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The existence of the 0+
3 and 0+

4 states around 10 MeV excitation energy in 12C is confirmed by a
fully microscopic 3α cluster model. Firstly, a generator coordinate method (GCM) calculation is performed
by superposing optimized 2α + α Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave functions with the radius-
constraint method. The obtained two excited 0+ states above the Hoyle state are consistent with the recently
observed states by experiment. Secondly, a variational calculation using the single 2α + α THSR wave function
orthogonalized to the ground and Hoyle states is made and it also supports the existence of the 0+

3 state obtained
by the GCM calculation. The analysis of the obtained 0+

3 state is made by studying its 2α-α reduced width
amplitude, its 2α correlation function, and the large monopole matrix element between this state and the Hoyle
state, which shows that this 0+

3 state is a breathing-like excited state of the Hoyle state. This character of the 0+
3

state is very different from the 0+
4 state which seems to have a bent-arm 3α structure.

DOI: 10.1103/PhysRevC.94.044319

As one of the universal phenomena in nature, resonance
states widely appear in a large variety of fields from particle
physics to the condensed matter physics [1]. Systems with
electrons, hadrons, or atoms display various and rich resonance
states in different ways, which often leads to a new state finding
and deepen our understanding for the many-body dynamics.
In nuclear physics, due to the complex and special nucleon-
nucleon interaction, resonance states are highly common and
important in almost all the nuclear systems [2–5]. As one of
most important nuclei in nuclear cluster physics, 12C has been
studied for a long time especially for the famous Hoyle state
[6], which is a narrow 3α resonance state and plays a key role
in the synthesis of carbon in the universe. In the past decade,
it was surprising to find that there were quite impressive
discoveries and new understanding in this old subject, e.g.,
many new cluster states above the 3α threshold energy were
found from experiments such as the new 0+

3 , 0+
4 [7], 2+

2 [8], and
4+

2 [9] states. These observed broad cluster resonance states are
expected to provide us with new clues for understanding the
Hoyle state. Actually, as we see in this paper, the 0+

3 resonance
state is intimately related to the Hoyle state.

About 40 years ago, the generator coordinate method
(GCM) calculation with the 3α Brink wave function by
Uegaki et al. [10], which reproduced the ground and Hoyle
states, gave the 0+

3 state at Ex = 11.7 MeV and assigned it to
the observed 0+

3 state at Ex = 10.5 MeV. Later calculations
including the antisymmetrized molecular dynamics (AMD)
[11] and fermionic molecular dynamics (FMD) [12] also gave
the 0+

3 state around Ex = 10 MeV. All the 0+
3 states by these

calculations have a characteristic feature that they contain a
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nonsmall component of 8Be(2+) + α (D-wave) configuration.
In AMD and FMD, this feature has been referred to as the bent-
arm structure of 3α. However, about ten years ago Kurokawa
and Katō reported that the 3α orthogonality condition model
(OCM) calculation combined with the complex scaling method
(CSM) gives another 0+ state [13] around Ex = 10 MeV in
addition to the 0+ state with the bent-arm–like structure of
3α. This new 0+ state has 2α-α reduced width amplitude
whose node number is larger than that of the Hoyle state.
The existence of two 0+ states around Ex = 10 MeV was
soon later supported by Itoh et al. [7] experimentally who
showed that the broad 0+

3 state at Ex = 10.5 MeV is divided
into two 0+ states, namely 0+

3 and 0+
4 states at 9.04 MeV

and 10.56 MeV with the widths of 1.45 MeV and 1.42 MeV,
respectively. Itoh et al. reported that the 0+

3 state decays
dominantly through the 8Be(0+) + α (S-wave) channel while
the 0+

4 state decays through the 8Be(2+) + α (D-wave)
channel. Thus, the 0+

4 state corresponds to the 0+
3 state by

Uegaki, AMD, and FMD. The existence of 0+
3 and 0+

4 states
around 10 MeV was reported by another 3α OCM calculation
combined with CSM a few years ago [14] and also by a
microscopic 3α model calculation last year [15].

To describe the complex relative motion of clusters in
nuclei, OCM as a semimicroscopic cluster model [16], adopts
the effective local potential from the nonlocal potential of
the resonating group method (RGM) in an approximate way,
and the (almost) forbidden sates are removed using some
projection operator. Different from this simple treatment in
OCM, the microscopic cluster model adopts the effective
nucleon-nucleon interaction [17,18] and also the fully antisym-
metrized effects are considered. By fully taking into account
the Pauli principle between all the constituent nucleons, the
microscopic cluster model [19] provides us with a very
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powerful and reliable tool for studying the clusters in nuclei. A
microscopic 3α model calculation is especially important for
examining the existence of 0+

3 and 0+
4 states around 10 MeV

because both AMD and FMD calculations have reported only
the existence of the 0+

4 state. It is therefore highly desirable to
perform another microscopic 3α model calculation in order to
confirm the existence of 0+

3 and 0+
4 states around 10 MeV and

also to clarify the character of the 0+
3 state which is far more

unknown than that of the 0+
4 state.

As a novel microscopic cluster wave function, the Tohsaki-
Horiuchi-Schuck-Röpke (THSR) wave function has been very
successful for the description of the ground state, the ordinary
cluster state, and the α-condensate state [20–22]. Especially
for some well-developed or gas-like cluster states like Hoyle
state in 12C, the jj -coupling shell model components or
noncentral interactions are usually very small while the relative
motion of clusters is becoming a more important freedom. In
this case, the THSR, as a pure cluster wave function, has a
natural sort of advantage for describing this kind of cluster

freedom due to its α-cluster assumption and nonlocalized
character. On the other hand, some other microscopic cluster
models, such as the Brink model, AMD, and FMD, sometimes
demand large efforts to describe the dilute gas-like cluster
state. Quite recently, based on the concept of nonlocalized
clustering [21,23], we proposed an extended THSR wave
function with 2α correlation, which provides us a more
suitable basis for the description of various cluster structures
in 12C [24]. Moreover, to deal with the broad resonance
state, we use the radius-constraint method [25] as the bound-
state approximation and we also develop an improved GCM
method for selecting the optimum basis in the practical
calculations. Finally, we aim to confirm and investigate the
excited 0+

3 and 0+
4 states of 12C using the extended THSR

wave function as basis wave functions in the improved GCM
calculation.

We begin with the extended THSR wave function of
Ref. [24], which includes the 2α correlation in 3α cluster
structure is written as

�(β1,β2) =
∫

d3R1d
3R2 exp

[
−

2∑
i=1

(
R2

ix

β2
ix

+ R2
iy

β2
iy

+ R2
iz

β2
iz

)]
�B(R1,R2) (1)

∝ φGA
{

exp

[
−

2∑
i=1

(
ξ 2
ix

B2
ix

+ ξ 2
iy

B2
iy

+ ξ 2
iz

B2
iz

)]
φ(α1)φ(α2)φ(α3)

}
. (2)

Here, B2
1k = b2 + β2

1k , B2
2k = 3

4b2 + β2
2k , and β i ≡

(βix,βiy,βiz). ξ 1 = X2 − X1, ξ 2 = X3 − (X1 + X2)/2.
�B(R1,R2) is the Brink wave function of 12C. R1 and R2 are
the corresponding intercluster distance generator coordinates.
φG is the center-of-mass wave function of 12C, which can
be expressed as exp(−6X2

G/b2). In practical calculations,
we assume the axial symmetry for the 2α + α system,
namely, β i ≡ (βix = βiy,βiz) (i = 1,2). As for the effective
nucleon-nucleon interaction, we adopt the Volkov No. 2 force
(modified version) with Majorana parameter M = 0.59 and
b = 1.35 fm, which were used by Kamimura et al. for the 3α
RGM calculation [26].

Different from the original one-β0 3α THSR wave function
[20,27], the 2α + α THSR wave function in Eq. (1) introduced
two deformed size parameters β1 and β2. In the 3α cluster
system of 12C, 2α clusters make the motion in a container
confined by the size parameter β1 and this 2α cluster and the
third α cluster can be considered to move in the other β2-size
container. In this way, the 2α correlation has been included
in the constructed 2α + α THSR wave function. If we make
the replacement, β1 → √

2β0 and β2 → √
3/2β0 in Eq. (1),

this extended 2α + α THSR wave function just becomes the
original one-β0 3α THSR wave function [27].

As we know, to describe the broad resonance cluster states
in 12C, the GCM bound-state approximation is no longer
available due to the contamination of the continuum states
above the threshold energy. To remove the contamination, we
used the radius-constraint method (RCM) [22,25] combined
with the GCM. We diagonalize the squared radius operator and

obtain the corresponding eigenstates and eigenvalues. Since
the larger squared radius eigenvalues indicate the continuum
states are involved, we adopt the radius eigenfunctions whose
eigenvalues are smaller than the cutoff parameter Rcut in the
GCM calculations. This kind of treatment is very similar to the
shell model calculations for resonance states where nucleon
orbits are confined within some radial region.

In GCM calculations, a very large basis is necessary for
covering various cluster model spaces for the excited 0+ states
of 12C. However, considering the numerical errors from GCM
combined with radius-constraint method, it is not suitable to
superpose directly a huge number of, e.g., more than 1000,
THSR wave functions. In this situation, we propose a way for
selecting more effective wave functions as the basis. The steps
for this one-by-one GCM+RCM are as follows:

(1) We choose a large number of projected normalized 0+
THSR wave functions {�̂0+

1 ,�̂0+
2 , . . . ,�̂0+

2592} as our prepared
basis, which correspond 2592 different sets of mesh points for
(β1,β2). The matrix elements of norm, squared radius operator,
and Hamiltonian are calculated and prepared for the following
calculations. Since the direct diagonalization of Hamiltonian
using this huge prepared basis is very difficult, we plan to pick
a small number of effective wave functions one by one from
the prepared basis for obtaining converged binding energies
and wave functions for the ground state and excited 0+ states
of 12C.

(2) At the beginning, we focus on the ground state of 12C
and we begin with the first effective wave function among the
prepared basis. Firstly, we calculate the binding energies of
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single wave functions in the prepared basis. As for calculations
by the single wave function �̂0+

i in GCM+RCM, it simply

means if
√

〈�̂0+
i | ∑k(rk − rcm)2/12|�̂0+

i 〉 > Rcut, the wave
function �̂0+

i will be abandoned, otherwise we retain this wave
function and calculate its binding energy. Secondly, if some
wave function like �̂0+

233 can give the deepest binding energy
for the ground state among the prepared basis, then �̂0+

233 will
be our first selected wave function. It should be noted, to obtain
the converged value of the ground state, the pure and traditional
GCM is enough and RCM is not necessary since the bound
state is almost independent of the parameter Rcut in RCM.

(3) Next, we need to choose the second effective wave
function among the prepared basis for the ground state of
12C. Assume the first selected wave function is �̂0+

233, we
then make the diagonalization of the Hamiltonian for all
the superposed two wave functions, {�̂0+

233 + �̂0+
1 },{�̂0+

233 +
�̂0+

2 }, . . . ,{�̂0+
233 + �̂0+

2592} using GCM+RCM. For each
�̂0+

233 + �̂0+
i (i �= 233) we diagonalize the squared radius oper-

ator and we retain only the eigenfunctions whose eigenvalues
are smaller than R2

cut. If the {�̂0+
233 + �̂0+

737} group can give
the deepest energy for the ground state, then we can choose
�̂0+

737 as our second selected wave function. One by one, we can
obtain dozens of very effective wave functions (e.g., 50) for the
ground state and the corresponding eigenvalue has been very
well converged. Here we emphasize again, as for the selected
nB 0+ THSR wave functions from the prepared basis in the
GCM+RCM calculations, the adopted radius eigenfunctions
should have smaller (�Rcut) eigenvalues while each of these
radius eigenfunctions is a linear combination of the selected
nB 0+ THSR wave functions. In addition, in the selection
process, the wave functions bringing fluctuation and large nu-
merical errors for the excited 0+ states will also be abandoned.

(4) After selecting 50 effective wave functions for the
ground state, in the same way, we continue to choose more
effective wave functions for the 0+

2 , 0+
3 , and 0+

4 states in 12C
in turn. Namely we select additional effective wave functions
so that we get deeper binding energies for the 0+

2 , 0+
3 , and 0+

4
states. Finally, after selecting lots of wave functions with the
fixed parameter Rcut, e.g., the maximum number is around 70
for Rcut = 6 fm, we cannot select any wave functions from the
prepared basis for meeting our requirements, then the selection
process is completed.

The one-by-one method is a very effective and general
approach for selecting the good basis in the GCM calculation,
especially for some kinds of resonance states with large model
spaces. Figure 1 shows the GCM-THSR results for the first
four 0+ states of 12C using different values of the radius cut-off
parameter Rcut in the radius-constraint method. The basis wave
functions are constructed from 2592 THSR wave functions
[2592 mesh points for (β1x,β1z,β2x,β2z)]. It is known that the
ground state of 12C is a compact bound cluster state and the
Hoyle state around the 3α threshold energy has a very narrow
width of only 8.5 eV, which can be seen as a weakly bound
state. In Fig. 1, it can be seen that the ground state and the
Hoyle state in GCM calculations are almost independent of
the Rcut parameter. The energies of the two states reach their
converged values already at the small number of basis states.
We need to notice that by using the constructed basis, dozens
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FIG. 1. GCM-THSR results for the ground and three excited 0+

states of 12C using different values of the cut-off parameter Rcut in
the radius-constraint method. The values of the cut-off parameter
Rcut are shown in 0+

k (Rcut) in the insert. The excitation energies are
relative to the obtained GCM converged energy for the ground state
−89.65 MeV [24].

of superposed wave functions rather than hundreds of them
can give a very exact converged solution compared with the
traditional GCM calculations.

As for the broad excited 0+ states, the choice of the Rcut

parameter should be careful. The smaller Rcut (�5 fm) can
lead to a miss of some important model spaces while too
large Rcut (�9 fm) will bring obvious contamination from the
continuum states. The obtained GCM energies of the 0+

3 and
0+

4 states for Rcut = 6 fm are seen to be almost constant against
the increase of the number of basis states nB in the region of
nB > 30 for the 0+

3 state and nB > 40 for the 0+
4 state. The

constancy of the GCM energy against the increase of nB is a
little worse for the 0+

4 state than for the 0+
3 state, but still the

constancy of the 0+
4 state energy is within the range of about 0.5

MeV. The GCM energies of these 0+ states for larger Rcut = 7
fm and 8 fm change their values against the increase of nB

although the amount of change is not so large. These behaviors
of the 0+

3 and 0+
4 energies for Rcut = 7 fm and 8 fm mean that

the GCM wave functions for Rcut = 7 fm and 8 fm contain
the contamination of continuum state components. Thus we
conclude that the GCM results for Rcut = 6 fm shown in Fig. 1
give the converged results for the energies and wave functions
of the 0+

3 and 0+
4 states. The converged energies 9.38 MeV and

11.7 MeV of the calculated 0+
3 and 0+

4 states are consistent with
the corresponding observed values 9.04 MeV and 10.56 MeV
of the experimental 0+

3 and 0+
4 states, respectively.

Next, we show some detailed features of the wave functions
of these excited states obtained with Rcut = 6 fm. The GCM
energies, rms radii, and the monopole matrix elements are
calculated as shown in Fig. 2. Based on the R-matrix theory
[29], the main partial α-decay widths into 8Be(0+) for the 0+

2 ,
0+

3 , and 0+
4 states are calculated to be 7.39 eV, 0.92 MeV, and

0.66 MeV, respectively, which agree with the experimental
values 8.5 eV, 1.45 MeV, and 1.42 MeV for these three
excited states. The adopted decay energies measured from the
decay threshold by which we calculate penetrability factors
are taken from experiments. The chosen channel radii are
5.5 fm, 10.0 fm, and 4.0 fm, respectively, which give the
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FIG. 2. The GCM energy levels, rms radii for the mass distri-
butions (left side of the energy levels), and the monopole transition
strengths (along the transition lines) for the ground state and excited
0+ states in 12C. The dashed lines are corresponding to the threshold
energies. It should be noted that the observed radius for the ground
state of 12C from experiment is charge radius and it is from Ref. [28].

largest reduced width amplitudes around these points. Thus,
the observed data of the 0+

3 and 0+
4 states are reproduced by

our GCM calculations. It can be seen that the obtained 0+
3

state has a very large radius, more than 5 fm, which is much
larger than the gas-like Hoyle state. The calculated monopole
strength between 0+

2 and 0+
3 of 12C is about 47 e2fm4, which

is much larger than other monopole transitions. This shows
that the broad 0+

3 state has more dilute density compared with
the Hoyle state and we consider that the 0+

3 state is a kind of
breathing excited state of the Hoyle state as we discuss later.

Based on the orthogonality between the 0+
1 state and

0+
2 state of 12C, a single orthogonalized THSR wave func-

tion of 0+
2 state can be constructed as �̂

0+
2

2α+α(β1,β2) =
(1 − n1|�̂0+

1
min〉〈�̂0+

1
min|)�̂0+

(β1,β2). Here, n1 is a normaliza-

tion factor and �̂
0+

1
min(β1x = 0.1,β1z = 2.3,β2x = 2.8,β2z =

0.1) is the single optimum THSR wave function obtained
by variational calculations, which is about 98% equiva-
lent to the GCM ground wave function [24]. Thus, the

optimum 0+
2 THSR wave function �̂

0+
2

min can be obtained

with the minimum energy E
0+

2
min(β1x = 4.9,β1z = 2.9,β2x =

10.7,β2z = 0.4) = −81.79 MeV, which has a 98.3% squared
overlap with the corresponding GCM solution. In the same
way, we can construct a single orthogonalized THSR wave

function of 0+
3 by using the 0+

1 and 0+
2 wave functions, �̂

0+
1

min

and �̂
0+

2
min, namely �̂

0+
3

2α+α(β1,β2) = (1 − n1|�̂0+
1

min〉〈�̂0+
1

min| −
n2|�̂0+

2
min〉〈�̂0+

2
min|)�̂0+

(β1,β2). This �̂
0+

3
2α+α(β1,β2) wave func-

tion provides us with another independent and simple way for
confirming the existence of the 0+

3 state in 12C.
Figure 3 shows the contour plot for the energy of the 0+

3
state as a function of spherical β1 and β2 calculated by using

the wave function �̂
0+

3
2α+α(β1,β2). The two local minimum

points, −79.83 MeV and −79.63 MeV, appear in the contour
plot and they are connected by a flat valley. The squared
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FIG. 3. The contour plot for the 0+
3 state in the spherical β1 and

β2 parameter space, which is obtained from the variation calculations
of a constructed single THSR wave function orthogonalized to the
ground and Hoyle states of 12C.

overlap between these two states, |〈�̂0+
3

min1(β1 = 6.4,β2 =
3.0)|�̂0+

3
min2(β1 = 3.6,β2 = 5.6)〉|2 = 0.840, shows these two

wave functions are not so close compared with the case
of the contour plot for the Hoyle state [27]. Above the
second local minimum point, we have checked that there
is a quite large deep region, which belongs to the 3α
continuum region and there are no local minimum points.
Furthermore, the first local minimum energy −79.83 MeV
is very close to the GCM energy −80.27 MeV for the 0+

3
state. Most importantly, it is found that the squared overlap

between this simple wave function �̂
0+

3
min1 and the GCM

0+
3 wave functions, |〈�̂0+

3
min1(β1 = 6.4,β2 = 3.0)|�̂0+

3
GCM〉|2, is

as high as 0.903. If we adopt the deformed THSR wave
function, we can find an even better wave function and

their squared overlap |〈�̂0+
3

2α+α(β1x = 6.7,β1z = 4.7,β2x =
4.1,β2z = 1.3)|�̂0+

3
GCM〉|2 = 0.944. This high squared overlap

indicates that the obtained orthogonalized THSR wave func-

tion �̂
0+

3
2α+α for the local minimum energy Emin = −79.8 MeV

is just the 0+
3 orthogonalized THSR wave function of 12C.

Thus, we can say that the existence of the 0+
3 state is

confirmed again using the simple single 0+
3 THSR wave

function orthogonalized to the ground and Hoyle states.
Next, using the obtained GCM wave functions, we will

investigate further the α + 8Be correlation of the excited
0+ states in 12C. Here, we focus on the domain channel
[8Be(0+) + α]0+ for the ground and excited 0+ states in 12C.
We calculate the α RWA Y(a) defined as

Y(a) =
√

12!

4!8!

〈[
�̂0+

2α,Y00(ξ̂ 2)
]

00

δ(ξ2 − a)

ξ 2
2

φ(α)

∣∣∣∣�̂0+
k

GCM

〉
. (3)

Here, the normalized projected 8Be THSR wave function

is �̂0+
2α ∝ P 0+

00 A[e
− ξ2

1x

B2
x

− ξ2
1y

B2
y

− ξ2
1z

B2
z φ2(α)]. B2

k = b2 + β2
k . In the

RWA calculations, βx = βy = 3.0 fm and βz = 11.1 fm,
with which this 2α projected THSR wave function gives
minimum energy by the use of the same interaction parameters
of 12C.
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Figure 4 shows Y(a) for the four 0+ states (0+
1 ∼ 0+

4 ). It
should be noted that, due to the optimized basis using one-
by-one method in GCM, we got better and more extended
wave functions for the excited 0+ states in 12C. We can see
that the 0+

3 state has a much larger extension compared with
the Hoyle state. Since the number of nodes of the 0+

3 state is
larger by one than that of the Hoyle state, the 0+

3 state can be
considered as an excited state of the Hoyle state at least for
2α-α part, which have also been discussed in Refs. [10,15].
On the other hand, the reduced width amplitude of the 0+

4 state
for the channel 8Be(0+) + α is much smaller than that of the
0+

3 state, which implies that the 8Be(0+) + α component of
the 0+

4 state is much smaller than that of the 0+
3 state. This fact

is consistent with the bent-arm structure of the 0+
4 state.

Another essential problem is how about the 2α behaviors in
these excited states. To study the 2α correlation in the excited
0+ states in 12C, we introduce the following 2α relative wave
function of 12C:

−0.4
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FIG. 4. The α reduced width amplitudes of the 0+
1 ,0+

2 ,0+
3 , and 0+

4

states for the [8Be(0+) + α]0+ channel in 12C.

χ (a) = N0

√
12!

4!4!4!

〈[
e
− ξ2

2x

B2
2x

− ξ2
2y

B2
2y

− ξ2
2z

B2
2z φ3(α)

]0+
δ(ξ1 − a)

ξ 2
1

Y00(ξ̂1)

∣∣∣∣�̂0+
k

GCM

〉
. (4)

Here, N0 is the normalization factor N0 =

1/〈[e− ξ2
2x

B2
2x

− ξ2
2y

B2
2y

− ξ2
2z

B2
2z φ3(α)]0+|[e− ξ2

2x

B2
2x

− ξ2
2y

B2
2y

− ξ2
2z

B2
2z φ3(α)]0+〉. χ (a) is

the relative wave function between two α clusters inside 12C.
B2

2k = 3
4b2 + β2

2k and their values are chosen as follows.
To choose some typical values of the parameter β2 in

Eq. (4), we firstly search for the largest squared overlaps
between the single THSR wave functions and the 0+ GCM
wave functions. As for the ground state, we have known that

the obtained �̂
0+

1
min(β1x = 0.1,β1z = 2.3,β2x = 2.8,β2z = 0.1)

wave function by variational calculations almost gave the
largest squared overlap, 0.978, with the GCM ground wave
function. The obtained largest squared overlaps for the excited
0+ states are |〈�̂0+

(β1x = 9.3,β1z = 4.6,β2x = 7.2,β2z =
0.1)|�̂0+

2
GCM〉|2max = 0.837; |〈�̂0+

(β1x = 9.3,β1z = 9.2,β2x =
13.8,β2z = 13.7)|�̂0+

3
GCM〉|2max = 0.290; |〈�̂0+

(β1x = 0.7,β1z =
9.2,β2x = 0.7,β2z = 7.7)|�̂0+

4
GCM〉|2max = 0.446. These obtained

largest single THSR wave function components show that
there are possibly very different intrinsic shapes in these
excited states in 12C. For example, the largest component wave
function in 0+

3 GCM wave function, �̂0+
(β1x = 9.3,β1z =

9.2,β2x = 13.8,β2z = 13.7), has very large and nearly spher-
ical size parameters β1 and β2, which reflect the large-radius
character of the 0+

3 state. The largest single wave function com-
ponent in 0+

4 GCM wave function has a very obvious deformed
prolate intrinsic shape, which indicates the possible rigid
bent-arm structures of 0+

3 state obtained from AMD and FMD.
To study the 2α correlations of the four 0+ states in 12C

in different situations, four sets of values of the parameter β2
in Eq. (4) are adopted from the above obtained single THSR
wave functions. Figure 5 shows 2α correlation functions of the
0+

1 ,0+
2 ,0+

3 , and 0+
4 states in 12C using different obtained values

of β2 parameters. It is the first time that the 2α behaviors are

calculated in these 0+ states in 12C. Due to Pauli principle
between 2α clusters, in the internal region, the 2α correlation
functions have two nodes and they are located at almost the
same positions, namely about 1 fm and 2 fm, even for the
different 0+ states. In the outside region, the 2α correlations
in these states display some complicated behaviors and how to
understand this kind of correlation is the subject of a forthcom-
ing paper. Here, we only need to emphasize that, in the 2α cor-
relation function, for the 0+

3 state, it has much more extended
tail part and also has one more node than the Hoyle state in
some sense. It should be noted that, as for Fig. 5(c), the 0+

3 state
still can be considered to have some “node” in outside region of
4 fm � a � 8 fm, which has a similar situation with the Hoyle
state in Fig. 4 in the region of 2 fm � a � 4 fm. This shows
that, compared with the Hoyle state, the 0+

3 state is not only
excited from the 2α-α part but also from the 2α correlation part.

Now, we clarify further the underlying physical meaning of
the number of nodes of 2α-α and α-α relative wave functions
for the 0+

3 state in 12C. As we know, the operator which
generates the breathing excitation is just the squared radius
operator OB as follows:

OB =
12∑
i=1

(r i − rc.m.)
2. (5)

This OB is nothing but the operator of monopole transition
and it also can be rewritten as

OB =
3∑

k=1

∑
i∈αk

(r i − Xk)2 + 2ξ 2
1 + 8

3
ξ 2

2 , (6)

where Xk is the center-of-mass coordinate of the kth α cluster.
The breathing excitation by ξ 2 coordinate increases the number
of nodes of the relative wave function between 2α and α,
while the breathing excitation by ξ 1 coordinate increases the
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FIG. 5. The calculated 2α correlation wave functions of the 0+
1 ,0+

2 ,0+
3 , and 0+

4 states using four sets of β2 parameters in 12C. (a) (β2x ,
β2z) = (2.8 fm,0.1 fm). (b) (β2x , β2z) = (7.2 fm,0.1 fm). (c) (β2x , β2z) = (13.8 fm,13.7 fm). (d) (β2x , β2z) = (0.7 fm,7.7 fm).

number of nodes of the relative wave function between α and
α. Therefore the breathing excitation is caused by both ξ 1
and ξ 2 coordinates. The 2α-α relative wave function, namely
RWA of 12C has been discussed for a long time, including
the recent work done by Funaki [15]. However, regarding the
0+

3 state as a breathing-like excited state of the Hoyle state,
we have to study also the α-α relative wave function. In our
present paper we investigated, for the first time, the α-α relative
wave function. When we investigate the number of nodes of
relative wave functions of ξ 2 and ξ 1, we should be careful
about the following point. For example, when we study the
number of nodes of the relative wave function of ξ 2, the relative
wave function of ξ 1 should be kept nonexcited. The RWA
which is the relative wave function of ξ 2 is calculated by
using the ground-state wave function of 8Be for integrating
out with respect to ξ 1. Similarly in calculating the α-α relative
wave function in Eq. (4), we used a nonexcited relative wave
function of ξ 2, namely the simple Gaussian function of ξ 2.
The calculated results for 2α-α and α-α wave functions in

Figs. 4 and 5 both show that the obtained 0+
3 state can be

considered to have one more node than the Hoyle state. This
means that the 0+

3 state is not only excited from the 2α-α part
but also from 2α correlation part. Considering the very large
monopole transition from 0+

3 state to Hoyle state, therefore,
we think this confirmed 0+

3 state is a breathing-like mode of
the Hoyle state.

In summary, the existence of the 0+
3 and 0+

4 states in 12C
is confirmed by using an improved THSR-GCM with the
radius-constraint method. The existence of the 0+

3 state is also
well supported by variational calculations using the single
0+

3 THSR wave function orthogonalized to the ground and
Hoyle states. Moreover, we found that the 0+

3 state has a very
large radius and there is a very large monopole transition from
this state to the Hoyle state. By showing the RWAs and 2α
correlation functions, we found that the 0+

3 state is excited
from both the 2α-α part and 2α correlation part of the Hoyle
state. We concluded that the 0+

3 state is a breathing-like excited
state of the Hoyle state.
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Lett. 87, 192501 (2001).
[21] B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren et al., Phys. Rev. C 89,

034319 (2014).
[22] Y. Funaki, H. Horiuchi, and A. Tohsaki, Prog. Part. Nucl. Phys.

82, 78 (2015).
[23] B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren et al., Phys. Rev. Lett.

110, 262501 (2013).
[24] B. Zhou, Y. Funaki, A. Tohsaki, H. Horiuchi, and Z. Ren,

Prog. Theor. Exp. Phys. (2014) 101D01.
[25] Y. Funaki, H. Horiuchi, and A. Tohsaki, Prog. Theor. Phys. 115,

115 (2006).
[26] M. Kamimura, Nucl. Phys. A 351, 456 (1981).
[27] Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke,
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