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Structural evolution in A ≈ 100 nuclei within the mapped interacting boson model based
on the Gogny energy density functional

K. Nomura,1,2 R. Rodrı́guez-Guzmán,3 and L. M. Robledo4

1Physics Department, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia
2Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan

3Physics Department, Kuwait University, 13060 Kuwait, Kuwait
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The structure of even-even neutron-rich Ru, Mo, Zr, and Sr nuclei in the A ≈ 100 mass region is studied within
the interacting boson model (IBM) with microscopic input from the self-consistent mean-field approximation
based on the Gogny-D1M energy density functional. The deformation-energy surface in the quadrupole
deformation space (β,γ ), computed within the constrained Hartree–Fock–Bogoliubov framework, is mapped
onto the expectation value of the appropriately chosen IBM Hamiltonian with configuration mixing in the
boson condensate state. The mapped IBM Hamiltonian is used to study the spectroscopic properties of 98–114Ru,
96–112Mo, 94–110Zr, and 92–108Sr. Several cases of γ -soft behavior are predicted in Ru and Mo nuclei while a
pronounced coexistence between strongly prolate and weakly oblate deformed shapes is found for Zr and Sr
nuclei. The method describes well the evolution of experimental yrast and nonyrast states as well as selected
B(E2) transition probabilities.
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I. INTRODUCTION

The study of collective excitations and the associated shapes
in nuclei with mass number A ≈ 100 has received lately
considerable attention in nuclear structure physics [1]. As a
consequence of the subtle interplay between single-particle
and collective degrees of freedom, nuclei in this region
of the nuclear chart display a large variety of intriguing
phenomena. Several experimental [2–8] and theoretical [9–17]
studies have already been reported on the structure of these
nuclei. In particular, the rapid structural change around the
neutron number N = 60 has been carefully studied in Zr and
Sr isotopes [2,7,12,14,15,18–20]. This mass region is also
characterized by the competition between different low-lying
configurations based on different intrinsic deformations, i.e.,
shape coexistence [1,7,8,12,14,20].

Both the nuclear shell-model (SM) [21] and the energy
density functional (EDF) [22] frameworks are among the most
popular theoretical tools used to describe the structure of
medium-mass and heavy nuclei. On the one hand, the SM
calculations encode the most important correlations for the
considered nuclei and provide access to their spectroscopic
properties. However, for open-shell systems, the dimension of
the SM Hamiltonian matrix becomes exceedingly large mak-
ing its diagonalization prohibitively expensive. On the other
hand, the EDF scheme [22–24] yields a global description
of nuclear matter and bulk nuclear properties. Within this
context, the evolution of the nuclear shapes around A = 100
has been studied by using self-consistent mean-field (SCMF)
approximations based on different parametrizations of the
Skyrme [25] and Gogny [7,12] as well as relativistic [14,15,26]
EDFs. However, in order to access the excitation spectra and
transition rates within the EDF scheme, one needs to go
beyond the mean-field level to include dynamical correlations
associated with the restoration of the broken symmetries

and/or the fluctuations in the collective coordinates. Such
a task is usually accounted for via symmetry-projected
configuration-mixing calculations within the generator co-
ordinate method (GCM) framework [22,24,27,28]. However,
symmetry-projected GCM calculations are also computation-
ally demanding in the case of heavy nuclear systems, especially
when several collective coordinates (quadrupole, octupole,
pairing, etc.) have to be taken into account as generating
coordinates.

In this work, we resort to an alternative approach, which
is based on mapping the considered EDF into an algebraic
model of interacting bosons [29]. Our starting point is the
(constrained) SCMF approximation that provides the corre-
sponding microscopic energy surface as a function of the rel-
evant deformation parameters. Such a surface is subsequently
mapped onto the expectation value of the interacting boson
model (IBM) [30] Hamiltonian computed with the boson
condensate state. The parameters of the IBM Hamiltonian are
determined from such a mapping procedure. The resulting
IBM Hamiltonian is then used to obtain the excitation spectra
and electromagnetic transition rates. The method allows a com-
putationally feasible as well as quantitative description of the
low-energy collective excitations. It has already been applied
to study the quadrupole [29,31–33] and octupole [34] modes
in atomic nuclei as well as to describe shape-coexistence
phenomena [35–37]. In the present study we extend the method
of Ref. [29] to study the challenging structural evolution and
shape coexistence in neutron-rich nuclei with A ≈ 100. The
nuclei 92–108Sr, 94–110Zr, 96–112Mo, and 98–114Ru have been
taken as a representative sample. The phenomenological IBM
framework has been applied to describe some of those nuclei in
the past [10,11,38–41]. However, even when several attempts
have been made [4,10,11] to extrapolate the IBM scheme
to unknown regions of the periodic table, in most of the
cases the model has not been extensively used to predict the
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NOMURA, RODRÍGUEZ-GUZMÁN, AND ROBLEDO PHYSICAL REVIEW C 94, 044314 (2016)

properties of exotic nuclei. Within this context, one of the main
advantages of our method over the conventional phenomeno-
logical IBM approaches is that it predicts the properties of
unexplored nuclei based only on the underlying microscopic
EDF framework. Our SCMF calculations are based on the
Gogny-D1M [42,43] EDF. Previous studies [44–48] have
shown that the parameter set D1M essentially keeps the same
predictive power of the more traditional Gogny-D1S [49] EDF
regarding a wealth of low-energy nuclear structure properties
while improving the description of the nuclear masses [43].
The Gogny-D1M EDF has also been applied to the study of
nuclei, including the odd-mass ones, in the A ≈ 100 mass
region [3,4,12,13].

The paper is organized as follows: In Sec. II we briefly
outline the theoretical framework used in this work. The
results of our calculations are presented in Sec. III, where
we discuss the deformation-energy surfaces and the IBM
parameters derived from our mapping procedure. In the same
section we consider the evolution of the low-lying levels in the
studied nuclei as well as the systematics of the B(E2) transition
rates. We also discuss the individual level schemes for N = 60
isotones. The robustness of our method is addressed by
studying specifically the sensitivity of the results to variations
on key parameters. Finally, Sec. IV is devoted to the concluding
remarks.

II. THEORETICAL FRAMEWORK

A. Constrained self-consistent mean-field calculations

As already mentioned above, the first step in our calcu-
lations is to obtain the deformation-energy surfaces for the
considered nuclei. To this end, we have performed constrained
Hartree–Fock–Bogoliubov (HFB) calculations based on the
Gogny-D1M EDF. We have resorted to constraints on the Q̂20

and Q̂22 operators [44,50]. The quadrupole moment is then
defined as Q = √

Q20 + Q22. We then consider the deforma-
tion parameters β = √

4π/5Q/〈r2〉 and γ = tan−1 Q22/Q20.
In the definition of β the mean-square radius 〈r2〉 is evaluated
with the corresponding HFB state. For more details on the
constrained Gogny-HFB framework the reader is referred, for
example, to Ref. [44]. In what follows, we refer to the total
mean-field energy as a function of the (β,γ ) parameters as the
deformation-energy surface.

B. Interacting boson model with configuration mixing

To compute the excitation spectra and transition rates, we
use the method of Ref. [29] in which the parameters of the IBM
Hamiltonian are determined by mapping the deformation-
energy surface provided by the constrained Gogny-D1M
SCMF calculations onto the expectation value of the IBM
Hamiltonian computed the boson condensate (intrinsic) wave
function [51]. The resulting IBM Hamiltonian is then used to
calculate spectroscopic properties for the studied nuclei. We
consider the proton-neutron IBM (denoted IBM-2) [52,53]
because it represents a more realistic approach that is able
to treat both the proton and neutron degrees of freedom.
The building blocks of the IBM-2 model are the correlated
monopole 0+ (Sπ and Sν) and quadrupole 2+ (Dπ and Dν)

pairs of valence protons (π ) and neutrons (ν). The Sπ (Sν) and
Dπ (Dν) pairs are associated with the proton (neutron) sπ (sν)
and dπ (dν) bosons, which have spin and parity Jπ = 0+ and
2+, respectively [53]. The number of proton (Nπ ) and neutron
(Nν) bosons is equal to half the number of valence protons
and neutrons [52,53]. The bosonic model space comprises the
neutron major shell N = 50–82 and the proton Z = 40–50
shell for Ru, Mo, and Zr isotopes and Z = 28–40 in the case
of Sr isotopes. Therefore, 2 � Nν � 8 for the nuclei studied
while Nπ = 0 (Zr), 1 (Sr and Mo), and 2 (Ru).

As will be shown, for many of the nuclei in the selected
sample, the Gogny-D1M energy surface exhibits up to three
mean-field minima close in energy to each other. Accordingly,
the bosonic model space should be extended so as to take
into account those configurations. In a mean-field picture, the
different mean-field minima are associated with 2n-particle-
2n-hole (n = 0,1,2) intruder excitations across the closed
shell. To incorporate the intruder configurations, we follow the
method of Duval and Barrett [54], which associates the differ-
ent SM-like spaces of 0p-0h, 2p-2h, 4p-4h, . . . excitations
with the corresponding boson spaces comprising NB , NB + 2,
NB + 4, . . . bosons, where NB(= Nν + Nπ ) denotes the total
number of bosons. The different boson subspaces are allowed
to mix by introducing an additional interaction. Under the
assumption of Duval and Barrett, particles and holes are not
distinguished. Then, as the excitation of one pair (boson)
increases the boson number by two, the configurations for
the 2np-2nh excitations differ from each other in boson
number by two. In the following, we assume only the proton
ph excitations across the subshell closure Z = 40, which is
equivalent to the excitation from the proton pf shell to the
1g9/2 orbital. The Hilbert space for the configuration-mixing
IBM-2 model is then defined as the direct sum of each
“unperturbed” configuration space, i.e.,

[Nν ⊗ Nπ ] ⊕ [Nν ⊗ (Nπ + 2)] ⊕ [Nν ⊗ (Nπ + 4)], (1)

where [Nν ⊗ (Nπ + 2n)] (n = 0, 1, and 2) denotes the con-
figuration space for the unperturbed IBM-2 Hamiltonian for
the 2np–2nh proton excitations, comprising Nν neutron and
Nπ + 2n proton bosons. In the following, the unperturbed
space [Nν ⊗ (Nπ + 2n)] is simply denoted as [n] (n = 0, 1,
and 2), and we refer to the IBM-2 simply as IBM, unless
otherwise specified.

The Hamiltonian ĤB for the system is then expressed in
terms of up to three unperturbed IBM Hamiltonians Ĥn (n = 0,
1, and 2) differing in boson number by two and in terms of
Ĥ mix

n,n+1 that mix different boson subspaces:

ĤB = Ĥ0 + (Ĥ1 + �1) + (Ĥ2 + �2) + Ĥ mix
0,1 + Ĥ mix

1,2 , (2)

where �1 and �2 represent the energies required to excite one
and two bosons across the inert core.

For the unperturbed Hamiltonian Ĥn (n = 0, 1, and 2) we
have taken the form

Ĥn = εnn̂d + κnQ̂ · Q̂ + κ ′
n

∑
ρ ′ 	=ρ

T̂ρρρ ′ , (3)

where the first term n̂d = n̂dν + n̂dπ , where n̂dρ = d†
ρ · d̃ρ

(ρ = ν,π ) represents the d-boson number operator. On the
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other hand, Q̂ = Q̂ν + Q̂π is the quadrupole operator and
Q̂ρ = s†ρd̃ρ + d†

ρ s̃ρ + χρ,n[d†
ρ × d̃ρ](2). The third term is a

specific three-boson interaction with T̂ρρρ ′ = ∑
L[d†

ρ × d†
ρ ×

d
†
ρ ′ ](L) · [d̃ρ ′ × d̃ρ × d̃ρ](L), where L denotes the total angular

momentum in the boson system.
The mixing interaction reads

Ĥ mix
n,n+1 = ωs,ns

†
π · s†π + ωd,nd

†
π · d†

π + H.c., (4)

where ωs,n and ωd,n are strength parameters and are assumed
to be equal (ωs,n = ωd,n = ωn) for simplicity. Note that there
is no direct coupling between the [n = 0] and [n = 2] spaces
with the two-body nuclear interactions.

The unperturbed Hamiltonian Ĥn in Eq. (3) takes the sim-
plest form of the sd-IBM-2 Hamiltonian used for describing
low-energy quadrupole collective states. It is only composed
of n̂d and Q̂ν · Q̂π terms [29,53,55]. The addition of the
like neutron boson term Q̂ν · Q̂ν in Eq. (3) is due to the
fact that, in the present study, Nπ = 0 for the normal (or
0p–0h) configuration of the Zr isotopes and, without this
term, the SCMF minimum could not be reproduced. We
also include the interaction term between like proton bosons
Q̂π · Q̂π and, to reduce the number of parameters, assume
the F -spin [52,56] invariant form for the quadrupole operator
Q̂ = Q̂ν + Q̂π . On the other hand, the three-boson term is
required to describe a triaxial minimum. We only consider the
interaction between proton and neutron bosons with L = 3.
The specific choice of the three-boson term is due to the
relevance of the proton-neutron interactions in medium-mass
and heavy nuclei, and that only the L = 3 term gives rise to
a stable triaxial minimum at γ ≈ 30◦ [33]. For those nuclei
where the configuration mixing is taken into account, the
strength parameter κ ′ is taken to be equal to that of the
quadrupole-quadrupole term, i.e., κ ′ = κ . For the nuclei where
the configuration mixing is not considered, κ ′ is taken as an
independent parameter.

To look at the geometrical feature of the configuration-
mixing IBM Hamiltonian ĤB , we introduce the following
boson intrinsic state |�B(β,γ )〉, extended to the space [n =
0] ⊕ [n = 1] ⊕ [n = 2]:

|�B(β,γ )〉 = |�B(0,β,γ )〉 ⊕ |�B(1,β,γ )〉 ⊕ |�B(2,β,γ )〉.
(5)

The coherent state for each unperturbed space |�B(n,β,γ )〉
(n = 0, 1, and 2) reads

|�(n,β,γ )〉 = 1√
Nν!Nπ,n!

(λ†
ν)Nν (λ†

π )Nπ,n |0〉, (6)

with Nπ,n ≡ Nπ + 2n and

λρ = s†ρ + βρ cos γρd
†
0 + 1

2βρ sin γρ(d†
+2 + d

†
−2). (7)

βρ and γρ are the quadrupole deformation parameters analo-
gous to those in the collective model [57]. They are assumed to
be the same between protons and neutrons, i.e., βν = βπ ≡ βB

and γν = γπ ≡ γB . The bosonic deformation parameters βB

and γB could be related to those in the collective model in
such a way that βB ∝ β and γB = γ [51].

The expectation value of the total Hamiltonian ĤB in
the coherent state |�B(β,γ )〉 leads us to consider the 3 × 3
matrix [58]:

E =

⎛
⎜⎝

E0(β,γ ) �0,1(β) 0

�1,0(β) E1(β,γ ) + �1 �1,2(β)

0 �2,1(β) E2(β,γ ) + �2

⎞
⎟⎠, (8)

where the diagonal and off-diagonal elements represent the
expectation values of the unperturbed Hamiltonians and the
mixing interactions, respectively. The three eigenvalues of E
correspond to specific energy surfaces depending on the values
of the parameters, and it is customary to take the lowest-energy
one [58] as the IBM deformation energy at each deformation
(β,γ ).

The analytical expression of the diagonal matrix element
En(β,γ ) (n = 0, 1, and 2) is given as

En(β,γ ) = k1 + k2β
2
B,n

1 + β2
B,n

+ k3β
2
B,n + k4β

3
B,n cos 3γ + k5β

4
B,n(

1 + β2
B,n

)2

+ k6β
3
B,n sin2 3γ(

1 + β2
B,n

)3 , (9)

where

k1 = 5κn(Nν + Nπ.n),

k2 = [
εn + κn

(
1 + χ2

ν,n

)]
Nν + [

εn + κn

(
1 + χ2

π,n

)]
Nπ,n,

k3 = 4κn(Nν + Nπ,n)(Nν + Nπ,n − 1),

k4 = −4κn

√
2

7
(χν,nNν + χπ,nNπ,n)(Nν + Nπ,n − 1),

k5 = 2

7
κn

[
(χν,nNν + χπ,nNπ,n)2 − (

χ2
ν,nNν + χ2

π,nNπ,n

)]
,

k6 = −1

7
κ ′

nNνNπ,n(Nν + Nπ,n − 2), (10)

and that of the nondiagonal matrix element �n,n+1(β) (n = 0
and 1) as

�n,n+1(β) = �n+1,n(β)

= ωn

√
(Nπ,n + 1)Nπ,n+1

×
⎡
⎣ 1 + βB,nβB,n+1√(

1 + β2
B,n

)(
1 + β2

B,n+1

)
⎤
⎦

Nν+Nπ,n

. (11)

In both Eqs. (9) and (11), βB,n denotes the bosonic deformation
parameter in each unperturbed space [n] and is connected to
the β deformation parameter of the SCMF model through
the relation βB,n = Cnβ. The constant Cn is also determined
from the energy-surface fitting procedure by requiring that the
position of the minimum for each unperturbed configuration is
reproduced. The formulas in Eqs. (9) and (11) are the same as
those found in Ref. [36] except for the fact that, in the present
study, the expectation value of the like-particle Q̂ρ · Q̂ρ term
is also included whereas that of the rotational L̂ · L̂ term is not
included.
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C. The mapping procedure

All together the model has 22 parameters that have to be
fixed. This represents too much freedom and therefore some of
the parameters have been kept fixed to simplify the calculation.
The fitting protocol used is the following:

(i) Each unperturbed Hamiltonian is determined by using
the procedure of Refs. [29,31]: Each diagonal matrix
element En in Eq. (8) is fit to the corresponding mean-
field minimum. The normal [n = 0] configuration is
assigned to the mean-field minimum with the smallest
deformation [59]. On the other hand the [n = 1]
([n = 2]) configuration corresponds to the minimum
with the second (third) smallest deformation. In this
way, each unperturbed Hamiltonian is determined
independently.

(ii) We then extract the energy offsets �1 and �2 so that
the energy difference between the two neighboring
minima on the Gogny-D1M energy surface is repro-
duced.

(iii) Finally, what is left is to introduce the mixing inter-
actions Ĥ mix

n,n+1 and determine the ω strengths. They
could be determined so as to reproduce the topology
of the barriers between the minima Refs. [35,36].
However, in this work we have assumed, for the sake of
simplicity, a constant strength ω = 0.1 MeV for both
Ĥ mix

0,1 and Ĥ mix
1,2 terms, in order to keep the mixing

interactions perturbative.

Once its parameters are determined, the Hamiltonian ĤB

is diagonalized in the [n = 0] ⊕ [n = 1] ⊕ [n = 2] space by
using the boson m scheme [60]. The resulting wave function is
then used to compute the electromagnetic E2 transition rates.
The E2 transition operator is given as

T̂ (E2) =
∑

n=0,1,2

eB,nQ̂n, (12)

where eB,n and Q̂n are the effective charge and quadrupole
operator for the configuration [n], respectively. For simplicity,
the effective charges are assumed to be the same for the three
configurations, i.e., eB,n=0 = eB,n=1 = eB,n=2. They are fit to
reproduce the available experimental B(E2; 2+

1 → 0+
1 ) values

for the N = 66 Ru, Mo, and Zr nuclei while for the Sr isotopes
they are fit to reproduce the experimental B(E2; 2+

1 → 0+
1 )

value for 100Sr.

III. RESULTS AND DISCUSSION

A. The Gogny-D1M energy surfaces

In this section, we discuss the results of our SCMF
calculations. In Figs. 1 and 2 we depict the deformation-energy
surfaces, obtained within the constrained Gogny-D1M EDF
framework, for the considered Ru, Mo, Zr, and Sr even-even
nuclei with neutron numbers 54 � N � 70.

As can be seen from Fig. 1, the lightest of the considered
Ru isotopes exhibits a weakly deformed minimum. On the
other hand, for N = 60 the ground state corresponds to a
shallow triaxial configuration around γ = 30◦. In fact, the
nucleus 104Ru is the softest in the γ direction among all the

Ru isotopes shown in the figure. Moreover, the ground-state
minimum remains triaxial up to N = 68. For larger neutron
numbers, the ground state becomes oblate although it still
remains γ soft. For the studied Ru nuclei, the mean-field
energy surfaces do not display multiple minima.

In the case of the Mo isotopes, also shown in Fig. 1,
the energy surface corresponding to 96Mo displays a nearly
spherical minimum while for increasing neutron number the
surfaces become γ soft up to N = 62. Previous Skyrme
Hartree–Fock plus BCS calculations [5], based on the SLy6
parameter set [61], predicted two minima: one nearly spherical
and the other triaxial, for 98Mo. On the other hand, in our
Gogny-D1M SCMF calculations no coexisting minima are
found for 98Mo, as well as for 100,102Mo. Two minima are
found in the SCMF energy surfaces from around N = 62, one
oblate and the other triaxial with γ around 20◦–30◦. However,
the heavier isotopes are less γ soft with coexisting oblate and
nearly spherical configurations in the case of 112Mo.

The systematics of the HFB energy surfaces, depicted
in Fig. 2 for the Zr and Sr isotopes, reveals a pronounced
competition between oblate and prolate configurations. In the
case of Zr nuclei, the oblate minimum remains the ground
state up to 100Zr. The two mean-field minima found for
N = 62 and 64 are quite close in energy whereas the global
minimum is still found on the oblate side. For N � 66,
the prolate minimum becomes less pronounced. For the Sr
isotopes, a clear prolate minimum is found for N = 60, 62,
and 64. The energy surfaces obtained for 104,106Sr display
two almost degenerate minima while the oblate one becomes
more pronounced for 108Sr. The previous results agree well
with those obtained with the Gogny-D1S EDF [12,62]. For
N ≈ 60 isotones, the constrained Hartree–Fock plus BCS
calculations, based on the Skyrme SLy4 [63] parameter set,
predicted a trend similar to ours, i.e., an oblate-to-prolate shape
transition between N = 58 and 60. A more gradual transition
has been found within the relativistic mean-field framework
based on the PC-PK1 parametrization and a density-dependent
pairing [14]. For both Zr and Sr nuclei, an oblate (prolate)
ground-state minimum has been found for N = 58 (N =
60) in the framework of the Nilsson–Strutinsky method
with a deformed Woods–Saxon potential and monopole
pairing [20].

B. Choice of interacting boson model configuration spaces

We have performed the configuration-mixing calculations
in many of the nuclei considered, where multiple mean-field
minima have been observed in the corresponding Gogny-D1M
energy surfaces. The criterion for choosing configuration
spaces is whether a mean-field minimum is clear (or deep)
enough to constrain the corresponding unperturbed Hamilto-
nian. Using this criterion, configuration-mixing calculations
have been carried out for heavier Mo nuclei and most of the
Zr and Sr nuclei. However, such calculations have not been
carried out for all the Ru isotopes and the lightest nuclei
in other isotopic chains, since the microscopic Gogny-D1M
energy surfaces only show one clear minimum (see Figs. 1
and 2).
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FIG. 1. Contour plot of the deformation-energy surfaces in the (β,γ ) plane for the considered Ru and Mo isotopes from neutron number
N = 54 to 70, computed with the constrained HFB method by using the Gogny functional D1M. They are plotted in the range 0.0 � β � 0.6
and 0◦ � γ � 60◦. The difference between the neighboring contours is 100 keV.

For the sake of clarity, in what follows we summarize the
configuration spaces for the nuclei considered in this work:

(i) Ru: normal [Nν ⊗ (Nπ = 2)] configuration for all
isotopes.

(ii) Mo: normal [Nν ⊗ (Nπ = 1)] configuration for
96–102Mo, and [Nν ⊗ (Nπ = 1)] ⊕ [Nν ⊗ (Nπ = 3)]
configuration for 104–112Mo.

(iii) Zr: normal [Nν ⊗ (Nπ = 0)] configuration for 94Zr,
[Nν ⊗ (Nπ = 0)] ⊕ [Nν ⊗ (Nπ = 2)] configuration
for 96Zr, and [Nν ⊗ (Nπ = 0)] ⊕ [Nν ⊗ (Nπ = 2)] ⊕
[Nν ⊗ (Nπ = 4)] configuration for 98–110Zr.

(iv) Sr: normal [Nν ⊗ (Nπ = 1)] configuration for 92–94Sr,
[Nν ⊗ (Nπ = 1)] ⊕ [Nν ⊗ (Nπ = 3)] configuration
for 96Sr, and [Nν ⊗ (Nπ = 1)] ⊕ [Nν ⊗ (Nπ = 3)] ⊕
[Nν ⊗ (Nπ = 5)] configuration for 98–108Sr.
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FIG. 2. The same as in Fig. 1, but for the Zr and Sr isotopes.

In Fig. 3 the HFB energies of 104–112Mo, 96–110Zr, and
96–108Sr are plotted as a function of the β deformation
parameter. These are the nuclei where configuration mixing
is taken into account in the corresponding IBM space. The β
coordinates associated with the [n] (n = 0, 1, and 2) spaces
are indicated in the plots. In Fig. 3(b), we consider 100Zr
as an illustrative example. In this case, the global minimum
is oblate with β ≈ −0.2 and is associated with the [n = 1]
configuration. The second-lowest minimum on the prolate

side is associated with the [n = 2] configuration and, finally,
the third, almost spherical, minimum is associated with the
normal [n = 0] configuration. Within our framework, the
ground state 0+

1 is mainly composed of the configuration
associated with the global minimum, while the 0+

2 excited
state is constructed mainly from the configuration associated
with the second-lowest minimum. In the particular example
of 100Zr, as shown later in Fig. 13, the 0+

1 (0+
2 ) state is

predominantly composed of the oblate (prolate) configuration.
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FIG. 3. Projection of the HFB deformation-energy surfaces along the β axis for (a) 106–112Mo, (b) 96–110Zr, and (c) 96–108Sr isotopes, where
configuration mixing is taken into account in the corresponding IBM space. Solid circles, squares, and diamonds represent the β values
associated with the [n] (n = 0, 1, and 2) unperturbed Hamiltonians, respectively.

C. Mapped interacting boson model
deformation-energy surface

In Figs. 4 and 5, we plot the IBM energy surfaces
corresponding to the Hamiltonian (2), whose parameters have
been determined by mapping the Gogny-D1M energy surfaces
shown in Figs. 1 and 2.

Similar to the SCMF case, one observes for the Ru
nuclei, shown in Fig. 4, an evolution of the ground-state
deformation from nearly spherical to triaxial for 104Ru. The
absolute minimum of the IBM surfaces becomes oblate for
larger neutron numbers. The mapped surfaces obtained for
Mo isotopes exhibit sharper minima than those found at the
mean-field level. Moreover, for the neutron number N � 66
the mapped IBM surface is less γ soft than the mean-field
one. The IBM surfaces for Zr and Sr nuclei in Fig. 5 also
reproduce the overall HFB trend as a function of the neutron
number. In particular, they account for the onset of the
strongly deformed prolate shape around N = 60 as well as
a pronounced competition between the prolate and oblate
minima for 60 � N � 64 in the case of Zr and 58 � N � 70
for Sr nuclei.

As can be seen, the mapped energy surfaces reproduce
the basic features of the mean-field ones. However, some
discrepancies remain as the topology of the SCMF energy
surfaces is richer than the IBM one. In particular, the mapped
IBM surfaces tend to become flat in the region far from the
minimum. There are essentially two reasons for this behavior:
first, the analytical expressions of Eqs. (9) and (11) are
too restricted to reproduce every detail of the original HFB
energy surfaces and, second, that the number and/or kind of

bosons are rather limited within our IBM framework. One
also observes substantial differences in the barriers between
the different minima. This is partly due to the adopted mixing
strength value ω = 0.1 MeV that may not be a proper choice
for fully reproducing the barriers. The employed value ω =
0.1 MeV is a guess based on our experience from previous
calculations [35,36]. However, as will be shown later, it leads
to a reasonable description of spectroscopic properties. To
fully reproduce the barriers, a much larger ω value would be
necessary. However, the larger ω value implies the stronger
level repulsion between the states and the model description
would become unrealistically worse. For this reason, and since
we are rather interested in describing an overall systematic
trend of the spectroscopic properties, we have tried not to
reproduce full details of the barriers and used a realistic mixing
strength ω = 0.1 MeV.

Once the parameters of the Hamiltonian in Eq. (2) have
been fixed by the mapping procedure described in Sec. II,
spectroscopic calculations are carried out to obtain excitation
energies and transition probabilities.

D. Parameters

The parameters employed in our calculations for Ru, Mo,
Zr, and Sr isotopes are displayed in Figs. 6–10. They are
obtained as a result of the mapping procedure and their
variations, as functions of neutron number, reflect structural
changes along the considered isotopic chains. We have not
plotted the values of the strength κ ′ associated with the
three-boson term because, in most of the cases, it is the same
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FIG. 4. The same as in Fig. 1, but for the mapped IBM and for the Ru and Mo isotopes.

as the strength κ for the quadrupole-quadrupole interaction.
The exceptions are 104–114Ru and 100–102Mo. Their κ ′ values
are 0.25, 0.25, 0.12, 0.08, 0.10, and 0.18 MeV for 104–114Ru
and the constant value 0.50 MeV for 100–102Mo.

In Figs. 6(a) and 6(b), we plot the parameter ε for Ru
and Mo nuclei, respectively. For most of the nuclei only a
single configuration has been used in the calculations. As
can be seen, ε decreases gradually towards the middle of the
major shell. For the Mo isotopes, the value of ε for the normal
configuration exhibits a jump between N = 64 and N = 66.

This is so because the structure of the unperturbed Hamiltonian
for the normal configuration changes from N = 64 to 66: the
normal configuration is associated with the oblate minimum
for N � 64, whereas it is associated with the nearly spherical
minimum for N � 66 (see Fig. 1).

For the Zr nuclei, shown in Fig. 6(c), ε decreases in
heavier isotopes. However, the ε values for the [n = 1] and
[n = 2] configurations change little for N � 60. For the
Sr isotopes, shown in Fig. 6(d), except for the jump from
N = 58 to 60, an almost constant value is obtained. The
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FIG. 5. The same as in Fig. 1, but for the mapped IBM and for the Zr and Sr isotopes.

parameter κ , plotted in Figs. 7(a)–7(d), exhibits a gradual
decrease towards the midshell for all configurations, which
is consistent with the general mass-number dependence of this
parameter [30,53,55].

The parameters χν and χπ are depicted in Figs. 8 and 9.
A certain combination of those parameters reflects whether a
nucleus is either prolate or oblate deformed. From Eqs. (3), (9),
and (10), one sees that the γ dependence of the unperturbed
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NOMURA, RODRÍGUEZ-GUZMÁN, AND ROBLEDO PHYSICAL REVIEW C 94, 044314 (2016)

FIG. 6. The parameter ε (in MeV) for the unperturbed configu-
ration spaces [n] (n = 0, 1, and 2) is plotted as a function of neutron
number for the considered Ru, Mo, Zr, and Sr isotopes.

Hamiltonian is associated with the two terms proportional
to −κ(Nνχν + Nπχπ ) cos 3γ in the quadrupole-quadrupole
interaction Q̂ · Q̂ and −κ ′ sin2 3γ in the three-boson term.
Since the Q̂ · Q̂ is attractive (κ < 0) then the minimum
turns out to be prolate (oblate) if Nνχν + Nπχπ < 0 (Nνχν +
Nπχπ > 0). The three-boson term becomes important only
when the nucleus is γ soft, i.e., Nνχν + Nπχπ ≈ 0. The
development of a triaxial minimum then depends on the
strength of the three-boson interaction (κ ′). For many of
the Ru and Mo nuclei, both χν and χπ are close to zero
for N � 60 [see panels (a) and (b) of Figs. 8 and 9] and
the corresponding κ ′ values are large enough to produce a
triaxial minimum. The energy surfaces for many of the heavier
Ru and Mo isotopes (see Figs. 1 and 4) display shallow

FIG. 7. The same as in Fig. 6, but for the parameter κ (in MeV).

FIG. 8. The same as in Fig. 6, but for the parameter χν

(dimensionless).

triaxial minima. From panels (c) and (d) of Figs. 8 and 9,
the χν and χπ values for most of the Zr and Sr isotopes are
chosen so as not to change too much with neutron number.
Many of the deformation-energy surfaces for the Sr isotopes
exhibit pronounced prolate minimum around β = 0.4, which
are associated with the [n = 2] configuration. Consequently,
their χν and χπ values for the [n = 2] configuration are notably
large ≈−1.3, being close to the SU(3) limit of the IBM.

The offset energies �1 and �2 used in our configuration-
mixing calculations are shown in Fig. 10. They are of the order
of a few MeV. This is consistent with the results of previous
studies [35,36] in different regions of the nuclear chart.

FIG. 9. The same as in Fig. 6, but for the parameter χπ

(dimensionless).
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FIG. 10. The energy offsets �1 and �2 (in MeV) are plotted as a
function of neutron number for the Mo, Zr, and Sr isotopes.

However, we have chosen �2 = 0 for the Sr isotopes with
60 � N � 68 [see Fig. 10(c)], due to the peculiar topology of
the corresponding HFB surfaces.

E. Evolution of low-lying levels

The energies of some low-lying yrast and nonyrast states in
98–114Ru, 96–112Mo, 94–110Zr, and 92–108Sr are shown in Figs. 11
and 12 as functions of neutron number N . The energies of
the yrast states decrease towards N = 66, corresponding to
midshell. They remain quite low for heavier Zr and Sr nuclei,
reflecting a pronounced collectivity. Experimentally, an abrupt
change is observed in going from N = 58 to 60 in the Zr and
Sr chains. Although our calculations account reasonably well
for the experimental trend in the low-energy yrast states, in
particular for the heavier (N � 60) isotopes, several deviations
are also found:

(i) The energy levels near the neutron shell closure N =
50 are overestimated. This is due to the fact that the
IBM model space, comprising only a finite number of
s and d bosons, is not large enough to describe the
energy levels near the closed shell.

(ii) For Zr isotopes, the present calculation predicts that
the yrast states change from N = 58 to 60 gradually,
whereas a much more drastic change is observed
experimentally. This indicates that, in the present
model calculation, these yrast states are rather similar
in structure between the 98Zr and 100Zr nuclei. In both
nuclei, the yrast states are mainly composed of the
oblate [n = 1] configuration. Note that the topology
of the Gogny-D1M energy surface around this oblate
minimum is rather similar for the two nuclei.

(iii) In the case of the Zr isotopes, the experimental high-
lying yrast levels at N = 56 suggest the presence of
a subshell closure. In our calculations, however, such
a feature is not reproduced. This is not surprising,
since the present IBM model space does not consider

FIG. 11. Evolution of the low-lying yrast states in the considered Ru, Mo, Zr, and Sr isotopes as a function of the neutron number.
Experimental data have been taken from Ref. [64].
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FIG. 12. The same as in Fig. 11, but for the nonyrast states.

N = 56 to be a shell closure and, as a consequence, the
energy levels change rather gradually from N = 54 to
56, as already found in previous IBM calculations [11].

From the systematics of the nonyrast states depicted in
Fig. 12, one sees a typical γ -band sequence 2+, 3+, 4+, 5+, . . ..
The deviation with respect to the experimental data near

N = 50 could also be due to the limited number and/or types
of bosons taken into account in our calculations. For both the
Ru and Mo nuclei, the excitation energy of the 0+

2 state is
generally overestimated because the intruder configuration is
not considered in many of these nuclei, since the Gogny-HFB
energy surface does not exhibit coexisting minima (see Fig. 1).
The 0+

2 energy level for the N = 62 and 64 Mo nuclei is mostly

FIG. 13. Amplitudes of the unperturbed [n = 1] and [n = 2] components in the wave functions of the 0+
1 and 0+

2 states of 96–110Zr [panels
(a) and (b)] and 96–108Sr [panels (c) and (d)] isotopes.
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coming from the γ -soft minimum on the prolate side close
in energy to the oblate global minimum (see Fig. 4) and is,
consequently, notably low compared with other Mo nuclei.

For the nucleus 98Mo, already described by using
configuration-mixing IBM calculations in Refs. [5,39], we
obtained a pronounced deviation of the 0+

2 excitation energy
with respect to the experimental value. Note that, at variance
with previous results [5], our calculations on the deformation-
energy surfaces with the Gogny-D1M EDF (see Fig. 1) predict
a single minimum around β ≈ 0.15 (see Fig. 1). The structure
of the Zr and Sr isotopes is characterized by very-low-lying
excited 0+ states. In our calculations, the excited 0+ states
are mainly dominated by the intruder configurations and
their energies are similar to the energy difference between
different mean-field minima. Our results suggest that, for the
Zr and Sr isotopes, the 0+

2 excitation energy decreases from
N = 58 to N = 60. This reflects the fact that, in the mean-
field calculations, the second prolate minimum appears from
N = 60. On the other hand, the experimental 0+

2 excitation
energy increases from N = 60 to 62 while in our calculations
it remains low.

F. Wave functions for 0+
1 and 0+

2 states

To interpret the nature of the lowest two 0+ states, we
plot in Fig. 13 the amplitudes of the unperturbed [n = 1] and
[n = 2] components in the wave functions of the 0+

1 and 0+
2

states for the Zr and Sr nuclei. In most of the cases, the wave
functions are composed predominantly of the oblate [n = 1]
and prolate [n = 2] configurations, while the contribution of
the normal [n = 0] configuration turns out to be negligible.
For this reason, we do not show the amplitude of the normal
[n = 0] configuration. One should keep in mind that for 96Zr

FIG. 14. B(E2; 2+
1 → 0+

1 ) transition strength (in Weisskopf
units) for the considered Ru, Mo, Zr and Sr isotopes as a function of
the neutron number. Data have been taken from Refs. [6,64].

FIG. 15. The same as in Fig. 14, but for the B(E2; 4+
1 → 2+

1 )
transition strength. Data have been taken from Ref. [64].

and 96Sr, the [n = 2] configuration is not included. So the 0+
1

(0+
2 ) state of 96Zr (96Sr) is almost purely made of the oblate

(prolate) normal ([n = 1]) configuration.
From Fig. 13, one sees some characteristic features in the

contents of the 0+
1 and 0+

2 wave functions for 98–110Zr and
98–108Sr isotopes. From Fig. 13(a), one realizes that the 0+

1
state for 98,100Zr is dominated by the oblate configuration.
For N = 62–66, on the contrary, the 0+

1 wave function is

FIG. 16. The same as in Fig. 14, but for the B(E2; 0+
2 → 2+

1 )
transition strength. Data have been taken from Ref. [64].
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FIG. 17. Low-energy-level scheme for 104Ru. The numbers (in blue) near the arrows stand for the B(E2) values in Weisskopf units.
Experimental data have been taken from Ref. [64].

predominantly prolate while, for the N = 68 and 70 isotopes,
the oblate configuration becomes dominant again. On the other
hand, the systematics of the 0+

2 states, shown in Fig. 13(b) of
the figure, reveals that the prolate configuration is dominant
for N = 58 and 60, the oblate configuration makes a major

contribution for N = 62 and 64 while the prolate configuration
again dominates for N = 68 and 70. Similar results are found
for the 0+ states in the Sr chain but more isotopes are found
for which the prolate configuration becomes dominant in the
ground state. The previous results are basically consistent
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FIG. 18. The same as in Fig. 17, but for the 100Zr nucleus. Data have been taken from Ref. [64].
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with those obtained at the HFB level (see Figs. 2 and 5),
i.e., an oblate ground state is observed for the isotopes with
neutron numbers below N ≈ 58 and beyond N ≈ 68, and
a pronounced competition between an oblate and a prolate
minima in between.

G. B(E2) systematics

Figures 14–16 show the B(E2) transition strengths between
the low-spin states, B(E2; 2+

1 → 0+
1 ), B(E2; 4+

1 → 2+
1 ), and

B(E2; 0+
2 → 2+

1 ), respectively. The in-band B(E2; 2+
1 → 0+

1 )
and B(E2; 4+

1 → 2+
1 ) transitions become maximal around the

neutron number N = 66 corresponding to midshell where
the largest quadrupole collectivity is expected. In the case of
the Zr isotopes, the experimental systematics suggests that the
B(E2; 2+

1 → 0+
1 ) transition strength remains small for N = 56

and 58 (Fig. 14) while ours increases gradually due to the fact
that, in the IBM model space considered, the N = 56 subshell
closure is not taken into account.

The interband B(E2; 0+
2 → 2+

1 ) transition is shown in
Fig. 16. Near the vibrational limit, the value is comparable
in magnitude to the B(E2; 2+

1 → 0+
1 ) magnitude. However,

it becomes small in the deformed limit where such a
transition is not allowed. Within this context, a vibrational-
like behavior is suggested for the lighter Ru isotopes for
which the deformation of the minimum in the corresponding
mean-field-energy surfaces is small. For heavier isotopes,
this transition becomes small as the deformation becomes
stronger.

For Mo isotopes, the quite large experimental B(E2; 0+
2 →

2+
1 ) value of 1400 ± 200 W.u. [5] [not shown in Fig. 16(b)] sug-

gests a large mixing between the different intrinsic structures
while the theoretical value is much smaller. The reason for
the discrepancy is that for the lighter Mo nuclei configuration
mixing is not taken into account in our calculations. A similar
observation applies to Zr and Sr isotopes. For the former, the
coupling between the 0+

2 and 2+
1 states is probably not strong

enough to reproduce the experimental data while for the latter
the trend is reasonably well described.
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TABLE I. Fraction (in units of percent) of the three configurations
[n = 0], [n = 1], and [n = 2] in the wave functions of the low-lying
states of 98Sr shown in Fig. 19.

[n = 0] [n = 1] [n = 2]

0+
1 2.4 60.6 37.0

0+
2 1.9 37.6 60.5

2+
1 0.9 39.3 59.9

2+
2 1.0 67.2 31.9

2+
3 4.7 75.9 19.5

4+
1 0.2 16.8 83.0

4+
2 0.8 85.6 13.6

6+
1 0.0 8.2 91.8

6+
2 0.4 90.9 8.7

8+
1 0.0 4.6 95.4

H. Detailed comparison of low-energy spectra

So far, we have discussed some key observables as functions
of neutron number. In this section, by means of the comparison
with the available experimental data, we demonstrate that the
mapping procedure is also able to describe the detailed band
structure and decay patterns for the N = 60 isotones 104Ru,
100Zr, and 98Sr. To this end, the energy levels have been
classified into bands according to their dominant E2 decay
patterns. The level scheme for 102Mo is strikingly similar to
that for 104Ru and is not discussed in what follows.

1. 104Ru

The level scheme shown in Fig. 17 for 104Ru corresponds to
a typical γ -soft spectra. The 2+

2 , which is likely the bandhead
of the quasi-γ band, lies close to the 4+

1 level. It also exhibits
the E2 decay to the 2+

1 state which is comparable to the

FIG. 20. The SCMF deformation-energy curves for the N = 60
isotones (a) 104Ru, (b) 102Mo, (c) 100Zr, and (d) 98Sr as functions of
axial deformation parameter β (with γ = 0◦), calculated with the
Gogny D1S and D1M parametrizations.
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FIG. 21. The same as in Fig. 20, but as functions of nonaxial
deformation parameter γ with a β value corresponding to the
minimum at each γ value.

B(E2; 2+
1 → 0+

1 ) transition strength. The energy spacing in
the sequence 2+

2 , 3+
1 , 4+

2 , 5+
1 , and 6+

2 is rather constant.
Like for other Ru isotopes, the quasi-γ spectra obtained for
104Ru suggests that this system is somewhat in between the
rigid-triaxial [65] and the γ -unstable [66] limits. Let us remark
that the quasi-γ band systematics can only be reproduced by
including the three-boson term in the IBM Hamiltonian [33].
The previous results compare well with those obtained

by using the five-dimensional (5D) collective Hamiltonian
approach, based on the deformed Nilsson potential and the
Strutinsky’s shell correction [67].

2. 100Zr

Experimentally the nucleus 100Zr, shown in Fig. 18, is
characterized by the 0+

2 and 2+
1 levels being rather close in

energy and connected by a strong E2 transition probability of
67 ± 7 W.u. On the other hand, our calculations overestimate
the 0+

2 excitation energy, which is much higher than the 2+
1

energy level and also higher than the experimental counterpart
and is even above the 2+

2 level. This is probably a consequence
of strong level repulsion between the 0+ states, since the
mixing strength ω = 0.1 MeV might be too large for this
particular example. Also, the calculated B(E2; 0+

2 → 2+
1 ) =

0.9 W.u. is too small compared with the experimental data. The
too-small E2 transition strength reflects that these states have
different characters: 31% (69%) of the wave function of the
0+

2 (2+
1 ) state is composed of the oblate [n = 1] configuration.

Our calculations predict a third-lowest band based on the
2+

3 state, which resembles a quasi-γ band but shows the level
structure of the rigid-triaxial rotor [65]. The band built on
the 0+

3 state is also overestimated, again due to strong level
repulsion between the 0+ states.

3. 98Sr

Figure 19 depicts the level scheme for the nucleus 98Sr.
The fractions of the near-spherical [n = 0], oblate [n =
1], and prolate [n = 2] configurations introduced for this
nucleus are given in Table I. Although the level scheme is
somewhat similar to that obtained for 100Zr, the agreement
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with experiment is better. From Table I, one sees that the
0+

1 (0+
2 ) state is dominated by the oblate [n = 1] (prolate

[n = 2]) configuration. However, the prolate [n = 2] (oblate
[n = 1]) configuration becomes more dominant for higher
angular momentum, which is compatible with the empirical
systematics [8]. The excitation energy of the 0+

2 state is
overestimated but the strong decay to the 2+

1 state is consistent
with the experiment and reflects the large mixing between
these two states. As can be seen from Table I, the content of
the corresponding wave functions is similar. Experimentally
there is a large energy gap between the 2+

2 and 0+
2 states.

However, in our calculations both states are close in energy
and are connected by a strong E2 decay rate (62 W.u.). On the
other hand, the theoretical B(E2; 2+

3 → 0+
2 ) value of 11 W.u.

agrees better with the experimental B(E2; 2+
2 → 0+

2 ) value.
Let us mention that the quality of the agreement between our
results and the experimental data is similar to that obtained
recently using the 5D collective Hamiltonian approach based
on the Gogny-D1S EDF [7].

I. Sensitivity tests

As pointed out in previous sections, there are two major
factors which could affect the description of the energy spectra,
especially those of the excited 0+ states: one is the choice of
the particular version of the EDF, and the other is the choice
of the mixing interaction strength ω. In this section, we check
the sensitivity of our results to these two factors.

First, we show in Figs. 20 and 21 the SCMF deformation-
energy curves for the N = 60 isotones [(a)104Ru, (b) 102Mo,
(c) 100Zr, and (d) 98Sr] calculated with the D1S and D1M
parametrizations of the Gogny-EDF, as functions of the axial
deformation parameter β (with γ = 0◦) and the nonaxial
deformation parameter γ (with β corresponding to the min-
imum at each γ value), respectively. In 104Ru [Figs. 20(a)
and 21(a)] and 102Mo [Figs. 20(b) and 21(b)], we do observe
no striking differences in the topology of the SCMF energy
surfaces computed with the D1S and D1M parametrizations.
In 100Zr and 98Sr, on the contrary, there are notable differences,
especially, in the energies of prolate and oblate minima and in
the γ softness.

Regarding the 100Zr and 98Sr nuclei, we compare in Fig. 22
the energy spectra obtained with the parameters deduced from
the D1S and D1M energy surfaces. In Fig. 22, the results
based on the D1S interaction suggest that, in both 100Zr and
98Sr, the energy levels for the yrast states, which are mainly
composed of the oblate global minimum (see also Fig. 13), are
more compressed than those based on the D1M interaction.
The excitation energies of the nonyrast states, e.g., the 0+

2
and 2+

2 states, which are mainly coming from the second-
lowest prolate mean-field minimum, are rather dependent on
the choice of the EDF. This is corroborated by the SCMF
results shown in panels (c) [(d)] of Figs. 20 and 21, where
one sees that the energy difference between the prolate and
oblate mean-field minima is in the case of the D1M force
larger (smaller) than in the case of the D1S force.

Second, we display in Fig. 23 the excitation energy of the
2+

1 , 4+
1 , 0+

2 , and 2+
2 states, calculated within the configuration-

mixing IBM, as a function of the mixing interaction strength ω

FIG. 23. Excitation energies of the 2+
1 , 4+

1 , 0+
2 , and 2+

2 states of
(a) 98Zr, (b) 100Zr, and (c) 102Zr, as functions of the mixing interaction
strength ω. Calculations are based on the parametrization D1M of the
Gogny-EDF.

for 98Zr [Fig. 23(a)], 100Zr [Fig. 23(b)], and 102Zr [Fig. 23(c)].
Calculations are based on the parametrization D1M of the
Gogny-EDF. The energies of the yrast (2+

1 and 4+
1 ) states stay

almost constant with ω, whereas those of the nonyrast (0+
2 and

2+
2 ) states are more sensitive to ω. For 98,100Zr, the chosen value

ω = 0.1 MeV seems to be too large to explain the experimental
0+

2 level energies of 854 and 331 keV, respectively [64]. For
102Zr, on the other hand, a much larger strength ω could be
required to account for the experimental 0+

2 energy of 895 keV.

IV. CONCLUDING REMARKS

In this work, we study the shape evolution and coexistence
in the neutron-rich nuclei 98–114Ru, 96–112Mo, 94–110Zr, and
92–108Sr. We have resorted to the SCMF-to-IBM mapping
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procedure based on the Gogny-D1M EDF. The IBM parame-
ters derived from such a procedure have been used to compute
the spectroscopic properties of the nuclei considered. To keep
our analysis as simple as possible, several approximations
have been made. Our method describes reasonably well the
evolution of the low-lying yrast and nonyrast states. Our
results for Ru and Mo nuclei suggest many γ -soft examples
while some vivid examples of coexistence between strongly
deformed prolate and weakly deformed oblate shapes have
been found for the Zr and Sr nuclei.

Our calculations describe well the rapid structural change
between N = 58 and 60 in Zr and Sr nuclei. The analysis of
the Gogny-D1M and mapped IBM energy surfaces as well as
the wave functions of the 0+

1 and 0+
2 states reveals that the

sudden lowering of the energy levels from N = 58 to 60 in
those nuclei is the consequence of the onset of large prolate
deformations. From Fig. 13, many of the Zr and Sr nuclei from
N = 60 until around the neutron midshell N ≈ 66 exhibit a
prolate ground state while their 0+

2 states are dominated by the
oblate configuration. On the other hand, an oblate ground state
is found for the heavier isotopes near N = 70.

We also point out several discrepancies between our
predictions and the available experimental data. In particular,
for many of the considered nuclei, the 0+

2 excited state is
predicted to be too high. In Mo isotopes, for example, the 0+

2
energy level is systematically overestimated since the mixing
is not introduced in most of the isotopes. The 0+

2 excitation
energy is neither well described at N = 60 and 62 in the case
of Zr and Sr chains. This discrepancy could be related to

the particular version of the Gogny-EDF employed in our
calculations. In the case of 98Mo, for example, the SCMF
energy surface displays only one minimum whereas previous
Skyrme-HF + BCS calculations [5] have found two minima.
However, a second source for the discrepancy could also be
the assumptions made at the IBM level. For example, the
simplified form of the unperturbed Hamiltonian and a constant
mixing strength may not be realistic enough for all studied
nuclei. One could also use a different boson model space.
Within this context, some refinement is still required to better
constrain the IBM Hamiltonian. For example, both particle
and hole pairs have been mapped onto the same boson image.
However, a more realistic formulation would consider a single
boson Hamiltonian where both particle-like and hole-like
bosons are taken into account, rather than invoking several
different unperturbed Hamiltonians. Nevertheless, we stress
that the mapping procedure considered allows a systematic
and computationally feasible description of medium-mass and
heavy nuclei with several coexisting shapes. The method
can also be used to predict the spectroscopic properties of
unexplored nuclei.

ACKNOWLEDGMENTS

K.N. thanks the Japan Society of Promotion of Science for
financial support. The work of L.M.R. was supported by the
Spanish Ministerio de Economı́a y Competitividad (MINECO)
under Contracts No. FIS2012-34479, No. FPA2015-65929-P,
and No. FIS2015-63770-P.

[1] K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).
[2] T. Sumikama, K. Yoshinaga, H. Watanabe, S. Nishimura, Y.

Miyashita, K. Yamaguchi, K. Sugimoto, J. Chiba, Z. Li, H.
Baba et al., Phys. Rev. Lett. 106, 202501 (2011).

[3] M. Albers, N. Warr, K. Nomura, A. Blazhev, J. Jolie, D. Mücher,
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