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Generalized-seniority pattern and thermal properties in even Sn isotopes
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Even tin isotopes of mass number A = 108–124 are calculated with realistic interactions in the generalized-
seniority approximation of the nuclear shell model. For each nucleus, we compute the lowest 10 000 states (5000
of each parity) up to around 8 MeV in excitation energy, by allowing as many as four broken pairs. The lowest
50 eigen energies of each parity are compared with the exact results of the large-scale shell-model calculation.
The wave functions of the midshell nuclei show a clear pattern of the stepwise breakup of condensed coherent
pairs with increasing excitation energy. We also compute in the canonical ensemble the thermal properties—level
density, entropy, and specific heat—in relation to the thermal pairing phase transition.
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I. INTRODUCTION

The similarity between metal superconductivity and nuclear
superfluidity was soon recognized [1,2] after the highly
successful BCS theory [3]. In the superconducting ground
state, electrons are coupled into pairs by the lattice-mediated
effective attraction. In nuclei the short-range pairing force
tends to couple nucleons. Although the pairing force influences
practically all nuclei across the nuclear chart, the best super-
fluids are found among spherical semimagic and near-magic
nuclei. In these nuclei, the pairing force dominates over
other correlations, including the most important quadrupole-
quadrupole one. As a result, the ground state is largely a
condensate of coherent pairs, well separated from the rest
states by the pairing gap.

Naturally, we would ask to what extent this superfluid
structure persists at higher energies in the increasingly dense
spectrum. In a purely pairing model, the states with s broken
pairs are roughly degenerate at s times the pairing gap. But in
reality other correlations may disturb this picture.

In the standard BCS and Bogoliubov quasiparticle for-
malism, one may consider diagonalizing Ĥ − λN̂ (λ is
the chemical potential) in the subspaces with two or more
quasiparticles until convergence. However, the eigen wave
functions—even for the lowest states—usually have a large
number of quasiparticles and thus converge slowly (see
Sec. 2.3.3. of Ref. [4] and references therein). This is due
to the particle-number violating nature of the quasiparticle
formalism. Instead the most natural approach seems to be
the generalized-seniority truncation of the shell model. The
starting point is the fully paired state [Eq. (3) below] that
is the trial BCS wave function projected onto the good
particle number. The coherent pair structure is usually fixed
by minimizing the mean energy in the variation principle.
As a truncation scheme of the shell model, we break the
coherent pairs and diagonalize the Hamiltonian H in the
subspace consisting of all the states with S = 2s unpaired
nucleons. [The subspace of S unpaired nucleons consists of
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the subspaces of generalized-seniority S,S − 2,..., 2,0; see
Eq. (6).] With increasing S and thus the subspace size, the eigen
wave functions gradually converge to the exact shell-model
ones when all the pairs are broken. The distribution in terms
of generalized seniority is given by the amplitudes of various
S components in the eigen wave function.

The long chain of tin isotopes is a classic example of
nuclear superfluidity and attracts continuous attention. Recent
theoretical investigations include, for example, the mean-field
theory [5–10], the nuclear shell model [11–14], and the
schematic generalized-seniority description [15–17]. The near
constancy of the first 2+ excitation energy suggests strong
pairing correlations and led Talmi [15,18,19] to propose
the generalized seniority as a good quantum number of
the Hamiltonian. Realistic Hamiltonians may not satisfy the
derived restrictions, and the universal method should be the
diagonalization of the Hamiltonian in the subspace of S
unpaired nucleons (the subspace up to generalized-seniority
S). This has been done in the neutron 50–82 major shell
with either phenomenological or more realistic interactions
for S = 2 [20,21] and S = 4 [4,22], but with modern realistic
interactions [23] only for S = 2 [11,24]. However, as pointed
out in these works, higher S is necessary to achieve conver-
gence, which is challenging and not done yet. Using the fast
algorithm for generalized seniority we developed [25] and
applied [26] recently, in this work we compute with modern
realistic interactions [13] the lowest 10 000 states (5000 of
each parity) of 108–124Sn in the subspace of S = 8 unpaired
nucleons (up to generalized-seniority S = 8). The distribution
of wave functions in terms of generalized seniority is examined
in detail. The results show that the superfluid structure indeed
persists in the higher dense spectrum, and the picture of the
successive breakup of coherent pairs is approximately valid,
especially so near the midshell.

The thermal properties of tin isotopes related to the pairing
phase transition have been the subject of many recent studies.
The level densities up to the neutron separation energy in
116,118,122Sn have been extracted experimentally under certain
assumptions [27–29], together with the specific heat and
entropy. Theoretically, the thermal properties could be com-
puted by the finite-temperature mean-field theory [10,30,31].
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When practical, the spectroscopically accurate shell-model-
type approaches are possibly more accurate. The shell-model
Monte Carlo method [32,33] is suitable by its formulation
to compute canonical-ensemble properties, but is limited by
the sign problem. Successful applications [34–41] must use
the good-sign Hamiltonian extracted from the full realistic
interaction. The standard shell model is able to compute
couples of the low-lying states but is still time-consuming
near the midshell [13]. Accurate thermal properties in the
canonical ensemble require usually thousands of states and
few calculations have been done in this way [42]. In this work
we are able to compute the lowest 10 000 states owing to the
relatively small dimension of the generalized-seniority trun-
cated subspace (S = 8), from which the canonical-ensemble
quantities at low temperature are calculated. The transition
from the superfluid phase to the normal phase is reproduced.

Section II briefly reviews the generalized-seniority formal-
ism. The results for tin isotopes are presented in Sec. III
inspecting the generalized-seniority structure of the eigen
wave functions. Based on the spectrum, we compute canonical-
ensemble thermal properties in Sec. IV in relation to the pairing
phase transition. Section V summarizes the work.

II. GENERALIZED SENIORITY FORMALISM

We briefly review the generalized-seniority formalism in
relation to the current work. The pair-creation operator

P †
α = a†

αa
†
α̃ (1)

creates a pair of particles on the single-particle level |α〉
and its time-reversed partner |α̃〉 (| ˜̃α〉 = −|α〉,P †

α = P
†
α̃ ). The

coherent pair-creation operator

P † =
∑
mα>0

vαP †
α (2)

creates a pair of particles coherently distributed with structure
coefficients vα over the entire single-particle space, where the
summation runs over orbits with a positive magnetic quantum
number mα . The pair-condensate wave function of the 2N -
particle system

(P †)N |vac〉 (3)

builds in pairing correlations, where |vac〉 is the vacuum state.
Gradually breaking coherent pairs, the state with S = 2s

unpaired nucleons is

a†a† . . . a†︸ ︷︷ ︸
S=2s

(P †)N−s |0〉. (4)

Loosely speaking, S is defined as the generalized-seniority
quantum number [4,18,19,21,43,44]. More precisely, we dis-
tinguish between the space |S} of S unpaired nucleons and the
space |S〉 of generalized-seniority S. The space |S} consists
of all the states of the form (4). Any state of S ′ < S unpaired
nucleons can be written as a linear combination of the states of
S unpaired nucleons, after substituting several P † by Eq. (2).
Therefore |S ′} is a subspace of |S},

|S} ⊃ |S − 2} ⊃ |S − 4} ⊃ · · · ⊃ |2} ⊃ |0}. (5)

In contrast, |S〉 is the subspace after removing the subspace
|S − 2} from the space |S}, thus

|S} = |S〉 ∪ |S − 2}
= |S〉 ∪ |S − 2〉 ∪ |S − 4}
= · · ·
= |S〉 ∪ |S − 2〉 ∪ · · · ∪ |2〉 ∪ |0〉. (6)

The symbol “∪” means set union. In this work S = 2s is
even, and we define |s} ≡ |S} and |s〉 ≡ |S〉. The original basis
vectors (4) are not orthogonal. After orthonormalization the
new basis vectors of the space |s〉 are enumerated as |s,i〉,
where the index i runs from one to the dimension of |s〉.

Practical generalized-seniority calculations usually trun-
cate the full many-body space to the subspace |s} and then
diagonalize the Hamiltonian (s = N corresponds to the full
space without truncation). The eigen wave function is

|E〉 =
∑
s ′�s

∑
i

cs ′,i |s ′,i〉. (7)

Investigating the wave function (7) in terms of generalized
seniority, the amplitude for generalized-seniority 2s ′ is

P (s ′) =
∑

i

|cs ′,i |2, (8)

and
∑

s ′�s P (s ′) = 1. The average of s is

s̄ =
∑
s ′�s

s ′P (s ′). (9)

The average of s2 is

s2 =
∑
s ′�s

(s ′)2P (s ′). (10)

The fluctuation of s is

�s =
√

(s − s̄)2 =
√

s2 − (s̄)2. (11)

III. GENERALIZED-SENIORITY PATTERN

In this work even tin isotopes of mass number A = 108–124
are computed in the generalized-seniority truncation of the
shell model to four broken pairs (up to generalized-seniority
eight). The doubly magic 100

50Sn is taken as an inert core and the
valence neutrons distribute in the 50–82 major shell. We take
the Hamiltonian from Ref. [13]. It starts from the realistic CD-
Bonn nucleon-nucleon potential [45] and is renormalized in
the perturbative G-matrix approach [23]. Then the monopole
terms and unknown single-particle energies are fitted [13] to
the 157 experimental low-lying yrast energies in 102–132Sn of
both even and odd masses. This Hamiltonian has been used in
Refs. [46–51].

The coherent pair structure vj = vjm (2) is independent of
the magnetic quantum number m because of the rotational
symmetry. For each nucleus we determine vj in the variation
principle through minimizing the mean energy of the fully
paired state [Eq. (3), S = 0]. This state has the particle-hole
symmetry [52]; the energy minimum and the wave function (3)
are independent of choosing the particles or the holes as the
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FIG. 1. Collective pair structures vj (2) in tin isotopes (A is the
mass number). They are normalized such that v0g7/2 = 1.

degree of freedom. The particle-pair structures and the hole-
pair structures are reciprocals of each other [vhole

j = 1/v
particle
j

in Eq. (2)]. Figure 1 shows the particle-pair structures v
particle
j

in 108−124Sn normalized by setting v
particle
0g7/2

= 1. In the isotopic
chain vj ’s vary smoothly with the mass number. The two orbits
0g7/2 and 1d5/2 that are lower in energy have larger vj and
bigger occupancy.

In this work we truncate the full shell-model space to
the subspace of four broken pairs |s = 4} [the subspace
up to generalized-seniority S = 2s = 8, see Eq. (6)]. The
Hamiltonian matrix in the M scheme has the dimension
646 430 (for M = 0 including both parities). The basis (4)
of the space |s = 4} is in general not orthogonal, and the
nontrivial overlap matrix of the basis has the same dimension.
By the recent fast algorithm of generalized seniority [25],
we compute the Hamiltonian and the overlap matrices that are
both sparse. The generalized (nonorthogonal basis) eigenvalue
problem is solved by the MATLAB function “eigs” in the
Lanczos method for the lowest 5000 eigenstates of each parity.
In Ref. [53] we proved that the truncation up to an arbitrary
generalized seniority preserves the particle-hole symmetry;
the particle |s} and the hole |s} are the same subspace [0 �
s � min(N,� − N ), where 2� = ∑

j (2j + 1)]. At a given
nucleus the results are independent of choosing the particles
or the holes as the degree of freedom. Practically we calculate
108−116Sn in the particle representation and 118−124Sn in the
hole representation. The results for 108Sn and 124Sn are the
exact shell-model ones because all the pairs (of particles or
holes) are broken; others are approximations.

To evaluate the quality of the approximation, we perform
large-scale shell-model calculations for the lowest 50 eigen-
states of each parity in 110−122Sn. Figures 2 and 3 show the
errors dE of the generalized-seniority eigenenergies, relative
to the exact shell-model ones. The errors dE are computed
assuming that the JP

i generalized-seniority eigenstate corre-
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FIG. 2. Errors of the generalized-seniority eigen energies for the
lowest 50 positive-parity eigenstates in 110−122Sn. Every panel has 50
data points, each represents one J state. The horizontal coordinate
is the exact excitation energy from the shell-model calculation.
The vertical coordinate is the error of the eigenenergy from the
generalized-seniority calculation, relative to the exact shell-model
eigenenergy. The vertical dotted line is E = E<

s=1 as explained in the
text.

sponds to the JP
i shell-model eigenstate (JP

i stands for the
ith lowest eigenstate of angular momentum J and parity P ).
We introduce the symbol E<

s=1 as the energy below which the
number of many-body eigenstates is equal to the dimension
of the |s = 1} subspace (6). (E<

s=1 is somehow similar to the
concept of the Debye frequency of a crystal.) The vertical
dotted line on each panel represents E = E<

s=1; to the left of
this line the number of data points is equal to the dimension of
the |s = 1} subspace (6). We see in Fig. 2 that the ground-state
energies converge very well. The actual numbers are dE = 3,
4, 7, 10, 9, 7, and 3 keV for 110−122Sn. Below E<

s=1, the errors
from Figs. 2 and 3 are generally small, running from around
10 keV to about 100 keV, except for 118Sn and 120Sn where
the errors are around 200 keV near E<

s=1. In most cases the
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FIG. 3. Errors of the generalized-seniority eigenenergies for the
lowest 50 negative-parity eigenstates in 110−122Sn.

errors have a sudden increase beyond E<
s=1, to 200–350 keV.

This is related to the breakup of the second condensed pair as is
shown in Figs. 4–21. The convergence for higher excited states
by the generalized-seniority calculation are demonstrated later
in another way when discussing Figs. 13–21.

For each eigen wave function, we compute its generalized-
seniority amplitudes P (s) (8), mean s̄ (9), and fluctuation
�s (11). The results of s̄ and �s are plotted in Figs. 4–12,
together with the level density

ρ(E) ≡ �(E − dE,E + dE)

2dE
, (12)

where �(E − dE,E + dE) is the number of J levels in
the energy interval (E − dE,E + dE), and dE = 0.2 MeV.
[ρ(E) does not include the magnetic degeneracies.] The drop
of the ρ(E) curves at the large-energy end is artificial and
simply because the maximal energy (the energy of the 5000th
eigenstate) is reached, beyond which the J levels are not
computed, thus absent from Eq. (12).

Intuitively, from pure pairing models we would expect a
relatively sharp staircase curve of s̄; breaking each pair costs
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FIG. 4. The generalized-seniority (S = 2s) mean s̄ and fluctu-
ation �s, and the level density ρ, versus the excitation energy in
108Sn. The upper (lower) panel plots the lowest 5000 eigenstates
with positive (negative) parity. Each black plus (blue circle) symbol
represents one state; its horizontal coordinate is the excitation energy,
and the vertical coordinate is s̄ (�s) corresponding to the left axis. The
red solid line corresponding to the right axis plots the level density
ρ averaged over an energy bin of 0.4 MeV. The two vertical dotted
lines are E = E<

s=1 and E = E<
s=2, respectively.

roughly the pairing energy 2� (in BCS language). Realistic
nuclei have generalized-seniority mixing interactions, and we
would like to see to what extent they disturb the staircase
pattern of s̄. Figures 4–12 show the s̄ curves for the tin
isotopes 108−124Sn. The two vertical dotted lines on each
figure represent E = E<

s=1 and E = E<
s=2; to the left of the

first (second) line the number of data points is equal to
the dimension of the |s = 1} (|s = 2}) subspace (6). We
see that the staircase pattern of s̄ is more identifiable (less
disturbed) near the midshell and for negative-parity states.
The negative-parity stair at E<

s=1 is obvious in 110−118Sn; the
positive-parity stair at E<

s=1 is identifiable in 112−116Sn. The
stairs at E<

s=2 are difficult to identify and, in 112−118Sn only,
there are some relics for both parities.

The fact that the s̄ staircase pattern is more identifiable
near the midshell seems consistent with the conventional
wisdom that the collective pairing effect is proportional to
N (� − N ). The factor N (� − N ) appears in the expression
of B(E2; 2+

1 → 0+
1 ) in the degenerate-seniority model [19].

This factor also appears in Belyaev’s estimation of the BCS
critical pairing strength under certain assumptions [2]. Usually
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FIG. 5. The generalized-seniority mean and fluctuation, and the
level density, versus the excitation energy in 110Sn.
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FIG. 6. The generalized-seniority mean and fluctuation, and the
level density, versus the excitation energy in 112Sn.
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FIG. 7. The generalized-seniority mean and fluctuation, and the
level density, versus the excitation energy in 114Sn.
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FIG. 8. The generalized-seniority mean and fluctuation, and the
level density, versus the excitation energy in 116Sn.
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FIG. 9. The generalized-seniority mean and fluctuation, and the
level density, versus the excitation energy in 118Sn.
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FIG. 10. The generalized-seniority mean and fluctuation, and the
level density, versus the excitation energy in 120Sn.
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FIG. 11. The generalized-seniority mean and fluctuation, and the
level density, versus the excitation energy in 122Sn.
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FIG. 12. The generalized-seniority mean and fluctuation, and the
level density, versus the excitation energy in 124Sn.
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FIG. 13. Amplitudes P (s) of each generalized seniority S = 2s

versus the excitation energy in 108Sn. The left (right) panels plot
the lowest 5000 eigenstates with positive (negative) parity. Therefore
each panel has 5000 data points. The two vertical dotted lines E =
E<

s=1 and E = E<
s=2 are at the same positions as those in Fig. 4.

the midshell region has the largest effective model space
(�eff) available for the collective pairing; the Fermi surface
sits in the middle and both upper and lower single-particle
levels participate. This region also has the largest number of
pairs N � �/2 (particle and hole representations in the lower
and upper shell, respectively). Therefore near the midshell
the collective pairing effect is the most enhanced and the
pair condensate seems the best developed. As a signature
the staircase pattern is the most identifiable in Figs. 6–9 for
112∼118Sn. We see that the jumps of the s̄ curves happen
roughly at E = E<

s , especially so for s = 1. In this sense
the generalized-seniority truncation gives the full low-lying
spectrum around the midshell and no further dimension
reduction is possible. E<

s=2 is slightly below twice E<
s=1. It is

consistent with the degenerate-seniority model where this ratio
is 2(1 − 1/�). If we take � = 16 (for the 50–82 major shell),
this ratio is 1.875, quite consistent with those in Figs. 6–9
for 112−118Sn.

On the other hand, Figs. 4, 11, and 12 show that away
from the midshell the staircase pattern is difficult to identify
in 108,122,124Sn. Here the available effective model space �eff

is relatively small. The pair condensate does not seem well
developed with the limited number of collective pairs. Other
correlations may easily destroy the staircase pattern at higher
energies.

Looking more closely, 114Sn has the most clear stairs at E =
E<

s=1 instead of the exact midshell nucleus 116Sn. This may
indicate slightly reduced collective pairing at 116Sn and seems
consistent with the trend of the experimental B(E2; 2+

1 →
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FIG. 14. Amplitudes of each generalized seniority versus the
excitation energy in 110Sn.

0+
1 ) values [54–57]. The B(E2) values have a small dip at

116Sn in the generally parabolic [proportional to N (� − N )
in the degenerate-seniority model] curve for tin isotopes. This
phenomenon has been explained in Ref. [15] by the different
filling rates of the two groups of j orbits as follows. The
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FIG. 15. Amplitudes of each generalized seniority versus the
excitation energy in 112Sn.
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FIG. 16. Amplitudes of each generalized seniority versus the
excitation energy in 114Sn.

lower group has two orbits, 0g7/2 and 1d5/2, and the higher
group has three orbits, 2s1/2, 1d3/2, and 0h11/2. The two groups
are separated by a moderate energy difference. In the lower
(upper) shell mainly the lower (higher) group contributes to the
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FIG. 17. Amplitudes of each generalized seniority versus the
excitation energy in 116Sn.
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FIG. 18. Amplitudes of each generalized seniority versus the
excitation energy in 118Sn.

coherent pairing. At 116Sn the occupation switches between the
two groups and results in slightly reduced collective pairing.

Another observation is that the staircase pattern is more
obvious for negative-parity states than for positive-parity
states. This is likely related to the intruder orbit 0h11/2. It might
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FIG. 19. Amplitudes of each generalized seniority versus the
excitation energy in 120Sn.
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FIG. 20. Amplitudes of each generalized seniority versus the
excitation energy in 122Sn.

be due to the Hamiltonian two-body matrix elements involving
0h11/2 or to the smaller dimension of the negative-parity
|s = 1} subspace (compared with that of the positive parity).
It would be interesting to see whether this observation is true
in other nuclei and to study its origin.
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FIG. 21. Amplitudes of each generalized seniority versus the
excitation energy in 124Sn.

We also notice that in Figs. 4–12 some data points have
large s̄ but small excitation energy E (lying toward the top-left
corner). These states should be identified as collective states
and deserve more attention.

Figures 4–12 show that in general the level density ρ
in a logarithmic scale increases linearly with the excitation
energy. However, the ρ(E) curves have a dip around E<

s=1, for
positive parity in 108−112Sn and negative parity in 108−114Sn.
This is another piece of evidence for the persisting superfluid
structure; the s = 1 broken-pair states have close energies and
this group is quite separated in energy from the group of s = 2
broken-pair states. The dips are more apparent for negative
parity, which should be related to the role of the intruder
orbit 0h11/2.

The level densities up to the neutron separation energy in
116,118,122Sn have been extracted experimentally under certain
assumptions [27–29]. However the computed level densities
of this work are smaller than the experimentally extracted
ones near the neutron separation energy. The reasons are as
follows. First, the adopted interaction [13] was fitted by only
the first few low-lying states and may not be very accurate at
higher energies. For example, the recently observed isomers of
124Sn, 13− and 15−, were measured [14] at excitation energies
E(13−) = 4324 keV and E(15−) = 4553 keV. The exact shell
model with the adopted interaction [13] gives E(13−) =
4684 keV and E(15−) = 4830 keV. Second, we notice from
Figs. 2 and 3 that systematically the generalized-seniority
energies lie slightly higher than the exact ones. Third, at
high energies the cross-shell excitations become important
but these are missing in the current model space (the neutron
50–82 major shell). Therefore, the aim of this work is not to
reproduce accurately the experimental level densities. Rather
we investigate the generalized-seniority pattern generated by
one of the most advanced modern realistic interactions [13].

Above we see evidence for the persisting superfluid
structure. Meanwhile, sizable generalized-seniority mixing
exists in all the 108−124Sn nuclei, even near the midshell. For
110−118Sn in Figs. 5–9, the stairs of the s̄ staircase curves
never sit at integers; the first and the second stairs are close to
s̄ = 1.5 and 2.5, instead of 1 and 2. The fluctuation �s (11)
measures directly the degree of generalized-seniority mixing.
In Figs. 4–12 �s is sizable around 0.7 and decreases slightly
with increasing excitation energy. Whether the slight decrease
was realistic, reflecting less generalized-seniority mixing, or
just an artificial effect of the current calculation that restricts
the model space to |s = 4} (four broken pairs) deserves
further study. For 108Sn in Fig. 4 and 124Sn in Fig. 12, the
slight decrease is realistic because our results are the exact
shell-model ones. For other nuclei future calculations within
larger model spaces (s > 4) are necessary. At a given excitation
energy, the spread of �s is rather small; hence nearby
eigenstates have quite similar degrees of generalized-seniority
mixing. Practically no pure (�s ≈ 0) generalized-seniority
state exists; the only three exceptions are a positive-parity
state (∼7.7 MeV) and a negative-parity one (∼ 9 MeV) in
108Sn, and a negative-parity one in 124Sn (∼7.7 MeV). All
three states are at high excitation energies and appear in
nuclei far from the midshell. The results suggest more care to
schematic studies using pure generalized-seniority states. For
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example, Maheshwari and Jain [16] treated the isomer states
10+, 13−, and 15− in 116-130Sn as pure generalized-seniority
states with S = 2, 4, and 4, respectively. While the treatment
was simple and inspiring, these isomer states in fact have mixed
generalized-seniority based on the results of the current work.
Similar comments apply to the work of Morales et al. [15]
who treated the first 2+ state as a pure S = 2 state.

Figures 4–12 show the generalized-seniority mean s̄ (9) and
fluctuation �s (11) of each eigenstate. The precise composi-
tion of the eigenstates could be resolved by the generalized-
seniority amplitudes P (s) (8), as plotted in Figs. 13–21 for
108−124Sn. The pattern of successive breakup of the condensed
pairs is evident and more pronounced near the midshell. In
each nucleus, the P (s = 0) amplitudes are for a single basis
state (3). About 80% of this basis state distributes in the ground
state (see also Fig. 22), and the leftover percent is scattered
in many excited 0+ states. The P (s = 1) amplitudes mainly
distribute below E<

s=1, beyond which the drop is apparent.
The P (s = 2) amplitudes mostly distribute between E<

s=1
and E<

s=2. Below E<
s=1 the P (s = 2) amplitudes are small

but not negligible, indicating sizable generalized-seniority
mixing into the s = 1 eigenstates. The P (s = 3) amplitudes
increase with the excitation energy, but the trend is different
for nuclei near and far from the midshell. Far from the
midshell the P (s = 3) amplitudes are already large beyond
E<

s=1 and do not increase obviously at E<
s=2, whereas near the

midshell the P (s = 3) amplitudes show discontinuities at E<
s=1

and E<
s=2, indicating the persisting superfluid structure. The

P (s = 4) amplitudes are small and demonstrate the quality of

the current calculation truncated to the subspace |s = 4}. If
generalized seniority is a good truncation scheme, the P (s)
amplitudes should decrease with increasing s after the eigen
wave function achieves convergence. Indeed this is the case
here. The P (s = 4) amplitudes are small, especially so for
low-lying states and for nuclei around the midshell. [The
P (s = 4) amplitudes are not small for 108Sn and 124Sn, but
the results of these two nuclei are the exact shell-model ones
without truncation.] For 112−118Sn, the P (s = 4) amplitudes
are negligible below E<

s=1 and tiny below E<
s=2, announcing

excellent convergence. No exception exists, therefore we
should not miss any shell-model eigenstate. The tiny P (s = 4)
amplitudes suggest that around the midshell the superfluid
structure persists the best and the generalized-seniority trun-
cation is very effective, whereas these nuclei have the largest
dimension in the standard shell model and are the most
time-consuming.

Summarizing Figs. 13–21, in general the picture of suc-
cessive breakup of condensed pairs is evident and more
pronounced near the midshell owing to the enhanced pairing.
At E<

s=1 the drop of P (s = 1) and the increase of P (s = 2)
are apparent, indicating the breakup of the second pair. Near
the midshell, around E<

s=2 the drop of P (s = 2) and the
increase of P (s = 3) are also evident, revealing the breakup
of the third pair. The superfluid structure dominates the low-
lying spectrum and interprets the wave functions. Meanwhile,
sizable generalized-seniority mixing exists and the eigenstates
do not have pure generalized seniority. Figures 4–12 and
Figs. 13–21 display the eigen wave functions from different
aspects, and they together depict the generalized-seniority
pattern.

The near constancy of the first 2+ excitation energy has
attracted lots of discussion. In fact, it led Talmi [18,19] to
propose the generalized seniority as a good quantum number
of the Hamiltonian. Talmi assumed the pair structure vα (2)
to be invariant along the tin isotopic chain and studied under
what restrictions the s = 0 state and the s = 1,J P = 2+ state
are eigen states of the Hamiltonian. The derived restrictions
lead naturally the constant first 2+ excitation energy in the
chain. However, the adopted realistic interaction of this work
does not fulfill Talmi’s picture strictly. In Fig. 1 the pair
structures vj are not constant but vary moderately along the
chain. Figure 22 shows the generalized-seniority composition
P (s) of the ground state 0+

1 and the first excited state 2+
1 .

These two states are not pure s = 0 and s = 1 states, but
have appreciable generalized-seniority mixing. In the ground
state 0+

1 the dominate s = 0 component has amplitude P (s =
0) ≈ 0.85, the secondary s = 2 components have amplitude
P (s = 2) ≈ 0.13, and other s components are very small.
In the first excited state 2+

1 the dominate s = 1 components
have amplitude P (s = 1) ≈ 0.82. Secondarily, the s = 2 and
the s = 3 components are approximately of equal importance
with amplitudes P (s = 2) ≈ 0.08 and P (s = 3) ≈ 0.09. The
P (s = 0) amplitude vanishes by symmetry and the P (s = 4)
amplitude is negligible. Although appreciable generalized-
seniority mixing exits, we notice that the P (s) compositions
of the 0+

1 and 2+
1 states are almost invariant along the isotopic

chain; its origin and possible connection to the constant 2+
excitation energy deserve further study.
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FIG. 23. Generalized-seniority amplitudes P (s) of the J = 0
states in 116Sn. In other words we take the data points from those
in Fig. (17) corresponding to J = 0. The two vertical dotted lines
E = E<

s=1 and E = E<
s=2 are at the same positions as those in Figs. 8

and 17.

Figures 4–21 distinguish the eigenstates only by parity due
to the space limitation. More detailed information results from
analyzing the eigenstates with the same angular momentum.
Here we show eight examples of JP = 0+, 0−, 4+, 4−, 7+, 7−,
10+, 10− for the midshell nucleus 116Sn in Figs. 23–26. We
see that the P (s) curve of a given JP is much narrower (less
dispersive at a specific excitation energy) compared with the
P (s) curve of a given parity P from Fig. 17. The shapes of the
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FIG. 24. Generalized-seniority amplitudes of the J = 4 states in
116Sn.
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FIG. 25. Generalized-seniority amplitudes of the J = 7 states
in 116Sn.

J = 0,J = 4,J = 7, and J = 10 curves are different; higher
J has sharper transitions. This suggests that the geometry
of angular-momentum coupling plays an important role. The
various J curves of different shapes overlap on Fig. 17 and
result in a more dispersive P (s) curve. Figures 23–26 show
that between E<

s=1 and E<
s=2 the P (s = 4) amplitudes are

smaller for higher J , indicating better convergence. (The
omitted figures of other J show the same trend.) Therefore the
generalized-seniority approximation seems better for states of
higher J , and this deserves further study.
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FIG. 26. Generalized-seniority amplitudes of the J = 10 states
in 116Sn.
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IV. CANONICAL ENSEMBLE

In this section we compute the mean energy, entropy,
and specific heat in the canonical ensemble. Defining β ≡
1/(kBT ), the partition function is

Z(β) =
∑

i

e−βEi =
∑

J

(2J + 1)e−βEJ . (13)

The probability of occupying the many-body state i is

Pi = e−βEi

Z
.

The mean energy, mean squared energy, and energy fluctuation
are computed as

〈E〉 =
∑

i

EiPi, (14)

〈E2〉 =
∑

i

(Ei)
2Pi,

(�E)2 = 〈E2〉 − 〈E〉2. (15)
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FIG. 27. The canonical-ensemble mean-energy 〈E〉, entropy S,
and specific heat C versus the temperature T in 108Sn. kB is the
Boltzmann constant. The three curves correspond to the three different
energy cutoffs Ec.

The entropy and heat capacity are computed as

S = kBβ〈E〉 + kB ln Z.

C = kBβ2(�E)2.

For accuracy, we compute quantities by discrete summation
rather than taking derivatives of the partition function.

Shell-model-type approaches apply two truncations in com-
puting canonical-ensemble quantities: truncating the single-
particle basis to the valence space, and the Lanczos diagonal-
ization finds many-body eigenstates up to an energy cutoff, Ec.
In this work the single-particle valence space is the neutron
50–82 major shell. This misses the cross-shell excitations at
high excitation energies (around 8 MeV). The error owing to
the Lanczos cutoff Ec is relatively easy to control; we vary
Ec and the low-energy part of the results independent of Ec

should be reliable.
We show the results of the canonical-ensemble mean-

energy, entropy, and specific heat for three nuclei 108Sn, 116Sn,
and 124Sn in Figs. 27, 28, and 29. For each nucleus we take
three cutoffs of Ec = 8.5, 7.5, and 6.5 MeV. [In Eqs. (13), (14),
and (15) the summation includes eigenstates up to Ec.] The
three corresponding curves below kBT = 0.5 MeV overlap
and should be reliable. The thermal pairing phase transition
from the superfluid phase to the normal phase is reproduced.
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FIG. 28. The canonical-ensemble mean-energy, entropy, and
specific heat versus the temperature in 116Sn.
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FIG. 29. The canonical-ensemble mean-energy, entropy, and
specific heat versus the temperature in 124Sn.

The steady decrease of the specific heat beyond kBT =
0.6 MeV is unrealistic; the cross-shell excitations not included
in the current model space (neutron 50–82 major shell) should
become important.

V. CONCLUSIONS

We study even tin isotopes of mass number A = 108–124
with modern realistic interactions in the generalized-seniority
truncation of the shell model. Allowing as many as four
broken pairs, we compute for each nucleus the lowest 5000
eigenstates of each parity—up to around 8 MeV in excitation
energy. The eigen wave functions converge well, especially
so for low-lying states and for nuclei around the midshell.
This work promotes the generalized-seniority approximation

from “a viable first approximation” [11] to an accurate tool of
serious realistic calculations for semimagic nuclei.

The structures of the eigen wave functions are investigated
in terms of generalized-seniority in detail. For each eigenstate
we compute the generalized-seniority (S = 2s) amplitudes
P (s), mean s̄, and fluctuation �s. The pattern of successive
breakup of the condensed pairs is evident and more pronounced
near the midshell owing to the enhanced collective pairing.
Around the midshell, the transition is apparent from one to
two broken pairs and is identifiable from two to three broken
pairs. The superfluid structure generated by the pairing force
persists at higher energies in the increasingly dense spectrum.
The number of eigenstates below the first transition is roughly
the same as the dimension of the one-broken-pair subspace;
no further dimension truncation is possible. Away from the
midshell the superfluid structure is more easily disturbed by
other correlations at higher energies, but is still useful in
interpreting the eigen wave functions.

Meanwhile, sizable generalized-seniority mixing exists
even in the midshell region and practically no pure generalized-
seniority state exists. This suggests more care when using
pure generalized-seniority states to describe, for example, the
seniority isomers. In particular, the near constancy of the first
2+

1 excitation energy may not originate from a generalized-
seniority conserving Hamiltonian. However, we observe that
the generalized-seniority compositions P (s) of the ground
state 0+

1 and the first excited state 2+
1 are almost invariant

along the isotopic chain (see Fig. 22); its origin and possible
connection to the constant 2+ excitation energy deserve further
study.

We also calculate in the canonical ensemble the mean
energy, entropy, and specific heat, based on the J -level
spectrum up to high excitation energy. Computing this spec-
trum is feasible because of the much smaller dimension of
the generalized-seniority truncated subspace compared with
that of the standard shell model. The thermal pairing phase
transition from the superfluid phase to the normal phase is
reproduced.
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