport coefficients, which depends on deformation-dependent local
temperature.

repulsion energy, and total kinetic energy. All the following
calculations were performed for the compound 236U nucleus
at an excitation energy Ex of 20 MeV.

As the nuclide evolves from saddle to scission, a portion
of the excitation energy of the system is transformed into
the prescission kinetic energy of fragments. The dependence
of prescission kinetic energy on the microscopic transport
temperature Ttr is shown in Fig. 11 by circles connected
by a solid line. Except for a region of very low Ttr, the
prescission kinetic energy has generally a decreasing trend.
This could be easily understood. As Ttr gets larger so does the
friction tensor, which suppresses the kinetic energy acquired
by fragments when they proceed to descend from saddle to
scission. At low Ttr, the prescission kinetic energy is close to
20 MeV and decreases to about 2.5 MeV at high Ttr. Again,
we can stress that temperature dependence of the microscopic
transport coefficients has a drastic impact on the prescission
kinetic energy. In typical trajectories, the local temperature
gets values in the range from 0.1 to slightly over 1 MeV.
The blue line in Fig. 11 exhibits the result obtained with
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FIG. 11. The prescission kinetic energy of fission fragments as a
function of temperature Ttr at which the transport coefficients were
calculated for 236U at Ex = 20 MeV. The horizontal red and blue
lines denote the values calculated with the macroscopic transport co-
efficients and the local-temperature-dependent microscopic transport
coefficients, respectively.

the microscopic transport coefficients at local temperature,
which gives the value of 15.7 MeV. Once again, one should
understand that these values are obtained by superposition of
many components depending on the local temperature. On
the other hand, the red line denotes the result obtained with
macroscopic transport coefficients, which is close to 17.1 MeV.
These values are very consistent with our common knowledge.

In Fig. 12 we plot the average value 〈δ〉 of fragment
deformation at the scission point and the Coulomb interac-
tion energy of fission fragments at the moment of scission
as function of Ttr. The Coulomb interaction energy was
calculated by using the center-of-mass distance of the two
fragments at scission and the assumption of unchanged, point
charge distribution. The resulting Coulomb interaction energy
obtained with the local-temperature microscopic calculation
(blue horizontal line) is 154.0 MeV. This value is larger by
about 3.6 MeV than that for the macroscopic calculation
(shown by a red horizontal line).

It is to be noted that the 〈δ〉 at scission was calculated as
an event average of the δ at scission points. It is interesting
that this quantity depends on the Ttr in the way represented
in the top panel of Fig. 12. Above 0.5 MeV, this quantity has
a monotonically decreasing trend toward oblate shape. This
is what we expect when a deformable object, dropping off a
slope, moves under a strong influence of friction. This gives
rise to the increase of the Coulomb kinetic energy at scission
due to the resulting compact shapes as Ttr increases.

In addition, we notice that in Figs. 11 and 12 there are
“bends” at around Ttr = 0.5 MeV. We have not clarified
the origin of such bends, but we presume that they are due
to an interplay between the rapidly increasing friction and
decreasing mass tensors at low temperatures, especially due to
disappearance of pairing at T ≈ 0.5 MeV.
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FIG. 12. The average deformation 〈δ〉 of fission fragments at
scission as function of Ttr (top) and the Coulomb interaction energy
of fission fragments at scission (bottom) for 236U at Ex = 20 MeV.
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FIG. 13. Comparison of calculated total kinetic energy of fission
fragments for 236U with the experimental data of Dyachenkov and
Kuzminov [47] (full circles) and Zeynalov et al. [48] (open circles)
for 235U +n.

The total kinetic energy (TKE) defined here as the sum
of Coulomb interaction and the prescission kinetic energies
is shown in Fig. 13. For comparison, we plot experimental
data measured with thermal neutrons [48] and 15.5 MeV
neutrons [47]. The total kinetic energy of fragments below
A = 132 for all calculation follows closely the experimental
TKE for 15.5 MeV incident neutrons.

VII. SUMMARY

We have calculated observables for fission of nuclei
around 236U at excitation energy of 20 MeV by using the
three-dimensional Langevin model and compared them with
experimental information. Here, our emphasis was placed
on how the microscopic effects in the transport coefficients
(inertia and friction tensors) affect various fission quantities.
For this purpose, we have carried out calculations with
(1) macroscopic transport coefficients which do not depend
on local temperature, (2) microscopic transport coefficients
calculated at some fixed temperature Ttr, and (3) micro-
scopic transport coefficients determined at local, deformation-
dependent temperature.

We have found that the microscopic friction and mass ten-
sors have strong temperature dependence. Especially, the fric-
tion tends to be very small at low temperature. Consequently,
it was shown that the mass distributions, prescission kinetic
energy, and Coulomb kinetic energy of fragments have strong
dependence on the temperature Ttr at which the microscopic
transport coefficients are calculated. The mass distribution
calculated with the microscopic transport coefficients at very
low temperature has a peak at the symmetric fission point,
indicating the fact that small friction (due to pairing) allows a
certain fraction of Langevin trajectories to pass over the ridge
between symmetric and asymmetric fission channels and arrive
at the valley of macroscopic potential energy. This tendency
gets weaker as Ttr increases, and eventually even gives rise to a
suppression of the symmetric component. When microscopic
transport coefficients are calculated at the local temperature,
the final outcome of the mass distribution was found to
be very similar to that obtained with macroscopic transport
coefficients. It was also found that the pairing correction
to the potential energy does not affect the mass distribution
noticeably even though the paring effect on the friction tensor
is significant and alters the mass distribution calculated at
different temperatures Ttr.

The prescission kinetic energy of fission fragments ranges
from 25 to 2.5 MeV when Ttr is varied from low to high
values. Similarly, the average deformation of fragments and
Coulomb kinetic energy strongly depend on Ttr. Therefore,
we found again a strong effect of the microscopic transport
coefficient depending on Ttr. When the local temperature is
used, however, these quantities tend to give values similar to
those calculated with macroscopic transport coefficients in the
situation investigated in this work.

We have elucidated the microscopic effect of transport
coefficients on Langevin dynamics in this work. However, the
calculation is limited to 234U, 236U, and 240Pu at an excitation
energy of 20 MeV. More work is necessary if the effects found

044602-10



EFFECTS OF MICROSCOPIC TRANSPORT COEFFICIENTS . . . PHYSICAL REVIEW C 94, 044602 (2016)

in this work apply to other systems including systematic trends
of fission observables in nearby nuclei and other regions of
excitation energy. As such, they could be the subject of future
work.

We are aware that within the Langevin approach one can
examine the configuration of system at the scission point.
For example, one could find the deformation of light and
heavy fragments just before the scission for different values
of the mass asymmetry. Such information would be very
useful for the approaches based on the scission point model.
However, for meaningful results we would have to carry out the
calculations with δ1 �= δ2. Unfortunately, in the present version
of the two-center shell model code we use, the microscopic
transport coefficients are calculated only for the case δ1 = δ2.
The modification to the case δ1 �= δ2 requires a substantial
rearrangement of the whole code. This will take some time.

The calculations with δ1 �= δ2 will therefore be also the subject
of our future studies.
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