
PHYSICAL REVIEW C 94, 044311 (2016)

Impact of the neutron matter equation of state on neutron skins
and neutron drip lines in chiral effective field theory

Francesca Sammarruca and Yevgen Nosyk
Physics Department, University of Idaho, Moscow, Idaho 83844-0903, USA

(Received 9 June 2016; revised manuscript received 3 September 2016; published 17 October 2016)

We present predictions of the binding energy per nucleon and the neutron skin thickness in highly neutron-rich
isotopes of oxygen, magnesium, and aluminum. The calculations are carried out at and below the neutron drip
line as predicted by our model. The nuclear properties are obtained via an energy functional whose input is the
equation of state of isospin-asymmetric infinite matter. The latter is based on a microscopic derivation of the
energy per particle in neutron matter applying chiral few-nucleon forces together with a phenomenological model
for the equation of state of symmetric nuclear matter. We highlight the impact of the neutron matter equation of
state at different orders of chiral effective field theory on neutron skins and the binding energy per particle and
quantify the uncertainty carried by our predictions.

DOI: 10.1103/PhysRevC.94.044311

I. INTRODUCTION

The behavior of the nuclear force in the medium is a
complex problem. While the typical arena to test many-body
theories is provided by finite nuclei, the system known as
infinite nuclear matter is a suitable environment to gain insight
into the nature of nuclear interactions in the medium. Typically,
nuclear matter is characterized by the energy per particle in
such system, known as the equation of state (EoS). In the
presence of different concentrations of neutron and protons,
the symmetry energy term appears in the EoS, whose density
dependence is well known to play an outstanding role in the
structure and dynamics of neutron-rich systems. This paper
is part of systematic efforts in our group to explore the EoS
through various applications, ranging from neutron skins to
neutron stars [1].

Naturally, experimental constraints on the EoS are neces-
sary, and those are extracted from measurements of observ-
ables which have been identified as being sensitive to the EoS
(see, for instance, Ref. [2]). Among those is the neutron skin
thickness, which can be obtained from measurements of the
neutron distribution. Thanks to the experimental program at
the Jefferson Laboratory, in the near future the weak charge
density of some nuclei may be measured accurately. In fact, the
first of such observations was completed and yielded a value
of 0.33+0.16

−0.18 fm for the neutron skin thickness in 208Pb [3]. We
understand that plans are in progress to repeat the experiment
aiming at a much smaller uncertainty, and, potentially, perform
a similar experiment to extract the skin of 48Ca [3].

The location of the neutron drip lines is another issue
of great contemporary interest which is closely related to
the nature of the EoS for neutron-rich matter. If a nucleus
is extremely neutron rich, nuclear binding may become
insufficient to hold it together and the neutron separation
energy, defined as Sn = B(Z,N ) − B(Z,N − 1), where B is
the binding energy, can be negative, indicating that the last
neutron has become unbound. (A similar definition applies to
the proton drip lines and the proton separation energy, but here
we focus on neutron-rich systems.) At this time, the neutron
drip line is experimentally accessible only for light nuclei.
However, thanks to the recent developments of radioactive

beam (RB) facilities, soon it may become possible to explore
the stability lines of nuclei ranging from light to very heavy.
Note, also, that nuclei beyond the neutron drip lines can exist
in the crust of neutron stars. Those nuclei are believed to
determine, for instance, the dynamics of superfluid neutron
vortices, which, in turn, control the rotational properties of
the star. In short, understanding the properties of nuclei
with extreme neutron-to-proton ratios is an important and
challenging problem for both rare isotope beam experiments
and theoretical models.

To provide useful guidance to experiments, predictions
should be accompanied by appropriate theoretical uncertain-
ties. With regard to that (and more), chiral effective theory
(EFT) [4,5] has appealing features: it is based on the sym-
metries of low-energy QCD while using degrees of freedom
appropriate for low-energy nuclear physics. Furthermore, and
equally important, it allows for a systematic improvement of
the predictions and a controlled theoretical error. Therefore,
in spite of the (still broad) popularity of meson-theoretic
interactions for modern calculations of nuclear structure and
reactions, chiral EFT has become established as a more
fundamental and model-independent approach. In EFT, long-
range physics is determined by the interaction of pions and
nucleons together with the (broken) symmetries of QCD,
whereas short-range physics is included through “contact
terms” and the process of renormalization. Together with an
organizational scheme to rank-order the various contributions,
known as power counting, two- and few-nucleon forces emerge
on an equal footing in a controlled hierarchy.

In this paper, we focus on the question of how the neutron
matter (NM) EoS impacts the formation of the neutron skin
and the binding energy per particle, which, through the neutron
separation energy, determines the location of the drip lines, at
different orders of chiral EFT.

We will consider very neutron-rich isotopes of oxygen,
magnesium, and aluminum. For the oxygen isotopic chain,
currently 25O and 26O are at the limit of experimental
availability [6], with 26O found to be just unbound [7]. With
regard to magnesium and aluminum, 40Mg and 42Al are
predicted to be drip line nuclei [8,9], suggesting that the drip
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lines may be located towards heavier isotopes in this region of
the nuclear chart.

The paper is organized as follows. To ensure that the
manuscript is self-contained, in Sec. II we give a brief review of
the few-body forces we apply, whereas in Sec. III we describe
our approach to the energy per particle in neutron-rich matter,
and how the latter is used in a liquid-drop-based functional in
order to obtain nuclear energies and radii. We describe how
we estimate the theoretical uncertainties in our calculations,
particularly those of EFT origin. Results and discussion are
presented in Sec. IV, while our conclusions are summarized
in Sec. V.

II. DESCRIPTION OF THE FEW-NUCLEON FORCES

Before moving to the description of our calculations in
nucleonic matter, in this section we review briefly the few-
nucleon forces as we will apply them in Sec. III. With regard
to 3NFs, only those which do not vanish in NM will actually
be employed here, although the following remarks may be
somewhat broader. For additional details, see Ref. [10].

A. The chiral two-body force

In the present investigation we consider nucleon-nucleon
(NN ) potentials at order (Q/�χ )0, (Q/�χ )2, (Q/�χ )3, and
(Q/�χ )4 in the chiral power counting, where Q denotes the
low-energy scale set by a typical external nucleon momenta or
the pion mass and �χ is the chiral symmetry breaking scale.
Chiral NN potentials at NLO and N2LO [order (Q/�χ )2 and
(Q/�χ )3, respectively] have been constructed in Ref. [11] for
several values of the cutoff, �, in the regulator function

f (p′,p) = exp[−(p′/�)2n − (p/�)2n]. (1)

When the chiral order and the cutoff scale are changed, the low-
energy constants in the two-nucleon sector are refitted to elastic
NN scattering phase shifts and the deuteron properties. The
low-energy constants c1,3,4 associated with the ππNN contact
couplings of the L(2)

πN chiral Lagrangian can be extracted from
πN or NN scattering data. The potentials we use here [11–13]
take the range determined in πN analyses as a starting point.
The reader should consult Ref. [13] for details on the fitting
procedure.

Although two-body scattering phase shifts can be described
well at NLO up to a laboratory energy of about 100 MeV [11]
while the N2LO potential fits the NN data up to 200 MeV,
high-precision quality is not possible until next-to-next-to-
next-to-leading order (N3LO) [12,13]. The potential at leading
order (LO) [13] describes NN data poorly, but we include it
in this analysis nevertheless as it may shed additional light on
the order-by-order pattern of the predictions.

In what follows, we will employ the chiral NN potentials
from Refs. [11–13] with cutoff parameter equal to 450 MeV
and n = 2 (for LO) or n = 3 (for the other orders).

B. The chiral three-nucleon force

The leading three-nucleon force is encountered at third
order in the chiral power counting and is expressed as the
sum of three contributions, whose corresponding diagrams

(a) (b) (c)

FIG. 1. Diagrams of the 3NF at N2LO. See text for more details.

are shown in Fig. 1, labeled as (a), (b), (c), respectively.
These contributions are: the long-range two-pion-exchange
part with ππNN vertex proportional to the low-energy con-
stants c1,c3,c4, the medium-range one-pion exchange diagram
proportional to the low-energy constant cD , and the short-range
contact term proportional to cE .

The inclusion of 3NFs is greatly facilitated by employing
the density-dependent NN interaction derived in Refs. [14,15]
from the N2LO chiral three-body force. This effective interac-
tion is obtained by summing one particle-line over the occupied
states in the Fermi sea. Ignoring small contributions [16]
depending on the center-of-mass momentum, the operator
structure of the NN interaction is identical to the one in free
space. For symmetric nuclear matter all three-body forces con-
tribute, while for pure neutron matter only terms proportional
to the low-energy constants c1 and c3 are nonvanishing [15,16].

While efforts are in progress to improve the status of
our calculations, the current “N3LO” study is limited to the
inclusion of the N2LO three-body force together with the
N3LO two-body force. In Refs. [17,18], calculations of the
neutron matter energy per particle at N3LO show a small effect
(of about −0.5 MeV) from the N3LO 3NF at saturation density
for the potentials of our purview [13]. Most recently, the small
size of the contribution from the 3NF at N3LO in NM with the
potential of Ref. [12] has been confirmed [19]. The inclusion
of the 3NF at N3LO in nuclear matter, on the other hand,
necessitates a refitting of the cD and cE low-energy constants,
a nontrivial task still to be completed. With regard to the ci

(i = 1,3), for the potential under our present consideration
their values are c1 = −0.81 and c3 = −3.40 at both N2LO
and N3LO [13], as determined to best reproduce NN data
consistent with πN analyses. The same values are used in the
leading 3NF.

It may be useful to make an additional comment concerning
the density-dependent effective 3NF from Refs. [14,15] which
we use. The latter is derived employing nonlocal regulators,
unlike what is done when constraining the cD and cE LECs
from genuine 3NFs in the three-nucleon system [20–26], a
procedure which has been part of our general scheme [10].
This inconsistency, though, will not impact our present NM
results, due to the absence of contributions proportional to cD

and cE in the pure neutron system.

III. THE MANY-BODY SYSTEM

A. Isospin-asymmetric matter

A variety of many-body methods are available and have
been used extensively to calculate the EoS of nucleonic
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matter. They include: the coupled-cluster method, many-body
perturbation, variational Monte Carlo or Green’s function
Monte Carlo methods.

In computing the EoS, we employ the nonperturbative
particle-particle (pp) ladder approximation, namely the leading
contribution in the usual hole-line expansion of the energy
per particle. To estimate the uncertainty associated with this
choice, in Ref. [10] we compared with Refs. [27,28] and
determined that the effect of using a nonperturbative approach
beyond pp correlations is negligible in neutron matter (the
focal point of this work) and about 1 MeV per nucleon in
symmetric matter around saturation density.

B. Application in finite nuclei

In order to link the EoS of asymmetric matter to an actual
nucleus, we proceed as described in earlier work [29]. Namely,
we write the energy of a spherically symmetric nucleus via an
energy functional based upon the semiempirical mass formula:
energy of a (spherical) nucleus as

E(Z,A) =
∫

d3re(ρ,α)ρ(r) +
∫

d3rf0(|∇ρ|2 + β|∇ρI |2)

+ e2

4πε0
(4π )2

∫ ∞

0
dr ′r ′ρp(r ′)

∫ r ′

0
drr2ρp(r).

(2)

Note that the integrand in the first term is the isospin-
asymmetric equation of state,

e(ρ,α) = e(ρ,α = 0) + esymα2 (3)

with esym the symmetry energy. In the above equation, ρ and
ρI are defined as ρn + ρp and (ρn − ρp), respectively, and α
represents the neutron excess, α = ρI /ρ. We take the constant
f0 in Eq. (1) equal to 60 MeV fm5, consistent with Ref. [30],
and disregard the term with the coefficient β [31] because
we found that its contribution was negligible. The impact of
varying the parameter f0 will be addressed later.

The proton and neutron density functions are obtained by
minimizing the value of the energy, Eq. (2), with respect to
the parameters of Thomas-Fermi distributions for proton and
neutron densities. More specifically, we write

ρi(r) = ρ0

1 + e(r−ai )/ci
(4)

with i = n,p. The radius and the diffuseness, ai and ci ,
respectively, are optimized by minimization of the energy
while ρ0 is obtained by normalizing the proton(neutron)
distribution to Z(N ). The skin is defined as

S = Rn − Rp, (5)

where Rn and Rp are the rms radii of the neutron and proton
density distributions,

Ri =
(4π

T

∫ ∞

0
ρi(r)r4 dr

)1/2
, (6)

where T = N or Z. Clearly, this method is not suited to predict
detailed quantum structures, such as nuclear shells or pairing
effects. On the other hand, our purpose is not to perform

detailed structure calculations, but rather to highlight the direct
impact of the equation of state on the nuclear properties under
consideration.

C. Estimation of the uncertainty

When addressing nucleonic matter or any other many-body
system, several sources of theoretical uncertainty need to be
considered. The one arising from the choice of the framework
for obtaining the EoS was addressed in Sec. III A. Others,
inherent to EFT, are:

(i) Error in the LECs. This item includes:

– Short-range (NN ) LECs;

– Long-range (πN ) LECs.

(ii) Regulator dependence.
(iii) Truncation error.

We will briefly discuss each of them.
Concerning the NN LECs, we have performed several test

Brueckner-Hartree-Fock calculations of nucleonic matter with
local high-precision potentials from the Nijmegen group [32]
and concluded that the uncertainty arising from error in the
experimental determination of NN LECs is much smaller than
other errors and can be neglected. With regard to πN LECs,
at the two-body level they only impact partial waves where no
contacts are available, which, at N3LO, are F waves and higher.
Thus, one may expect only minor impact from this uncertainty
in the two-nucleon sector. But of course these LECs enter the
3NF, where their uncertainty can have a much larger impact.
This point requires a systematic investigation where, for each
set of ci within the allowed experimental error, one constructs
NN potentials to be used consistently in the 2NF and the 3NF.
It is reassuring to see a recent Roy-Steiner analysis [33] where
the authors report very small errors in their determination of
πN LECs.

It has been our observation, as well as other authors [34],
that regulator dependence is not a good indicator of the chiral
uncertainty at some order, as it tends to underestimate the
truncation error. Here, we will determine the latter as explained
next. The truncation error is essentially what is left out when
terminating the chiral expansion at some order n. If the
prediction of observable X at order n + 1 is available, the
truncation error at order n is then

εn = |Xn+1 − Xn|, (7)

which is the (n + 1)th correction. On the other hand, if Xn+1

is not available, the truncation error can be estimated to be

εn = |Xn − Xn−1|Q
�

, (8)

where Q is a momentum typical for the system under
consideration or the pion mass, and � is the cutoff. Again,

we have an expression proportional to ( Q
�

)
n+1

. In our present
situation, a reasonable choice for Q is the Fermi momentum
corresponding to the average density of a particular nucleus.
So, for each nucleus, we calculate the average density from the
Thomas-Fermi distributions, Eq. (4), from which we obtain the
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FIG. 2. (a) Binding energy per nucleon in neutron-rich isotopes of oxygen vs. the mass number with increasing order of chiral EFT. Dotted
black line: LO; dashed blue: NLO; dash-dotted green: N2LO; solid red: N3LO. (b) As in (a) for magnesium. (c) As in (a) for aluminum. The
various orders shown in the figure refer to the microscopic neutron matter equation of state, whereas a phenomenological parametrization is
adopted for the equation of state of symmetric matter. See text for details.

corresponding Fermi momentum. The above considerations
will be used in the next section to quantify the uncertainty of
our predictions.

IV. RESULTS AND DISCUSSION

In the discussion which follows next, we obtain the neutron
matter equation of state microscopically, as described in
Ref. [10]. In order to emphasize the role of the pure neutron
matter EoS, which is our main goal here, we use an empirical
EoS for symmetric nuclear matter (SNM) that we take from
Ref. [35]. In this way, we separate out the role of neutron matter
pressure and remove any model dependence originating from
the details of the saturation point of SNM.

At this time we recall the remarks made at the end of
Sec. II B with regard to the contribution from the missing
(N3LO) 3NF expected to be very small in NM at normal
density. Nevertheless, even with regard to pure neutron matter,
at this stage of our calculations it is not possible to make
definite statements about convergence of the EFT predictions
from LO to N3LO, since the EoS for SNM is taken from
phenomenology. When the latter, instead, is calculated micro-
scopically, the 3NF should be obtained at N3LO, consistent
with the 2NF, in which case the order-by-order pattern may be
different than the one we see here. For these reasons, we limit
ourselves to explore the impact of the NM EoS on neutron skins
and energies at different orders while avoiding projections

about convergence. Note that, for the EoS of NM, the steps
from LO to N2LO are free from inconsistencies.

The phenomenological EoS of SNM is obtained from a
Skyrme-type energy density functional and has a realistic
saturation point at ρ0 = 0.16 fm−3 with energy per particle
equal to −16.0 MeV [35].

Figure 2 shows the binding energy per nucleon as a function
of the mass number for neutron-rich isotopes of oxygen,
magnesium, and aluminum. The four curves are obtained at
order 0 (LO, dotted black), order 2 (NLO, dashed blue), order
3 (N2LO, dash-dotted green), and order 4 (N3LO, solid red)
of chiral EFT in the calculation of the neutron matter EoS. In
each case, the curves end where the neutron separation energy,
Sn = B(Z,N ) − B(Z,N − 1), turns negative. We make the
following main observations:

(i) The pattern shown in the figure is consistent with the
change in the degree of attraction/repulsion seen in
the NM EoS at the corresponding orders and at the
low to moderate densities probed by the observables
in this study, see Fig. 3. Namely, the most attractive
interactions bind the last neutron up to larger values
of A.

(ii) The order-by-order pattern is such that differences
between consecutive orders become smaller when
going from LO to N3LO.
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FIG. 3. The equation of state of pure neutron matter at various
orders of chiral EFT.

In Fig. 4, the neutron skin thickness is shown as a function of
A for the same isotopes and physical interactions as considered
in Fig. 2. The largest values of the skin are obtained with the
most repulsive NM EoS. Note also how the pressure in neutron
matter at the various orders shown in Fig. 5 reveals large
differences among the various interactions. The order-by-order
pattern is consistent with what we observed for the binding
energy. At the low densities (likely to be probed by the skin),
the LO and the N2LO interactions yield very similar values for
the pressure and the skin.

We provide additional information in Table I, where
we made some selections in order to avoid an excessively
cumbersome tabulation. For each of the three elements under
consideration, we show the smallest value of A from Figs. 2, 4
and the value of A (also from Figs. 2, 4) for which the
separation energy first becomes negative, namely, the first
value of A at which one of the three curves is interrupted.
(This way, the energies and skins in the tables are comparable
with one another order by order, whereas the “drip” A would
be different at each order.) The emerging pattern is clear
and suggests that the truncation error decreases at the higher
orders of the expansion, for both the energy and the skin.
Also, at fixed order, the uncertainty is larger for the more
neutron-rich systems, most likely reflecting increasing role of
the microscopic NM EoS with its corresponding uncertainty.

Concerning the latter, we provide some quantitative in-
formation in Table II. As described at the end of Sec. III C,
in developing Table I we needed to find an average density
relevant for the nuclei included in this investigation. The
latter was found to range from about 0.081 to 0.095 fm−3,
or, in terms of the Fermi momentum of SNM, from about
1.06 to 1.12 fm−1. Thus, kF = 1.1 fm−1 is representative,
which translates into the neutron Fermi momentum entered in
Table II. The Table shows the energy per neutron at the various
orders with their truncation error, which has been calculated
as explained earlier, with kn

F as the typical momentum used in
Eq. (8).

Finally we like to discuss an uncertainty that is not EFT
related. This is due to variations of the f0 parameter [30]
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FIG. 4. As in Fig. 2, but for the neutron skin thickness S.

in the surface term of the liquid droplet functional, Eq. (2),
when fitted to β-stable nuclei. This uncertainty is displayed in
Table III. The values shown are an average of the predictions
obtained with f0 = 60 MeV fm5 and those with f0 = 70 MeV
fm5 [30] with the error arising from such variation. We
see that the uncertainty associated with this parameter is
approximately independent of the chiral order. For the energy,
it is generally larger than the truncation error, although the
latter may dominate at LO. For the skin, on the other hand,
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FIG. 5. The pressure in pure neutron matter for the interactions
considered in Fig. 3.

it is smaller than or comparable with the truncation error,
particularly at the highest order. Note that the error displayed
in Table III is not related to the Hamiltonian, whose pattern by
chiral order remains the same regardless the value of f0. The

TABLE I. Binding energy per nucleon (B/A) and neutron skin
(S), along with their truncation error at each order, for some of the
neutron-rich nuclei from Figs. 2,4. See text for more details.

Nucleus Order B/A with truncation S with truncation
error (MeV) error (fm)

20O LO 7.670 ± 0.085 0.239 ± 0.037
NLO 7.755 ± 0.067 0.202 ± 0.036

N2LO 7.688 ± 0.021 0.238 ± 0.011
N3LO 7.709 ± 0.01 0.227 ± 0.005

28O LO 5.978 ± 0.361 0.716 ± 0.159
NLO 6.339 ± 0.282 0.557 ± 0.134

N2LO 6.057 ± 0.085 0.691 ± 0.042
N3LO 6.142 ± 0.040 0.649 ± 0.019

28Mg LO 8.310 ± 0.053 0.155 ± 0.028
NLO 8.363 ± 0.044 0.127 ± 0.029

N2LO 8.319 ± 0.014 0.156 ± 0.009
N3LO 8.333 ± 0.007 0.147 ± 0.005

40Mg LO 6.634 ± 0.378 0.621 ± 0.138
NLO 7.012 ± 0.309 0.483 ± 0.133

N2LO 6.703 ± 0.094 0.616 ± 0.042
N3LO 6.797 ± 0.045 0.574 ± 0.020

32Al LO 8.278 ± 0.093 0.215 ± 0.040
NLO 8.371 ± 0.078 0.175 ± 0.041

N2LO 8.293 ± 0.014 0.216 ± 0.013
N3LO 8.307 ± 0.007 0.204 ± 0.007

44Al LO 6.582 ± 0.404 0.659 ± 0.161
NLO 6.986 ± 0.333 0.498 ± 0.146

N2LO 6.653 ± 0.082 0.644 ± 0.046
N3LO 6.709 ± 0.027 0.598 ± 0.022

TABLE II. The energy per neutron in NM (E/A) with its
truncation error at the indicated chiral orders. The value of the neutron
Fermi momentum, kn

F , corresponds approximately to the average
density determined earlier for the nuclei under consideration.

kn
F (fm−1) Order E/A with truncation error (MeV)

1.39 LO 12.126 ± 4.10
NLO 8.027 ± 2.99

N2LO 11.017 ± 0.95
N3LO 10.063 ± 0.58

final results including their compounded error (calculated in
quadrature) are shown in Table IV.

It is also interesting to mention recent ab initio calculations
of medium-mass neutron-rich nuclei, 48Ca in particular [36].
There, the neutron skin thickness in 48Ca was predicted with
various low-momentum chiral Hamiltonians [37] and found
to be nearly independent of the interaction, due to a strong
correlation between the point neutron and proton radii. Here,
we have considered a group of interactions at different chiral
orders while keeping the properties of SNM fixed. Under
the present circumstances, we find that larger NM pressure
corresponds to larger neutron skin.

TABLE III. Binding energy per nucleon (B/A) and neutron skin
(S) for the same nuclei considered in Table I. The values shown are
an average of the predictions obtained with f0= 60 MeV fm5 and
those obtained with f0= 70 MeV fm5 [30] with the error arising from
such variation.

Nucleus Order B/A (MeV) S (fm)

20O LO 7.445 ± 0.226 0.248 ± 0.009
NLO 7.526 ± 0.230 0.211 ± 0.009

N2LO 7.463 ± 0.225 0.246 ± 0.008
N3LO 7.483 ± 0.227 0.236 ± 0.009

28O LO 5.825 ± 0.153 0.740 ± 0.024
NLO 6.170 ± 0.170 0.581 ± 0.024

N2LO 5.904 ± 0.153 0.712 ± 0.021
N3LO 5.985 ± 0.158 0.671 ± 0.022

28Mg LO 8.094 ± 0.216 0.162 ± 0.006
NLO 8.145 ± 0.218 0.133 ± 0.006

N2LO 8.110 ± 0.210 0.162 ± 0.006
N3LO 8.117 ± 0.216 0.153 ± 0.006

40Mg LO 6.489 ± 0.146 0.652 ± 0.022
NLO 6.851 ± 0.161 0.504 ± 0.022

N2LO 6.558 ± 0.145 0.636 ± 0.020
N3LO 6.647 ± 0.150 0.595 ± 0.021

32Al LO 8.075 ± 0.203 0.223± 0.009
NLO 8.164 ± 0.207 0.183 ± 0.008

N2LO 8.091 ± 0.203 0.224 ± 0.008
N3LO 8.108 ± 0.199 0.212 ± 0.008

44Al LO 6.443 ± 0.139 0.682 ± 0.023
NLO 6.831 ± 0.155 0.521 ± 0.023

N2LO 6.515 ± 0.138 0.665 ± 0.021
N3LO 6.589 ± 0.121 0.620 ± 0.022
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TABLE IV. Binding energy per nucleon (B/A) and neutron skin
(S) for the same nuclei as in Table I with their compounded error.

Nucleus Order B/A (MeV) S (fm)

20O LO 7.445 ± 0.241 0.248 ± 0.038
NLO 7.526 ± 0.240 0.211 ± 0.037

N2LO 7.463 ± 0.226 0.246 ± 0.014
N3LO 7.483 ± 0.227 0.236 ± 0.010

28O LO 5.825 ± 0.392 0.740 ± 0.161
NLO 6.170 ± 0.329 0.581 ± 0.136

N2LO 5.904 ± 0.175 0.712 ± 0.047
N3LO 5.985 ± 0.163 0.671 ± 0.029

28Mg LO 8.094 ± 0.222 0.162 ± 0.029
NLO 8.145 ± 0.222 0.133 ± 0.031

N2LO 8.110 ± 0.210 0.162 ± 0.011
N3LO 8.117 ± 0.216 0.153 ± 0.008

40Mg LO 6.489 ± 0.405 0.652 ± 0.140
NLO 6.851 ± 0.348 0.504 ± 0.135

N2LO 6.558 ± 0.173 0.636 ± 0.047
N3LO 6.647 ± 0.157 0.595 ± 0.029

32Al LO 8.075 ± 0.223 0.223 ± 0.041
NLO 8.164 ± 0.221 0.183 ± 0.042

N2LO 8.091 ± 0.203 0.224 ± 0.015
N3LO 8.108 ± 0.199 0.212 ± 0.011

44Al LO 6.443 ± 0.427 0.682 ± 0.163
NLO 6.831 ± 0.367 0.521 ± 0.148

N2LO 6.515 ± 0.161 0.665 ± 0.051
N3LO 6.589 ± 0.124 0.620 ± 0.031

Before closing, we wish to extend the discussion and
explore correlations among the main quantities addressed in
this investigation. Linear correlations between two variables
are usually studied using the Pearson coefficient:

ρ(x,y) = cov(x,y)

σxσy

, (9)

where the covariance cov(x,y) is defined as

cov(x,y) =
n∑

i=1

(xi − x̄)(yi − ȳ)

n − 1
, (10)

and x̄ and ȳ are the average values of the {xi} and {yi} data sets,
respectively. σx and σy are the usual standard deviations. Note
that our samples contain only four data, namely the skins at LO
to N3LO and the pressure or energy at the corresponding orders
(at some chosen, fixed density). This may render the Pearson
coefficient, or the identification of a specific fitting function,
unreliable. We will show correlations graphically, see Fig. 6.
There, we see a positive correlation between skin and either the
pressure or the energy per particle in NM. The figure shows the
skin of 40Mg, but the behavior is representative for the other
nuclei.

To make a similar analysis of how the drip lines correlate
with neutron matter pressure or energy, we consider the neu-
tron separation energy, Sn = B(Z,N ) − B(Z,N − 1), which
is chiefly responsible for the location of the driplines. For
a particular nucleus, again 40Mg, we calculate Sn = B(Z =
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FIG. 6. Correlation between the skin, S, and the pressure (left) or
the energy in neutron matter (right). The density is fixed and equal to
the average density in 40Mg. Skin values as in Table III.

12,N = 28) − B(Z = 12,N = 27). The correlation between
the separation energy at the four orders and the corresponding
pressure and energy in NM are shown in in Fig. 7 on the
left side and the right side, respectively. We see a definite
anticorrelation of the neutron removal energy with either
pressure or energy in NM. Since a smaller separation energy
signifies that the drip line is closer, we conclude that either
larger NM pressure or larger energy will facilitate the onset of
the drip lines.

We like to end with a comparison with currently available
empirical information. As mentioned in the Introduction,
experimental information on very neutron-rich nuclei, partic-
ularly neutron densities, is still scarse, a state of affairs which
is expected to improve with measurements at RB facilities
and the electroweak program at JLab. To gain a better insight
on how the predictions from our functional compare with
available tabulations, experimental or estimated, we consulted
the large compilation of nuclear data from Ref. [38]. The
values we found for the binding energy per nucleon compare
favorably with those in Table IV. For instance, Ref. [38] reports
for 28Mg a value of 8.2724 MeV (our predictions at N3LO:
8.117 ± 0.216 MeV); for 40Mg a value of 6.621 MeV (our
predictions at N3LO: 6.647 ± 0.157 MeV); for 20O a value of
7.568 MeV (our predictions at N3LO: 7.483 ± 0.227 MeV);
for 32Al a value of 8.100 MeV (our predictions at N3LO:
8.108 ± 0.199 MeV).

As another test of the general validity of the functional
method (regardless the EoS), we calculated the binding energy
per nucleon and the charge radius for one of the much studied

0

0.4

0.8

1.2

1.6

S
n
 (

M
eV

)

0.2 0.4 0.6 0.8 1
Pressure (MeV/fm3)

-0.4

0

0.4

0.8

1.2

1.6

S
n
 (

M
eV

)

8 9 10 11 12
E/A (MeV)

FIG. 7. Correlation between the neutron separation energy, Sn,
and the pressure (left) or the energy in neutron matter (right). Details
are given in the text.
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closed-shell nuclei, namely 40Ca. Since this nucleus is isospin-
symmetric, the model-dependence of the NM EoS plays only a
minor role, if any. We obtain 8.333 ± 0.200 MeV and 3.504 ±
0.077 fm for B/A and the charge radius, respectively, to be
compared with the empirical values of 8.55 MeV and 3.48 fm.
The ab initio prediction for the charge radius of 40Ca is given
in Ref. [36] as 3.49(3) fm.

In conclusion, we find that our method is able to produce
realistic values for bulk nuclear properties.

V. CONCLUSIONS AND OUTLOOK

The equation of state of infinite matter and its density depen-
dence contain rich information about nucleonic interactions
in the medium, which can be extracted through the analysis
of EoS-sensitive observables. In this paper, we calculated
binding energies and neutron skins for neutron-rich isotopes
of three selected elements with a method where the EoS of
isospin-asymmetric matter is the crucial input. Our neutron
matter EoS are based on chiral nuclear forces constrained by
πN and NN data. In order to highlight the role of the pure
neutron matter EoS, the calculations employed microscopic
equations of state for neutron matter obtained at different
orders of chiral EFT, whereas a phenomenological model was
adopted for the EoS of symmetric nuclear matter.

We discussed various sources of uncertainty, paying par-
ticular attention to truncation errors. Predictions for both the
binding energy and the neutron skin show a large truncation
error at LO and a much smaller one at N3LO. Thinking

specifically of the Hamiltonian, this behavior is encouraging,
but complete calculations including consistent 2NF and 3NF,
as well as calculations at N4LO, will be crucial to assess a
successful path to convergence. We also observed that the
uncertainty on the energy related to a free parameter in the
functional is typically larger than the smallest truncation
error. This is not the case for the neutron skin, where the
compounded error remains dominated by the order-by-order
pattern. We note, further, that the uncertainty associated with
this parameter is uncorrelated with the chiral order, and so it
does not hinder our ability to observe a pattern by order, and,
hopefully in the near future, a convergence pattern with respect
to the Hamiltonian.

We close by reiterating the main motivation for studies
such as this one. Our empirical knowledge of nuclear structure
at the limits of stability is very limited, a status of affairs
which is likely to improve in the near future thanks to
the development of radioactive beam facilities. Along with
these on-going experimental efforts, it is important to carry
out calculations based on microscopic state-of-the-art nuclear
forces. The effective field theory approach is unique in that it
allows to estimate the uncertainty of the predictions.
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